
Streamlining mobile app deployment with Jenkins

and Fastlane in the case of Catrobat’s Pocket Code

1stKirshan Kumar Luhana

Institute for Software Technology

Graz University of Technology

Graz, Austria

kirshan.luhana@student.tugraz.at

2nd Christian Schindler

Institute for Software Technology

Graz University of Technology

Graz, Austria

cschindler@ist.tugraz.at

3rd Wolfgang Slany

Institute for Software Technology

Graz University of Technology

Graz, Austria

wslany@ist.tugraz.at

Abstract—This paper describes how we improved speed and
reliability for deployment in the case of Catrobat’s Pocket Code,
a mobile open source project with over 500 contributors and
28k active installs, by moving to continuous deployment. Pocket
Code is a mobile app supporting multiple languages including
right to left languages such as Arabic, Farsi, and Urdu. This
leads to additional repetitive tasks during deployment. The main
challenge of a transition to continuous deployment is acceptance
tests done by product owners, which in our case, take place
as a step during deployment and lead to overall deployment
prolongation. Another challenge is the translated application
descriptions for the app store for all supported languages which
lead to a huge amount of repetitive tasks. Creating screenshots for
these languages is tedious and error-prone and further, prolong
the deployment. This paper describes how we used Fastlane,
a mobile app release framework, in conjunction with Jenkins,
a continuous integration server, to improve app deployment
in terms of speed and reliability. Deployment steps which are
not automatable are moved out of the actual process which is
supported by the staged deployment approach of Google Play.
The presented approach was also successfully tested with Pocket
Paint, another Catrobat app on Google Play, which shows it
can be easily transferred to fit other apps supporting multiple
languages.

Index Terms—mobile application, continuous deployment,
Catrobat, Pocket Code, open source, Google Play, Fastlane,
internationalization (i18n)

I. INTRODUCTION & BACKGROUND

A. Catrobat Project

Catrobat1 is a visual programming language and a set of

creativity tools for different platforms and devices. It is an

independent free and open source software (FOSS) project

which is hosted on GitHub. All contributors are volunteers

from more than 20 countries, working on design, development

and translation of the Catrobat apps. Development is done

using agile methods, like extreme programming [1] and its un-

derlying principles. The focus of development is Pocket Code

for Android and iOS platforms. According to our statistics

Pocket Code (for Android) currently has over 437k downloads

in total and over 28k active installs.

1https://catrobat.org

B. Pocket Code

Pocket Code is an integrated development environment

(IDE) for the brick based visual language Catrobat. It is

designed for Android and iOS platforms. Pocket Code is also

released with custom features for partners and projects like

Phiro2 or Create@School3 with internationalization (i18n) and

localization (l10n) support.

C. Continuous practices

Continuous practices [2] are emerging software develop-

ment industry practices based on agile methods mitigating the

gap [3] between development and deployment (Continuous de-

ployment), business and developer (bizDev) and developer and

operation (DevOps). Shorter feedback loops between devel-

opers and customers improve the product’s quality. Frequent

releases lead to increased developer confidence, improved

customer satisfaction and bonding [2], [4].

D. Deployment pipeline (DP)

A deployment pipeline is a way to progress through the

release process in stages [5], [6]. Usually, the first stage of the

pipeline is to download the latest codebase from the repository

to build the binaries for further use [6]. Later stages could be

automatic or manual depending on business needs or tools and

technology limitations where human authorization or input is

required. The last stage is usually deploying software to the

production environment. However, with a manual deployment

pipeline there are still the following challenges to cope with:

• Dependence on persons with tacit deployment knowl-

edge. If the person who usually deploys the app is on

vacation - who takes over?

• Often the documentation of manual deployment steps is

not up to date with the actual process. This raises the

chance of errors during deployment, especially in the case

when the responsible person changes.

• Since manual deployment usually needs a long time,

minor bug fixes are not regarded by the deployment or

render the current deployment obsolete depending on the

criticality of the bug.

2http://www.robotixedu.com
3https://edu.catrob.at/no1leftbehind-for-teachers

cschindler
Text Box
 Peer-reviewed and accepted author manuscript. Find BibTex citation on last page.

Automatic deployment eradicates all boring, repetitive tasks,

significantly reduces release time, and enables one to release

reliably without manual interaction. Automatic deployment

steps are written as code and do not require additional

documentation and can be triggered by any authorized team

member.

