

WP4.4 Pilot Case Studies indicators database for MCA Structure of Bodendorf decisional tree

Date 17-07-2012

Report version WP4 (action 4.4)

Author Josef SCHNEIDER, Christopher SCHREIBER

Member number and name PP6 – TUG – Graz Technical University

SHARE - Sustainable Hydropower in Alpine Rivers Ecosystems http://www.sharealpinerivers.eu

Project reference number: 5-2-3-IT Priority 3 – Environment and Risk Prevention Project duration: 36 months – 1/08/2009 – 31/07/2012

Summary

SHORT DESCRIPTION

This document intends to describe the structure of the SESAMO tree and the MCA application of the Pilot Case Study of Bodendorf.

Document Control

Project	SHARE - Sustainable Hydropower in Alpine Rivers Ecosystems (ref. 5-2-3-IT)			
Action	WP4 – action 4.4			
Туре	Report			
Due date				
Dissemination	Internal			
Origin	PP6			
Author	Josef Schneider - schneider@tugraz.at, Christopher Schreiber - christopher.schreiber@tugraz.at			

Version Control

VERSION	DATE	AUTHOR	AUTHOR'S ORGANIZATION	DESCRIPTION/CHANGES
v01.00				

The information contained in this report is subject to change without notice and should not be construed as a commitment by any members of the Share Consortium. The Share Consortium assumes no responsibility for the use or inability to use any procedure, protocol, software or algorithms which might be described in this report. The information is provided without any warranty of any kind and the Share Consortium expressly disclaims all implied warranties, including but not limited to the implied warranties of merchantability and fitness for a particular use.

The responsibility for the content of this publication lies with the authors; it does not necessarily reflect the opinion of the European Community. The European Regional Development Fund is not responsible for any use that may be made of the information contained herein. The information contained is given for information purposes only and does not legally bind any of the parties involved.

Table of contents

Summary	4
Structure of the Bodendorf decisional tree	4
Alternatives description	7
MCA tree	7
Indicators description – Bodendorf River PCS	9
ENERGY	10
Bodendorf tree ENERGY Annual energy production	10
ECONOMY	12
Bodendorf tree ECONOMY Energy production lack	12
Bodendorf tree ECONOMY Duration of flushing	14
Bodendorf tree ECONOMY Energy price per kWh	15
Bodendorf tree ECONOMY Power available	16
Bodendorf tree ECONOMY Flushing efficiency	17
Bodendorf tree ECONOMY Original volume/sediment output/volume before flushing	19
ENVIRONMENT – RIVER ECOSYSTEM	
Bodendorf tree ENVIRONMENT – RIVER ECOSYSTEM Bed load transportation out	21
Bodendorf tree ENVIRONMENT – RIVER ECOSYSTEM Suspended sediment concentratio	
average	22
Bodendorf tree ENVIRONMENT – RIVER ECOSYSTEM Suspended sediment concentratio	
peak	25
Bodendorf tree ENVIRONMENT – RIVER ECOSYSTEM Substrat conditions	27
Bodendorf tree ENVIRONMENT – RIVER ECOSYSTEM Fish conditions	29
LANDSCAPE	
Bodendorf tree LANDSCAPE Landscape TOURISM	31 22
Bodendorf tree TOURISM Effects on tourism	55 33
FISHING	
Bodendorf tree FISHING Effects of fish mortality	54 34
RISK	
Bodendorf tree RISK Flood risk reservoir head	36
Weights assignment	. 38
Energy provider, hydropower plant operators	38
Ecologists, environmentalists	39
Fishery	40
Neutral assessment	41
Table of weights assignment	41
Summary	41

Summary

The report summarizes the general methodological approach, the criteria and the indicators used to test the multi criteria analysis (MCA) on the Bodendorf pilot case study. The report highlights the progression of MCA model development. The main analyzed aspects are:

- MCA application
- Criteria, sub-criteria, & indicators evaluation
- Layout of the decision tree

This report is devoted to an explanation and the justification for each of the branches of the Bodendorf decisional tree model. We identified potential indicators useful to evaluate the chosen alternatives for the flushing of the reservoir of the hydropower plant.

Figure 1: Hydropower plant Bodendorf during a flushing of the reservoir in July 2012

Structure of the Bodendorf decisional tree

The HPP Bodendorf is heavily affected by sedimentation of its reservoir. The mean annual sediment input is stated with 53,000 m³, which is approximately 17% of the original reservoir volume (ALPRESERV Vol.5, 2008).

The HP-plant regarded in the MCA-tree is situated at the Mur river (Styria, Austria). During the last years and mainly within the Interreg IIIB project ALPRESERV a substantial amount of data has been collected for this area. Amongst others a flushing concept was developed, in order to reduce the negative ecological impacts of flushing. This concept consists of two main parts, in the first part, the

conditions under which the flushing can be started are defined, whereas the second part describes the optimal coordination among the four HP plants concerning discharge velocity or temporally delayed flushing start.

Furthermore the flushing concept was an important input for the flushing permission of this HP plant chain, which is valid from 2007 till today. In Table 1, the legal conditions of flushing depending on seasonal issues and discharge values can be seen.

Table 1: Legal flushing conditions

	year 0	year 1	year 2	year 3	year 4+later
date of flushing	f	short time s for flushing	lot		extended time ot for flushing
spring (April-May)	s		>80/130 m³/s	>80/130 m ³ /s	>90/160 m ³ /s
early sommer (June-July)	i	-	÷		>90/160 m³/s
late sommer (AugSept.)	n g	>80/130 m ³ /5	>80/130 m ³ /s	>90/160 m³/s	>90/160 m³/s
		year-round flu	shing at major f	oods (>HQ5 pea	ik - 130/300m ³ /s)

This hydropower plant is the object of the Multi Criteria Analysis application to the Bodendorf river basin pilot case study. Huge sediment input makes flushing events necessary and ecological impacts of flushing events in the past should be considered for the future. The results will always be site specific and no standardization is possible apart from the principles on which the MCA application is based.