E. Release strategy

A release could be a new app or an upgrade with new

or modified features [7]. A release also could be a bug fix

or a refactored version with better performance. Nayebi et

al. suggest that “an app’s release strategy is a factor that

affects the ongoing success of mobile apps”. For free open

source software (FOSS) projects release strategies can be

classified as time or feature based [8]. Whether time based

or feature based, [9] stated that there is increasing interest

in adoption of frequent releases in FOSS projects. Frequent

releases imply a limited amount of new code which reduces

the risk of errors [10]. There are two main motivations for

adoption of a frequent release approach, a) the increase of

project attractiveness, and, b) maintenance and the increase

of market share [9]. Google and Admob published in March

2014, that the number of users who have stopped using an

app, because it was not localized properly, varies between

34% and 48% depending on the origin of the data (United

States; China; Japan; United Kingdom and South Korea) [11].

Therefore multi language apps in combination with a frequent

release approach need deployment automation. The consumer

IT market is rapidly growing [12] due to new hardware,

services and platform development. Consumers have plenty

of choices to pick an app for their business or personal

activity. Considering the velocity of the IT market change,

software development companies need to pay special attention

to what consumers want [12]. Releasing software faster than

competitors is also an important success factor [13].

F. Localization and internationalization

Localization (l18n) and internationalization (l10n) in the

current software market is considered as an important factor

to attract users around the globe [14]. Users feel more com-

fortable and productive if the application is translated to the

users’ language and reflect their cultural values. Pocket Code is

designed by following localization and internalizations design

principles. It has the capability to easily adapt to different lan-

guages including right to left languages (Arabic, Urdu, Farsi

etc). To localize a product, it needs translation by professional

translators. There are many user friendly desktop and online

applications to allow translators to contribute. They are capable

to export translations in different formats. Pocket Code uses

the Crowdin localization management platform. It is free4 for

open source and academic projects. It facilitates translators and

managers to complete the translation job in a reasonable time.

Crowdin provides a RESTful API over HTTP using GET or

POST to up- and download files and web-hooks to integrate

4https://crowdin.com/pricing

with GitHub5 and other source code management platforms.

Catrobat has more than 500 contributors on Crowdin who

translate Pocket Code into various languages. Currently Pocket

Code supports more than 47 languages (partially) and displays

application details in 26 languages on Google Play Store6.

G. Continuous integration and deployment tool support

Within the Catrobat project, Jenkins-CI is used for continu-

ous integration of the Android specific platform applications,

and Fastlane for continuous deployment.

1) Jenkins: Jenkins7 is a free and open source tool for

build automation. It facilitates frequent building and testing

of software projects either triggered manually, by external

events like GitHub pull requests or on a preconfigured regular

basis. Depending on the configuration and installed extensions,

Jenkins can be used as a mere continuous integration, as a

continuous delivery or as a full blown continuous deployment

tool.

2) Fastlane: Fastlane is a free open source tool to auto-

mate the deployment pipeline of Android and iOS apps. It

handles all monotonous task such as taking screenshots. When

screenshots are created manually usually different people are

required who are capable of understanding and operating the

device in the various supported languages. With Fastlane, this

can be done automatically. Furthermore, signing and uploading

the app to the app stores is taken care of by Fastlane as well.

H. Challenges in Catrobat’s Pocket Code deployment

Human factor researchers are increasingly concerned with

developing tools for handling critical acts [15]. Automation

improves performance with Fastlane, reliability, availability,

and productivity hence it saves time and money. The main

challenges in Catrobat’s Pocket Code deployment are a.) the

many languages Pocket Code supports and which have to be

reflected by the app store descriptions including screenshots,

b.) the acceptance tests by the product owners which cur-

rently are done during deployment preparation which delays

the actual deployment and c.) the manual steps the release

responsible person has to fulfill to set up the environment to

build, sign, align the APK (Android Package Kit, i.e. Android

application package) as well as test and copy the release candi-

date for actual upload to the app store. This is usually done as

teamwork and all team members depend on each other. One of

the responsible development team members creates the release

branch, after that a senior member signs, aligns and uploads

the APK to our internal cloud for acceptance testing by the

product owners. On final approval, an authorized member

uploads the APK to Google Play. App description translations

and screenshots are usually not updated frequently since this

is tedious and monotonous manual work. The downside of this

behavior is that the APK and the description with screenshots

diverge with the time. In the following sections, we describe

the status quo and the transition to continuous deployment.