Figure 2: Head of the reservoir Bodendorf

Alternatives description

The alternatives that will be examined with the MCA concern the flushing of the reservoir. Based upon the present flushing duration, which can be considered as **Alternative 0**, the following alternatives are implemented in the MCA-tool:

ALTERNATIVE 1: maximizing the duration of flushing (3 day flushing)

- pro: probably good sediment transport
- con: large ecological impact of downstream ecosystem by decreased secondary flushing duration

ALTERNATIVE 2: reducing the duration of flooding (1 day flushing)

- pro: longer secondary flushing with clear water reduces the ecological impact
- con: probably insufficient sediment transport

MCA tree

Figure 3: Bodendorf case study tree

Indicators description – Bodendorf River PCS

The following section contains the metadata of every indicator used in the Mur river reach example directly related to the MCA model of the Sesamo software.

The structure of the decision tree for the pilot case of Bodendorf, considers 4 main branches:

- 1. Energy;
- 2. Economy;
- 3. Environment;
- 4. Other criteria (Tourism, Landscape, Fishing, Risk)

ENERGY

Bodendorf tree | ENERGY | Annual energy production

FIELD	DESCRIPTION		
INDICATOR NAME	Annual energy production		
ACRONYM	AEP		
DPSIR	D (Driving Forces)		
	The energy produced by the plant is intended as the total amount of energy sold to the consumers; it is the net energy produced by the HP plant. Depending on the flushing duration, the indicator will in- or decreases.		
	The AEP was estimated through the Power (kWh) equation:		
DESCRIPTION	$P = Q_m \cdot \Delta H \cdot g \cdot \eta$		
	Where P = energy power (kWh), Q_m the mean conceded discharge (m ³ /s), <i>DH</i> the altitude difference between withdrawal and restitution points (m), <i>g</i> the gravity acceleration (m/s ²) and η the energy production performance/efficiency (equal to 0.85 - 0.95).		
AIM	It furnishes an evaluation of the annual energy production which is the master aim of every HP plant manager.		
KEY MESSAGE	The HP plant energy produced is the aim of every HP plant manager		
MEASURE UNIT	GWh/year		
REFERENCES	_		
FIELD	METHODS AND MONITORING STANDARDS		
INDICATOR ELABORATION	The energy produced by the plant is intended as the total amount of energy sold to the network authority; it is the net energy produced by the HP plant		
INDICATOR LIMITS			
EVALUATION	The main parameters considered and evaluated for the Bodendorf power plant are: DH 16.80 m Q max 50.0 m ³ /s Installed power 7 MW		
AVAILABLE UF	YES		

UF	The Utility Function adopted is LINEAR growing
SHARE RELATED IND.	
COUNTRY CODE	AT
WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	HP producer
TIME COVER	1990-2011
UPDATE FREQUENCY	annual
NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

ECONOMY

Bodendorf tree | ECONOMY | Energy production lack

FIELD	DESCRIPTION
INDICATOR NAME	Energy production lack
ACRONYM	n/a (there is no acronym scientifically documented)
DPSIR	D (Driving Forces)
DESCRIPTION	This indicator describes the negative impact on the energy production caused by the flushing.
AIM	This indicator shows how much energy production is lost because of the flushing.
KEY MESSAGE	Flushing of the reservoir causes a lack of energy production. The higher this coefficient is, the less energy is produced because of the flushing.
MEASURE UNIT	€
REFERENCES	_
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	This indicator is computed out of the threesub-indicators "duration of flushing", "energy price per kWh" and "power installed".
INDICATOR LIMITS	Only data which are provided by the HP plant owner can be used.
EVALUATION	
AVAILABLE UF	YES
UF	The Utility Function adopted is LINEAR decreasing

	Energy production lack [0 1 35,100]
SHARE RELATED IND.	
COUNTRY CODE	AT
WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	HP producer
TIME COVER	1990-2011
UPDATE FREQUENCY	annual
NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

Bodendorf tree | ECONOMY | Duration of flushing

FIELD	DESCRIPTION
INDICATOR NAME	Duration of flushing
ACRONYM	n/a (there is no acronym scientifically documented)
DPSIR	
DESCRIPTION	The duration of the flushing can have a great impact on energy production and river ecosystem.
AIM	This indicator shows the duration of the flushing of the reservoir.
KEY MESSAGE	The longer the flushing event lasts, the more negative impact on energy production happens. Value to calculate the flushing costs.
MEASURE UNIT	h (hours)
REFERENCES	_
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	Most of the flushings in the past lasted for 2 days. In the MCA implementation 3 different scenarios are given: duration of the flushing for one, two and three days.
INDICATOR LIMITS	The duration of flushings is also depending on hydrological conditions and cannot be freely decided by the operator of the HPP.
EVALUATION	Flushing duration of 1, 2 and 3 days = 24, 48 and 72 hours
AVAILABLE UF	NO
UF	
SHARE RELATED IND.	
COUNTRY CODE	AT
WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	HP producer
TIME COVER	2000 - 2012
UPDATE FREQUENCY	Single events

NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

Bodendorf tree | ECONOMY | Energy price per kWh

FIELD	DESCRIPTION
INDICATOR NAME	Energy price
ACRONYM	Price
DPSIR	D (Driving Forces)
DESCRIPTION	The actual electricity rate (unit cost per unit electricity) that a customer pays.
AIM	This indicator is used to calculate the energy production lack that is caused by the flushing of the reservoir of the HPP.
KEY MESSAGE	Unit cost per unit electricity
MEASURE UNIT	€
REFERENCES	_
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	Taken from the Austrian energy agency.
INDICATOR LIMITS	May vary significantly from locality to locality within a particular country.
EVALUATION	Amounts to 0.06 € at the time of this study.
AVAILABLE UF	NO
UF	

SHARE RELATED IND.	
COUNTRY CODE	AT
WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	Austrian energy agency
TIME COVER	- 2012
UPDATE FREQUENCY	Frequently
NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

Bodendorf tree | ECONOMY | Power available

FIELD	DESCRIPTION
INDICATOR NAME	Power available
ACRONYM	Power
DPSIR	D (Driving Forces)
DESCRIPTION	This indicator refers to the intended output of the power plant and takes into account the discharge, altitude difference and efficiency of the turbines. It is an aggregation function of the three indicators "head", "design flow" and "efficiency".
АІМ	This indicator is necessary to calculate the energy production lack (which is an aggregation function of this indicator, the duration of the flushing and the energy price.
KEY MESSAGE	Output of the hydropower plant.
MEASURE UNIT	MW
REFERENCES	-
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	Aggregation function of the three indicators "head", "design flow" and "efficiency".
INDICATOR LIMITS	

EVALUATION	The installed power of the power plant Bodendorf amounts to 7.08 MW
AVAILABLE UF	NO
UF	
SHARE RELATED IND.	
COUNTRY CODE	AT
WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	HP producer
TIME COVER	1982 - 2012
UPDATE FREQUENCY	
NUT III CODE	AT226
NORMATIVE REFERENCE	
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

Bodendorf tree | ECONOMY | Flushing efficiency

FIELD	DESCRIPTION
INDICATOR NAME	Flushing efficiency
ACRONYM	n/a (there is no acronym scientifically documented)
DPSIR	D (Driving Forces)
DESCRIPTION	This indicator is very important for the PCS Bodendorf because it describes how efficient the flushing of the reservoir was, considering the original volume, the sediment output and the volume before the flushing.
AIM	The purpose of the indicator is to assess the efficiency of the flushing.

KEY MESSAGE	Describes the efficiency of the flushing of the reservoir.
MEASURE UNIT	%
REFERENCES	
FIELD	- METHODS AND MONITORING STANDARDS
INDICATOR	
ELABORATION	
INDICATOR LIMITS	
EVALUATION	
AVAILABLE UF	YES
UF	The utility function (UF) for the values normalization is LINEAR (0 – 100%) growing Flushing Efficiency [0_1
SHARE RELATED IND.	
COUNTRY CODE	AT
WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	Literature, experiences from previous project (Alpreserv)
TIME COVER	2005 - 2012
UPDATE FREQUENCY	

NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

Bodendorf tree | ECONOMY | Original volume/sediment output/volume before flushing

FIELD	DESCRIPTION
INDICATOR NAME	Original volume/sediment output/volume before flushing
ACRONYM	n/a (there is no acronym scientifically documented)
DPSIR	
DESCRIPTION	These three indicators are necessary to define the efficiency of the flushing. The original volume is the volume of the reservoir on the date of the start of operation. The sediment output is the amount of sediment removed by the flushing. The volume before the flushing defines how much volume of the reservoir is left at the time of the flushing.
AIM	The aim of these indicators is to calculate and evaluate the flushing efficiency.
KEY MESSAGE	These three sub-indicators are used to define the flushing efficiency.
MEASURE UNIT	m ³
REFERENCES	_
FIELD	METHODS AND MONITORING STANDARDS
	Taken from literature and measurements. Sediment output was also modelled with the software HEC-RAS.
INDICATOR ELABORATION	200000 150100 10000000 1000000 1000000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 100000000

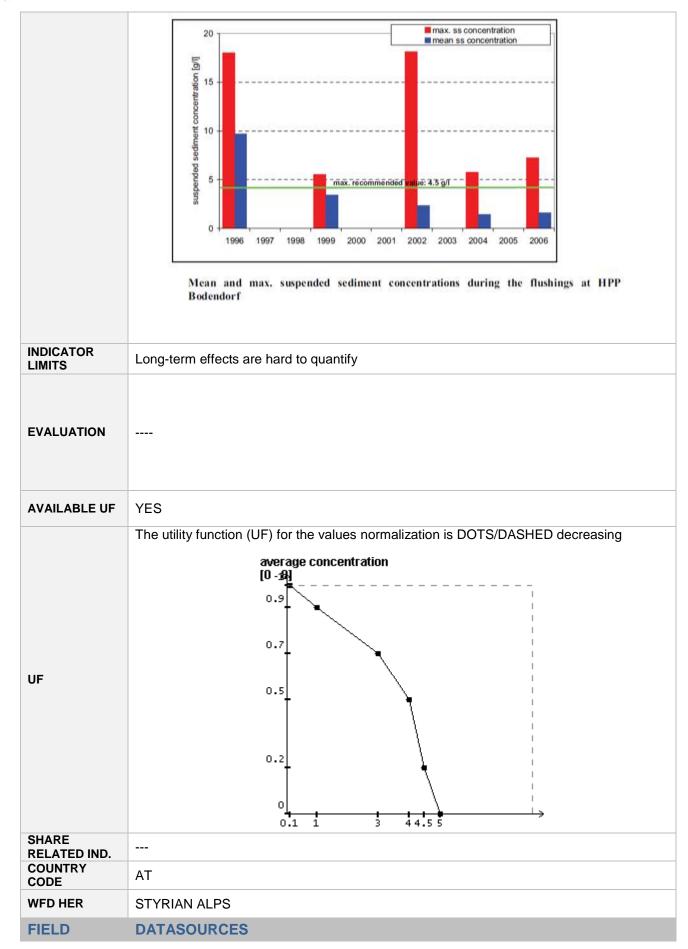
INDICATOR LIMITS	Application of numerical models in reservoir sedimentation studies would be needed to get more reliable data.
EVALUATION	
AVAILABLE UF	NO
UF	
SHARE RELATED IND.	
COUNTRY CODE	AT
WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	PUBLIC: Research Institutes PRIVATE: Biology and Environmental Analysis Societies
TIME COVER	1982 (start of operation) - 2012
UPDATE FREQUENCY	
NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