5https://support.crowdin.com/github-integration
6https://goo.gl/SSJkQj
7https://jenkins.io

I. Challenges using Fastlane and Crowdin

For using Fastlane and Crowdin in conjunction some adapta-

tions to file-structures and directory naming have to be imple-

mented. The Fastlane Screengrab tool is capable of capturing

screenshots by changing system locals and retrieving them

from the emulator or device for further processing. Screen-

grab uses its folder naming convention as “languageCode-

CountryCode”, e.g., en-US, en-UK, de-DE, ur-PK (see source

code of Screengrab8). Crowdlin export feature offers different

custom naming conversation for its directory structure and

export all languages as zip file containing separate fold-

ers for each language. Each folder contain an XML file

google play.xml with four properties “title” “description”,

“promotion text” (i.e. the short description), “app updates”

(“What’s new” section which is not yet maintained with Pocket

Code). At the moment Pocket Code offers app localization

and internationalization for 57 languages including those lan-

guages which are not supported by the Android system for ex-

ample Sindhi, and Pashto. Furthermore, Pocket Code supports

different dialects such as French African and French French

which are not supported by Google Play. Since Crowdin is not

aware which languages and dialects are supported by Google

Play the language export contains all available translations

including those which cannot be uploaded to Google Play but

are used in Pocket Code. Currently, Google Console offers

app listings in 78 languages9 but not in a uniform way. It uses

only language code for some languages and languagecode-

CountryCode for others, e.g., “ar” for all Arabic languages,

“hr” for Croatian, “ca” for Catalan but “cs-CZ” for Czech, “en-

US” for English United States, “en-UK” for English United

Kingdom.

II. CATROBAT DEPLOYMENT STATUS QUO

Releasing an app requires careful planning. Failures in the

released software or any mistakes during the release process

are problematic not only for the organization’s reputation and

budget [16] but also for users. In the Catrobat project, the

actions for deployment are potentially automizable although

up until now it was not considered as the most important

venture and hence postponed. The Catrobat project uses git

and GitHub as its versioning system. Currently, a branching

model is used which follows the example of “A successful

Git branching model”10 with a master branch which reflects

the status of the currently released project and a default

development branch. Whether this is the ideal solution for the

project is subject to discussion but as of now it is established

and accepted by the development. Catrobat’s deployment

phase starts after feature development has been finished, the

code was reviewed, integrated and considered as potentially

shippable due to product owner feature acceptance. The de-

ployment steps are most of the time very similar between

releases but have not been automated yet since there are still

8https://goo.gl/kbhSTV
9https://support.google.com/googleplay/android-developer/answer/113469
10http://nvie.com/posts/a-successful-git-branching-model

Fig. 1. Catrobat manual deployment workflow

manual interactions in the workflow (see Figure 1). When

all features are finished and accepted which happens in our

continuous integration workflow phase, the person who is

responsible for the release will create a release branch from

the development branch. The development branch is in a state

with potentially shippable code only, until the release branch

was branched off. This release-branch is once again tested on

Jenkins and all automated test (lint, PMD, unit, integration,

and acceptance) are executed just to ensure no breaking code

made it to the release branch. When there are no errors, the

outcoming APK is an artifact which is potentially shippable.

This APK is uploaded to our internal Wiki along with the

release notes for final acceptance by our product owners. After

thoroughly manual testing predefined scenarios and also in an

exploratory manner, this release candidate is accepted as a

whole by the product owners. If there have been fundamental

changes in the UI (user interface) then the latest screenshots

for the app-store description have to be captured manually for

all languages. The next step is the signing and aligning of the

APK. After this is done, the last step is to upload the APK

with the language dependent descriptions and screenshots to

the app store. Finally, the release is announced via our internal

communication channels. These steps are well documented in

our internal Catrobat Wiki but they are subject to frequent

optimization changes since the team works on improving and

streamlining the workflow to reduce the chances of errors and

mitigate tedious deployment steps. Nevertheless, humans are

not good at repetitive tasks [17] and the deploy process is

error-prone especially if the number of repetitive steps increase

due to, e.g., more different supported languages, and different

flavors. Especially senior level member quickly become bored

and start to make errors due to repetitiveness [18], [19].