ENVIRONMENT – RIVER ECOSYSTEM

Bodendorf tree | ENVIRONMENT – RIVER ECOSYSTEM | Bed load transportation out

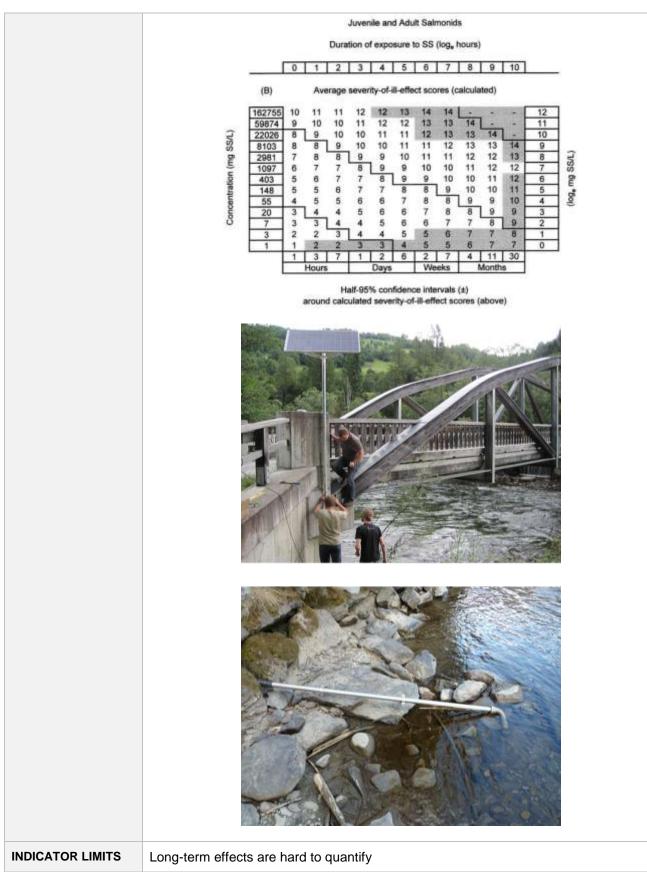
FIELD	DESCRIPTION
INDICATOR NAME	Bed load transportation out
ACRONYM	n/a (there is no acronym scientifically documented)
DPSIR	
DESCRIPTION	Reservoirs of hydropower plants are leading to a deficit of bed load downstream of the plant. Improving the bed load transport is desired and can be accomplished by flushings.
AIM	Increased bed load transport through the hydropower plant into the river section downstream.
KEY MESSAGE	This indicator describes how much bed load is transported out of the reservoir by the flushing.
MEASURE UNIT	m ³
REFERENCES	_
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	The indicator consists of measurements, but also expert estimation is needed.
INDICATOR LIMITS	Application of numerical models in reservoir sedimentation studies would be needed to get more reliable data.
EVALUATION	
AVAILABLE UF	YES
UF	The utility function (UF) for the values normalization is LINEAR growing

	Utility Function [0 1 120,000]
SHARE RELATED IND.	0 0 120,000
COUNTRY CODE	AT
WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	Literature, expert estimations
TIME COVER	2005 - 2012
UPDATE FREQUENCY	
NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf


Bodendorf tree | ENVIRONMENT – RIVER ECOSYSTEM | Suspended sediment concentration average

FIELD	DESCRIPTION
INDICATOR NAME	Suspended sediment concentration average
ACRONYM	n/a (there is no acronym scientifically documented)
DPSIR	P - Pressures
DESCRIPTION	

	When the level of suspended sediment becomes too high, it can adversely impact fish and macroinvertebrates.
AIM	This indicator expresses an assessment of the effects of turbidity and suspended sediments on fish. The aim is to set thresholds to avoid harming the fish population during flushings.
KEY MESSAGE	The fish population is sensitive to the suspended sediment concentration in the water.
MEASURE UNIT	g/l (gram per litre)
REFERENCES	Newcombe & Jenson (1996) evaluated the severity of effects on fishes
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	<image/>



DATA SOURCE	Suspended sediment measurements at flushing events by TUG and operator of the HPP
TIME COVER	2005 - 2012
UPDATE FREQUENCY	Single events
NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

Bodendorf tree | ENVIRONMENT – RIVER ECOSYSTEM | Suspended sediment concentration peak

FIELD	DESCRIPTION
INDICATOR NAME	Suspended sediment concentration peak
ACRONYM	n/a (there is no acronym scientifically documented)
DPSIR	P - Pressures
DESCRIPTION	When the level of suspended sediment becomes too high, it can adversely impact fish and macroinvertebrates. This indicator shows the sediment concentration peak during the flushing.
AIM	This indicator expresses an assessment of the effects of turbidity and suspended sediments on fish. The aim is to set thresholds to avoid harming the fish population during flushings.
KEY MESSAGE	The fish population is sensitive to the suspended sediment concentration in the water.
MEASURE UNIT	g/l (gram per litre)
REFERENCES	Newcombe & Jenson (1996) evaluated the severity of effects on fishes
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	Expert talks, literature, suspended sediment measurements at flushing events