A. Rapid increase of manual steps

Since Pocket Code exists in different flavors (special fea-

tured versions for partners) these flavors have to be released

separately in the above described manner. Furthermore, the

plan to support different app stores in future and the rising

number of supported languages lead to an explosion of the

number of manual steps which poses a real problem. This

can only be alleviated by automating as much as possible and

removing manual intervention out of the deployment phase.

III. STREAMLINING - MOVING TOWARDS CD

The goal of continuous deployment is to eliminate all

manual steps in the deployment phase and automate as much

as possible to minimize errors introduced by human interven-

tion. According to our workflow depicted in Figure 1 the

only blocking activity is the final approval of the product

owner. This must be moved out of the deployment phase.

With automatic app deployment (see Figure 2) there are no

drawbacks in moving this approval after the deployment has

happened, of course only under the premise that this APK

does not reach the public without thoroughly testing and final

approval. The Google Play Developer API helps in this regard

allowing one to upload new APKs of an app to different release

tracks,11. The following tracks are available by default:

• Alpha the track where only alpha testers are subscribed

(e.g., product owner).

• Beta the track for a limited number of beta testers.

• Rollout this track reaches a defined percentage (range

from 5% to 50%) of the app’s users which are randomly

selected.

• Production this track is to publish the app for all users.

For the Catrobat project, only alpha and production tracks

are currently used. On the alpha track, the product owners

are registered who are informed about the deployment. They

now have the opportunity to install the app via Google Play.

This is a definite advantage over the installation by hand,

where one must copy the APK to the device and manually

install it. When the product owners approve this version a

job can be triggered on Jenkins to finalize the deployment

and move this version to the production track and upload

the app description and screenshots for all languages. If

there is any problem, either during final approval or during

automatic deployment the central point of communication is

the Catrobat’s slack12 infrastructure with its various channels.

In the best case, the deployed APK is moved from alpha to

production channel. Otherwise, the errors are communicated

to be fixed by the developers, translators or designers. The

following steps have been automated with Jenkins/Fastlane.

The best case deployment boils down to triggering two events

- the trigger for automatic deployment to the alpha track and

the final approval, i.e. triggering promotion from alpha to

production including the upload of the updated app metadata

including screenshots for all languages.

A. Releasing to alpha

The Jenkins job “deploy to alpha track” sets up the envi-

ronment and clones the development branch, which contains

releasable code, to its workspace. Then it builds the release and

debug APKs, and runs all necessary checks and tests (LINT,

PMD, UI) using the Android emulator.

11https://developers.google.com/android-publisher/tracks
12https://catrobat.slack.com

B. Signing and aligning APK

Once the APK is built, Jenkins executes commands to sign

and align the APK. A signing certificate is required which is

securely stored by the credential plugin of our Jenkins server.

Aligning an app ensures that all uncompressed data such as

images, raw files start with a particular alignment relative to

the start of the file. This approach reduces RAM consumption

and allows direct access of all portions even if they contain

binary data with alignment restrictions. It is recommended to

always use zipalign before distributing APK to end-users [20].

All android apps need to be digitally signed with a certificate

in order to distribute via Google Play [21]. It is important to

always sign all versions with the same certificate.

C. Screenshots for all languages

This part of the deployment is one of the most interesting

improvements in terms of speed and reliability. The challenge

is to put the app for all different languages into the same

configuration and then take screenshots. This is not only a

time consuming task but it is very error-prone especially if the

one who has to do the work does not understand the language

the screenshots have to be taken. Furthermore, the screenshots

have to be downloaded from the device to be used for the app

description. After all previous tests passed, Jenkins runs the

Fastlane screengrab tool to capture screenshots in all languages

for the app description on Google Play. Fastlane Screengrab

tool automatically changes the system language and captures

screenshots in the provided Espresso13 test package. These

“screeengrab”-Espresso tests have the only purpose to navigate

the app to the desired configuration and then capturing the

screen. These tests are held very simple since there is no func-

tionality to test. Usually, they are created during development.

Via the package structure, one is able to combine certain tests

to meaningful collections.