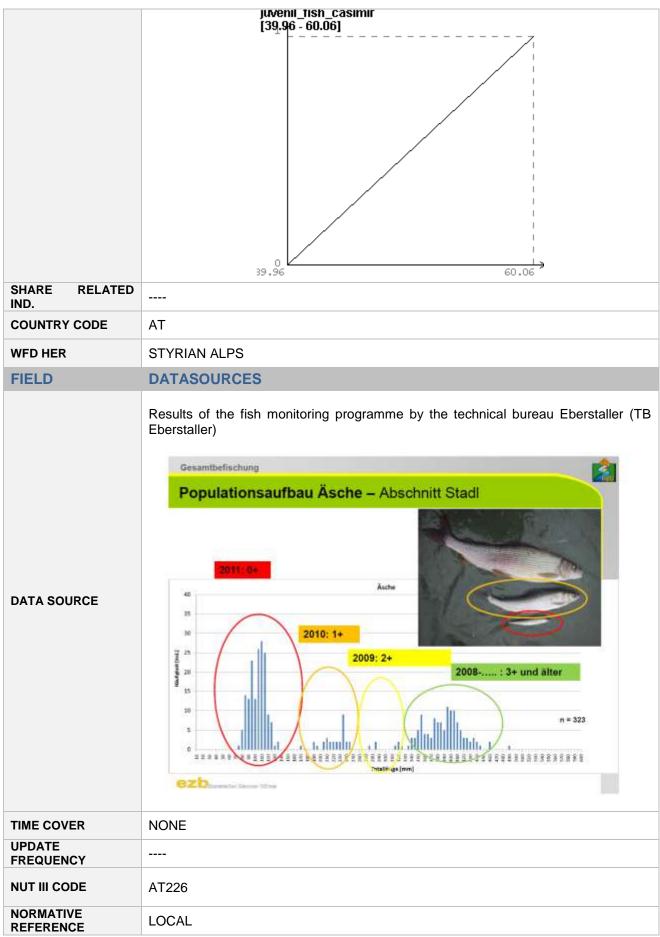
EVALUATION	
AVAILABLE UF	YES
UF	The utility function (UF) for the values normalization is DOTS/DASHED decreasing
SHARE RELATED IND.	
COUNTRY CODE	AT
WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	Suspended sediment measurements at flushing events by TUG and operator of the HPP
TIME COVER	2005 - 2012
UPDATE FREQUENCY	Single events
NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

Bodendorf tree | ENVIRONMENT – RIVER ECOSYSTEM | Substrat conditions

FIELD

DESCRIPTION

INDICATOR NAME	Substrat conditions
ACRONYM	n/a (there is no acronym scientifically documented)
DPSIR	S - State
DESCRIPTION	The aim of the indicator "substrat conditions" is to make a diagnosis of the substrat conditions in the river reach and their change because of the flushing. This diagnosis is based on the modeling of substrat conditions with the software CASiMiR.
AIM	This indicator expresses the substrat conditions at a reference stretch at the river \ensuremath{Mur} .
KEY MESSAGE	This indicator is designed to evaluate the impact of reservoir flushing on fish habitat and river substrate composition.
MEASURE UNIT	
REFERENCES	_
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	For calculation of the sediment transport of the river Mur between the HPP Bodendorf and the reach Gestuethof, which was investigated by the CASiMiR model, the software HEC-RAS 4.1.0 (US Army Corps of Engineers) was used. The results of HEC-RAS were fed into the CASiMiR model.
INDICATOR LIMITS	
EVALUATION	
AVAILABLE UF	NO
UF	
SHARE RELATED	
IND.	
COUNTRY CODE	AT



FIELD	DATASOURCES
DATA SOURCE	Computer models and simulations (HEC-RAS, CASiMiR)
TIME COVER	2009 - 2012
UPDATE FREQUENCY	None
NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

Bodendorf tree | ENVIRONMENT – RIVER ECOSYSTEM | Fish conditions

FIELD	DESCRIPTION
INDICATOR NAME	Fish conditions
ACRONYM	Fish
DPSIR	
DESCRIPTION	Indicator giving the level pressure on water fishing uses due to HP activity
AIM	Fishing activity maintenance
KEY MESSAGE	
MEASURE UNIT	
REFERENCES	-
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	
INDICATOR LIMITS	
EVALUATION	
AVAILABLE UF	YES
UF	The utility function (UF) for the values normalization is LINEAR growing

NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

LANDSCAPE

Bodendorf tree | LANDSCAPE | Landscape

FIELD	DESCRIPTION
INDICATOR NAME	Landscape
ACRONYM	L
DPSIR	S – States indicator
DESCRIPTION	This indicator evaluates the impact of flushings on landscape of the PCS area
AIM	Show the landscape and environmental impacts of the flushing
KEY MESSAGE	
MEASURE UNIT	
REFERENCES	_
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	Expert discussions, monitoring of effects on the landscape

INDICATOR LIMITS	Low pertinence
EVALUATION	
AVAILABLE UF	NO
UF	
SHARE RELATED IND.	
COUNTRY CODE	AT
WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	Expert discussions
TIME COVER	NONE
UPDATE FREQUENCY	
NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