D. Combining Screengrab and Crowdin

Extra efforts have to be made to rename the language

folders according to the Google Play Console listing format

which leads to removal of unsupported languages such as

Urdu and Sindhi. Fastlane deployment pipeline accepts title,

full description, short description, and app update informa-

tion as separate text files (“title.txt”, “full description.txt”,

“short description.txt” and “whatsnew.txt”) in each language

folder. Pocket Codes deployment pipeline downloads all trans-

lations from Crowdin via Crowdin console client14 as a zip file.

This archive contains language folders with following naming

convention: “languagecode-CountryCode” (e.g. “en-US”, “ar-

SA”, “sd-PK”). Crowdin’s naming convention is not compat-

ible with the Google Play naming convention for languages.

The first step of this stage separates the “google play.xml”

file and splits up the content into three separate text

files which are needed by Fastlane, “full description.txt”,

“short description.txt” and “title.txt”. The next step merges

13https://developer.android.com/training/testing/espresso/index.html
14https://support.crowdin.com/cli-tool/

the Crowdin folders containing the translation files (three files)

with the screenshots folders created by Fastlanes Screengrab.

The third step renames these folders according to the Google

Play naming convention, e.g., “ar-SA” to “ar”, “bg-BG” to

“bg” and deletes folders of languages which are not supported

by Google Play, such as “sd-PK” and “ur-PK”. Pocket Code

currently supports 57 languages whereas Google Play does

not support 10 languages Pocket Code does, hence they have

to be removed prior to the upload to Google Play. Therefore

Pocket Code on Google Play displays the app descriptions and

screenshots for only 47 languages.

E. Creating the release branch

After signing and aligning of the APK, the workspace con-

tains everything needed for deployment. Code, APK, screen-

shots, changelog and app description in different languages.

A release branch is created, all artifacts are committed and

pushed to the release branch.

F. Deploy to alpha channel

Once the release candidate pushed to the release branch, it

is also uploaded to Google Play. At this stage Jenkins uses

Fastlane’s supply tool to upload the APK to the alpha track

without any metadata since Google Play would automatically

publish the metadata. This must not happen until the app is

promoted to the production track by the product owners.

G. Post build actions

Catrobat uses Slack for project communication. For every

deployment build Jenkins posts notifications about failure or

success of the job.

H. Product owner approval

The product owner (PO) app approval is the most unpre-

dictable event in terms of time in the deployment pipeline and

it cannot be automatized. Due to a staged deployment approach

supported by the Google Developer API the app acceptance

and exploratory tests are postponed until the technical deploy-

ment to the alpha track is finished. In the Catrobat project

the alpha track is subscribed by POs only, so the app is only

available for then in this stage.

I. Release to production

Once the product owners have approved the release candi-

date from alpha track, a Jenkins job is triggered which consists

of two main steps 1) uploading description and screenshots

from the release branch to Google Play, and 2) Promotion of

the APK from alpha to production track.

IV. DEPLOYMENT TIME

Manual deployment as it is implemented according to

Figure 1 suffers from four main drawbacks, a.) the manual

overhead human interaction poses, e.g., task switching, b.)

the creation of screenshots, c.) setting of translations, and

d.) product owner approval. Whereas d, the product owner

approval due to a staged approach can be postponed after

deployment to the alpha track. Drawback b, c, and d have

Fig. 2. Catrobat automatic deployment workflow

the most impact on deployment time and can be alleviated

via automation and pipeline restructuring. According to the

release responsible person, a manual deployment to the app

store needs about 25-35 minutes without running tests (lint,

PMD, unit, UI) and updating descriptions or screenshots.

Running the tests adds 15 minutes to the deployment time.

Due to the tedious process of creating screenshots manually,

in reality, the app descriptions are updated only when the

gap between the released UI and the published screenshots

become evident. This leads to a situation where description

and screenshots are obsolete which can lead to confusion

on the user side. The time needed for screenshots depends

on i.) which languages the screenshots are made, ii.) how

complicated the setup of the app is until the actual screenshot

can be taken. For instance, if one wants to create screenshots

of Pocket Code scripts with variable names, these have to

be translated too otherwise one ends up with screenshots for,

e.g., Thai and with German variable names. The magnitude

for the time needed for screenshots in different languages

was empirically determined with eight different languages

including Japanese, Chinese, and Arabic. It turned out that six

screenshots per language could be manually created within 3

minutes in average, independent of the language. During the

creation of the screenshots in eight languages only one error

was introduced, thanks to the simple app setup which was

used. The experiment further showed, as soon as a manual

error was introduced the fixing of the app’s configuration

tripled the amount of time and it took almost nine minutes

to finish the six screenshots for this language. It is safe

to assume that errors increase as soon as the configuration

grows complexity in conjunction with the used languages. For

instance, a non Arabic speaking person doing the screenshots,

in the case of an error is completely lost in the UI and has

to switch back to the native language to fix the configuration

and then switch back to Arabic to complete the screenshots for

this language. Assuming, no errors are made during taking the

screenshots and the setup of the app is simple, the overall time

for the 26 languages are at least 78 minutes. All screenshots

need to be placed in respective folders of their language, e.g.,

Arabic screenshots to the Arabic language folder and Chinese

in Chinese language folder, etc. This is not an easy job as

one must understand which language screenshot must be put

and this is not obvious for a person who does not know

the languages and the differences between, e.g., Arabic or

Farsi. In contrast the automatic screenshot creation for all 26

languages with six screenshots each, takes less than 10 minutes

(545 seconds) including setting the desired UI, capturing,

downloading and storing screenshots in respective folders.

Product owner approval can be neglected in the comparison

between manual and automatic deployment. There is nothing

to be automated or shortened. In the case of the Catrobat

project, overall app approval by the product owners takes up

to two days. When deployed manually this leads to a delay

until the app reaches the app store. In the staged approach,

this approval is done after upload to the alpha track, where

the app can be promoted within seconds to production. For

time comparison between manual and automatic deployment,

running the automatic tests, create screenshots and uploading

to the app-store is considered. Manual deployment adds up to

2hr 8 min (15 min automatic tests, 35 min manual intervention,

78 min screenshot creation). Automatic deployment adds up

to less than 25 min (14 min automated tests, 10 min creating

screenshots, less than 1 min uploading to app store) this means

a saving of 1 hour and 43 minutes. From the first release

in 2013 up until 2018 Pocket Code was manually released

42 times to Google Play. Accumulating the delta between

manual and automatic deployment 72 hours have been wasted.

This might not seem too impressive but the gained accuracy,

flexibility and readiness to deploy any time with only two

mouse clicks, as well as, no humans are bored with repetitive

tasks are the true benefits of this approach.

V. CONCLUSION

Using Jenkins in conjunction with Fastlane, Crowdin and a

staged deployment approach makes it possible to shrink de-

ployment time significantly. It can be triggered on demand and

repeated as often as needed hence fostering frequent releases.

Furthermore, it relieves the release responsible person from

manual tasks, increases the accuracy of the process especially

the creation of screenshots in different languages for the app’s

metadata and reduces errors introduced by manual interven-

tion. In case of the implementation of automated deployment

in the Catrobat project manual interactions are reduced to

two mouse clicks for releasing the app to production. First to

trigger the pipeline to create all metadata and deploy the app

to alpha track and second to trigger promotion of the app to

production and publish the app’s metadata. With Jenkins and

Fastlane it is feasible with reasonable effort to automate the

deployment of mobile applications. The most interesting part

of this approach is the automatic creation of app screenshots

for different languages, setting translations and dealing with

compatibility issues between different tools. This is especially

interesting for all app providers who strive to deliver multi-

language apps to increase market share.

REFERENCES

[1] W. Slany, “Pocket code: a scratch-like integrated development environ-
ment for your phone,” in Proceedings of the companion publication of

the 2014 ACM SIGPLAN conference on Systems, Programming, and

Applications: Software for Humanity. ACM, 2014, pp. 35–36.

[2] M. Shahin, M. A. Babar, and L. Zhu, “Continuous integration, delivery
and deployment: A systematic review on approaches, tools, challenges
and practices,” IEEE Access, vol. 5, pp. 3909–3943, 2017.

[3] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123, pp.
176–189, 2017.

[4] M. Leppänen, S. Mäkinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. V.
Mäntylä, and T. Männistö, “The highways and country roads to contin-
uous deployment,” IEEE Software, vol. 32, no. 2, pp. 64–72, 2015.

[5] J. Humble and D. Farley, Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation. Pearson
Education, 2010.