TOURISM

Bodendorf tree | TOURISM | Effects on tourism

FIELD	DESCRIPTION
INDICATOR NAME	Effects on tourism
ACRONYM	
DPSIR	Impact
DESCRIPTION	Indicator evaluating the impact of flushings on tourism at the area of Bodendorf.
AIM	This indicator should show the reduction of scenic attractiveness of the region due to the flushing of the reservoir.
KEY MESSAGE	Flushings are not very attractive for tourism
MEASURE UNIT	
REFERENCES	-
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	Expert discussions
INDICATOR LIMITS	Tourism is not very important in the pilot case study area, low pertinence of the indicator
EVALUATION	
AVAILABLE UF	YES
UF	The utility function (UF) for the values normalization is LINEAR decreasing
SHARE RELATED IND.	
COUNTRY CODE	AT

WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	Expert discussions
TIME COVER	2009 - 2012
UPDATE FREQUENCY	
NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

FISHING

Bodendorf tree | FISHING | Effects of fish mortality

FIELD	DESCRIPTION
INDICATOR NAME	Effects of fish mortality
ACRONYM	
DPSIR	I - Impacts
DESCRIPTION	The operator of the HPP has to pay compensation fees to the fishery for the fishes killed by the high concentration of suspended sediment during the flushing.
AIM	Indicator will take into account the costs of the fish mortality.
KEY MESSAGE	Indicator is evaluating the impact of fish mortality caused by the flushing.
MEASURE UNIT	€
REFERENCES	-
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	Expert discussions
INDICATOR LIMITS	
EVALUATION	
AVAILABLE UF	NO
UF	
SHARE RELATED IND.	
COUNTRY CODE	AT

WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	Expert discussions
TIME COVER	NONE
UPDATE FREQUENCY	
NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

RISK

Bodendorf tree | RISK | Flood risk reservoir head

FIELD	DESCRIPTION
INDICATOR NAME	Flood risk reservoir head
ACRONYM	FLOOD
DPSIR	D - Driving forces
DESCRIPTION	Sediments are trapped in the reservoir, thus increasing flood risk in the area at the head of the reservoir. Flushing the reservoir and mobilizing the sediment is therefore reducing the flood risk.
AIM	Reduce the risk of floods at the head of the reservoir and avoid severe damages.
KEY MESSAGE	River sediments are deposited in the reservoir, which is increasing the flood risk.
MEASURE UNIT	m ³
REFERENCES	_
FIELD	METHODS AND MONITORING STANDARDS
INDICATOR ELABORATION	
INDICATOR LIMITS	Application of numerical models in reservoir sedimentation studies would be needed to get more reliable data.
EVALUATION	
AVAILABLE UF	YES
	The utility function (UF) for the values normalization is LINEAR decreasing
	bedload_input [500 _t 1,020]
UF	
	0 500 1,020
SHARE RELATED IND.	

COUNTRY CODE	AT
WFD HER	STYRIAN ALPS
FIELD	DATASOURCES
DATA SOURCE	
TIME COVER	2009 - 2012
UPDATE FREQUENCY	
NUT III CODE	AT226
NORMATIVE REFERENCE	LOCAL
NORMATIVE RELEVANCE	
SHARE PILOT CASE STUDY	Bodendorf

Weights assignment

The weights (W) assigned to the different criteria are shown in the following tables. There were made three weight assignments for the three stakeholder groups, concerned by the flushing of the reservoir (energy provider, ecologists, fishery). The last table is made from a neutral point of view, taking account of the needs and opinions of all interested parties.

Note that certain sub-indicators (head, design flow, ..) are part of aggregation functions and therefore are not considered in the calculation of the overall performance of the alternatives.

Energy provider, hydropower plant operators

CRITERIA	W	SUB- CRITERIA	W	INDICATORS	W	SUB-INDIC	W	SUB- INDIC	W
ENERGY	0.05			Annual energy production	1				
						Duration of flushing	<i>0.6</i>		
						Energy Price	0.2		
				Energy	0.2			Head	0.5
				production lack	0.2	Power Installed	0.2	Design flow	0.3
ECONOMY	0.25					mstaneu		Efficie ncy	0.2
						Original volume	0.1		
				Flushing efficiency	0.8	Sediment output	0.8		
						Volume before	0.1		
						flushing	<i></i>	444	\square
LANDSCAPE	0.05			Landscape	1		Ú J		
		Bed load transportation 0.7	<u>,,,,,,,,,</u> ,						
				out res.	0.7				
				Suspended		1111111	77		
				sediment	0.0	******	++	HH	H
		ABIOTIC INDICATORS	0.7	concentration	0.2				
ENVIRONMENT	0.4	INDICATORS		average					
ENVIRONWENT	0.4			Suspended					
				sediment	0.1	(//////////////////////////////////////			
				concentration peak					
				Substrat	07		t t t	////	
		BIOTIC INDICATORS 0.3	0.3	conditions	0.7				
				Fish conditions	0.3	((((())))	\square		
TOURISM	0.05			Effects on tourism	1				
FISHING	0.15			Effects of fish mortality	1				
RISK	0.05			Flood risk reservoir head	1				