[6] M. Fowler. (2013) Deployment pipeline. Accessed: 2017-12-15. [On-
line]. Available: https://martinfowler.com/bliki/DeploymentPipeline.html

[7] M. Nayebi, B. Adams, and G. Ruhe, “Release practices for mobile apps–
what do users and developers think?” in Software Analysis, Evolution,

and Reengineering (SANER), 2016 IEEE 23rd International Conference

on, vol. 1. IEEE, 2016, pp. 552–562.

[8] M. Michlmayr, B. Fitzgerald, and K.-J. Stol, “Why and how should
open source projects adopt time-based releases?” IEEE Software, vol. 32,
no. 2, pp. 55–63, 2015.

[9] A. Cesar Brandão Gomes da Silva, G. de Figueiredo Carneiro,
F. Brito e Abreu, and M. Pessoa Monteiro, “Frequent releases in
open source software: A systematic review,” Information, no. 3, 2017.
[Online]. Available: http://www.mdpi.com/2078-2489/8/3/109

[10] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development and
deployment at facebook,” IEEE Internet Computing, vol. 17, no. 4, pp.
8–17, July 2013.

[11] Google. (2014) Share of app users who have stopped using an
app because it was not localized properly as of march 2014.
Statista - The Statistics Portal, Statista. Accessed: 2017-12-05.
[Online]. Available: https://www.statista.com/statistics/296304/mobile-
app-abandoment-rate-due-to-lacking-localization/

[12] J. Hamunen, “Challenges in adopting a devops approach to software
development and operations,” G2 Pro gradu, diplomityö, 2016. [Online].
Available: http://urn.fi/URN:NBN:fi:aalto-201609083476

[13] A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release
engineering and devops,” in Proceedings of the Third International

Workshop on Release Engineering. IEEE Press, 2015, pp. 3–3.

[14] A. M. A. Awwad, C. Schindler, K. K. Luhana, Z. Ali, and B. Spieler,
“Improving pocket paint usability via material design compliance and
internationalization & localization support on application level,” in
Proceedings of the 19th International Conference on Human-Computer

Interaction with Mobile Devices and Services. ACM, 2017, p. 99.

[15] J. Reason, “Human error: models and management,” BMJ: British

Medical Journal, vol. 320, no. 7237, p. 768, 2000.

[16] F. Erich, C. Amrit, and M. Daneva, “Report: Devops literature review,”
University of Twente, Tech. Rep, 2014.

[17] G. Versluis, “Why an automated pipeline?” in Xamarin Continuous

Integration and Delivery. Springer, 2017, pp. 1–5.

[18] J. Davis and K. Daniels, Effective DevOps: building a culture of

collaboration, affinity, and tooling at scale. ”O’Reilly Media, Inc.”,
2016.

[19] A. Fallis, Effective DevOps, 2013, vol. 53, no. 9.

[20] G. Developer. (2016) zipalign. Accessed: 2017-12-16. [Online]. Avail-
able: https://developer.android.com/studio/command-line/zipalign.html

[21] ——. (2017) Sign your app. Accessed: 2017-12-17. [Online]. Available:
https://developer.android.com/studio/publish/app-signing.html

Final published version: https://doi.org/10.1109/ICIRD.2018.8376296

Citation in BibTex format:

@INPROCEEDINGS{8376296,

author={K. K. Luhana and C. Schindler and W. Slany},

booktitle={2018 IEEE International Conference on Innovative Research and Development (ICIRD)},

title={Streamlining mobile app deployment with Jenkins and Fastlane in the case of Catrobat's pocket

code},

year={2018},

volume={},

number={},

pages={1-6},

keywords={computational linguistics;mobile computing;public domain software;Catrobat

app;Catrobat's Pocket Code;Fastlane;Google Play;Jenkins;Pocket Paint;active installs;additional

repetitive tasks;app store;continuous deployment;continuous integration server;deployment

prolongation;deployment steps;left languages;mobile app deployment;mobile app release

framework;mobile open source project;multiple languages;reliability;staged deployment

approach;supported languages;Androids;Google;Humanoid robots;Manuals;Software;Task

analysis;Tools;Catrobat;Fastlane;Google Play;Pocket Code;continuous

deployment;internationalization (i18n);mobile application;open source},

doi={10.1109/ICIRD.2018.8376296},

ISSN={},

month={May},}

https://doi.org/10.1109/ICIRD.2018.8376296