Ecologists, environmentalists

CRITERIA	W	SUB- CRITERIA	W	INDICATORS	W	SUB-INDIC	W	SUB- INDIC	W
ENERGY	0.1			Annual energy production	1				
						Duration of flushing	0.8		
						Energy Price	0.1		
				Energy	0.1			Head	0.3
	Power		Design	0.3					
						Installed	0.1		
ECONOMY	0.2							Head Design flow Efficie ncy	0.4
						Original	0.1	1111	777
						volume	0.1		
				Flushing	00	Sediment	0.8		
				efficiency	0.9	output Volume		HH	
						before	0.1		
						flushing			
LANDSCAPE	0.1			Landscape	1				
				Bed load	0.5				
				transportation out res.					
				Suspended			\mathcal{H}		11
		ABIOTIC		sediment	0.3		111	flow Efficie ncy	
		INDICATORS	0.5	concentration	0.5			Y////	111
ENVIRONMENT	0.4	0.4		average Suspended		///////////////////////////////////////	++	Head Design flow Efficie	\mathcal{H}
				sediment	• •		[]].		
				concentration	0.2		///		
				peak		[]]]]]	44	444	
		BIOTIC INDICATORS 0.5		Substrat conditions	0.7				
			0.5	Fish conditions	0.3	 	 }/		H
	0.05			Effects on		<i>[,,,,,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,	199	HHH.	+++
TOURISM	0.05			tourism	1				
FISHING	0.1			Effects of fish	1				
	0.1			mortality Flood risk		1111111	H	YHH.	\square
RISK	0.05			reservoir head	1	111111			
				reservoir neau		///////////////////////////////////////	111	<u> </u>	[]]]

Fishery

CRITERIA	W	SUB- CRITERIA	W	INDICATORS	W	SUB-INDIC	W	SUB- INDIC	W		
ENERGY	0.05			Annual energy production	1						
						Duration of flushing	0.8				
						Energy Price	0.1				
				Energy	0.1			Head	0.3		
				production lack	0.1	Power		Design	0.3		
						Installed	0.1	Head Design flow Efficie ncy			
ECONOMY	0.05								0.4		
Loonomi	0.00					Original		Head Design flow Efficie ncy	11		
						volume	0.1				
				Flushing		Sediment	0.8				
				efficiency	0.9	output	0.0	<u> </u>			
						Volume					
						before flushing	0.1				
LANDSCAPE	0.1			Landscape	1		////				
	0.1			Bed load			\mathcal{H}				
				transportation	0.2		\mathcal{H}	(///			
				out res.				<u> 1444</u>	111		
						Suspended				Design flow Efficie	
				ABIOTIC sediment concentration 0.	0.4		///	Head Design flow Efficie			
		INDICATORS	0.5	average			[]]				
ENVIRONMENT	0.3			Suspended							
				sediment	0.4						
				concentration	0.4	///////////////////////////////////////					
				peak Substrat			<u> </u>	$\langle /// \rangle$	HA		
		BIOTIC INDICATORS	0.5	conditions	0.3		[]]	<i>{////</i>			
				Fish conditions	0.7		17,				
TOURISM	0.05			Effects on		7.	11				
TOORISIM	0.05			tourism	1		11	¥///			
FISHING	0.4			Effects of fish	1	1111111	11	<i>\///\</i>			
				mortality Flood risk		HHHH	+	\blacksquare	H		
RISK	0.05			reservoir head	1			X////	$\langle / / \rangle$		

Neutral assessment

Table of weights assignment

ENERGY 0.05 Annual energy production 1 Duration of flushing 0.8 ECONOMY 0.35 Energy production lack 0.2 Energy production lack 0.2 Head 0.5 ECONOMY 0.35 Flushing efficiency 0.8 Head 0.5 LANDSCAPE 0.05 Landscape 1 Head 0.1 LANDSCAPE 0.05 Landscape 1 Wolume before 0.1 Design 0.3 ENVIRONMENT 0.35 ABIOTIC INDICATORS 0.5 Suspended sediment concentration concentration 0.25 Image: Concentration concentration concentration 0.25 Image: Concentration concentration concentration 0.25 Image: Concentration concentration 0.25 Image: Concentration concentration 0.25 Image: Concentration concentration 0.25 Image: Concentration concentration 0.25 Image: Concentration conditions 0.3 Image: Concentration conditions 0.3 Image: Concentration conditions 0.3 Image: Concentration conditions 0.25 Image: Concentration conditions 0.25 Image: Concentration conditions Image	CRITERIA	W	SUB- CRITERIA	W	INDICATORS	W	SUB-INDIC	W	SUB- INDIC	W	
ECONOMY 0.35 Energy production lack Energy production lack 1 Head Energy Price 0.2 0.1 Head flushing flushing 0.1 Head 0.5 0.5 ECONOMY 0.35 0.35 Energy production lack 0.2 Power installed 0.1 Head flow 0.3 ECONOMY 0.35 Energy production lack 0.8 Original volume output 0.1 Energy flow 0.25 Energy flow 0.25 <td>ENERGY</td> <td>0.05</td> <td></td> <td></td> <td>energy</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	ENERGY	0.05			energy	1					
ECONOMY 0.35 Energy production production lack 0.2 Power installed 0.1 Head 0.3 fliw e ECONOMY 0.35 Image: second seco							flushing				
ECONOMY 0.35 0.35 production lack 0.2 unit of the second production lack Power installed 0.1 unit of the second production installed 0.1 unit of the second production production installed 0.1 unit of the second production p					Energy		Energy Price	0.1			
ECONOMY 0.35 Installed 0.1 Installed 0.1 Flushing efficiency 0.35 Installed 0.1 Efficie 0.2 Image: Sectiment output 0.8 Image: Sectiment output 0.8 Image: Sectiment output 0.8 LANDSCAPE 0.05 Landscape 1 Image: Sectiment output 0.8 LANDSCAPE 0.05 Landscape 1 LANDSCAPE 0.05 Landscape 1 INDICATORS 0.5 Suspended sediment concentration on out res. 0.25 Suspended sediment concentration 0.25 Suspended sediment concentration on out res. BIOTIC INDICATORS 0.5 Suspended sediment concentration on peak BIOTIC INDICATORS 0.5 Suspended sediment concentration on peak TOURISM 0.05 Effects on to res 1 FISHING 0.05 Effects on to res 1 FISHING 0.05 Effects of fish mortality 1 RISK 0.1 Flood risk reservoir 1						0.2					
ECONOMY 0.35 ncy ncy Flushing efficiency 0.07iginal volume 0.1 1 <t< td=""><td></td><td></td><td></td><td></td><td>lack</td><td></td><td></td><td>0.1</td><td>flow</td><td></td></t<>					lack			0.1	flow		
ENVIRONMENT 0.35 BIOTIC INDICATORS 0.5 BIOTIC INDICATORS<	ECONOMY	0.35								0.2	
ENVIRONMENT 0.35 ABIOTIC INDICATORS 0.5 User and the second secon							volume	0.1			
LANDSCAPE 0.05 Landscape 1 LANDSCAPE 0.05 Landscape 1 ABIOTIC INDICATORS 0.5 Bed load transportatio 0.5 BIOTIC INDICATORS 0.5 Suspended sediment concentration average 0.25 BIOTIC INDICATORS 0.5 Suspended sediment concentration 0.25 BIOTIC INDICATORS 0.5 Substrat conditions 0.7 BIOTIC INDICATORS 0.5 Substrat conditions 0.7 TOURISM 0.05 Effects on tourism 1 FISHING 0.05 Effects of thourism 1 RISK 0.1 Flood risk reservoir 1						0.8	output	0.8			
LANDSCAPE 0.05 Landscape 1 LANDSCAPE 0.05 Bed load 1 ABIOTIC NDICATORS Bed load 0.5 INDICATORS 0.5 Suspended 1 Suspended Sediment 0.25 1 BIOTIC 0.5 Suspended 1 Suspended Sediment 0.25 1 BIOTIC 0.5 Suspended 1 BIOTIC 0.5 Suspended 1 Suspended Sediment 0.25 1 BIOTIC 0.5 Suspended 1 Substrat 0.7 1 1 INDICATORS 0.5 Substrat 0.7 BIOTIC 0.5 Substrat 1 TOURISM 0.05 Effects on 1 FISHING 0.05 Effects of fish 1 RISK 0.1 Fiod risk 1					enciency						
LANDSCAPE 0.05 Landscape 1 ABIOTIC Bed load 0.5 0.5 NURONMENT 0.35 ABIOTIC 0.5 BIOTIC 0.5 Suspended 0.25 Suspended Sediment 0.25 Suspended Suspended 0.25 BIOTIC 0.5 Suspended BIOTIC 0.5 Suspended Suspended Sediment 0.25 BIOTIC 0.5 Substrat Conditions 0.7 Fish 0.35 Fish 0.35 Fish 0.35 BIOTIC 0.5 Fish 0.35 Fish 0.35 TOURISM 0.05 Fishing 0.05 Fisher 1 Fisher 1 RISK 0.1								0.1			
ENVIRONMENT 0.35 ABIOTIC 0.5 INDICATORS 0.5 Suspended sediment concentration 0.25 Suspended sediment concentration 0.25 BIOTIC 0.5 Fish 0.7 Conditions 0.7 Fish 0.3 TOURISM 0.05 Effects on tourism 1 FISHING 0.05 Effects of fish tourism 1 RISK 0.1 Flood risk reservoir	LANDSCAPE	0.05			Landscape	1	///////////////////////////////////////	11			
ENVIRONMENT 0.35 ABIOTIC 0.5 Suspended Suspended BIOTIC 0.35 Suspended Suspended Suspended BIOTIC 0.5 Suspended Suspended Suspended Suspended Suspended Suspended						0.5					
ENVIRONMENT 0.35 ABIOTIC INDICATORS 0.5 sediment concentration average 0.25 Suspended sediment concentration 0.25 Suspended sediment concentration 0.25 BIOTIC INDICATORS 0.5 Suspended sediment concentration 0.25 BIOTIC INDICATORS 0.5 Suspended sediment concentration 0.25 BIOTIC INDICATORS 0.5 Substrat conditions hours 0.7 TOURISM 0.05 0.5 Effects on 1 1 FISHING 0.05 Effects of fish nortality 1 1 RISK 0.1 Flood risk reservoir 1					n out res.						
Herein and the second secon				0.5	sediment concentration average	0.25					
BIOTIC INDICATORS 0.5 conditions 0.1 TOURISM 0.05 Effects on tourism 1 FISHING 0.05 Effects of fish mortality 1 RISK 0.1 Flood risk reservoir 1	ENVIRONMENT	0.35			sediment concentration peak	0.25					
INDICATORS FISH conditions 0.3 TOURISM 0.05 Effects on tourism 1 FISHING 0.05 Effects of fish mortality 1 RISK 0.1 Flood risk reservoir 1				0.5	conditions	0.7					
IOURISM 0.05 tourism 1 FISHING 0.05 Effects of fish mortality 1 RISK 0.1 Flood risk reservoir 1		INC	INDICATORS	INDICATORS	0.5	conditions	0.3				
FISHING 0.05 mortality 1 RISK 0.1 Flood risk reservoir 1	TOURISM	0.05			tourism	1					
RISK 0.1 reservoir 1 ////////////////////////////////////	FISHING	0.05			mortality	1					
	RISK	0.1				1					

Summary

The values were chosen according to many considerations and talks with experts from different stakeholder groups.

Energy criterion weighs only 5% of the whole tree, being not so relevant because the flushing only last for a short time. The downstream effects of flushing are a massive sediment transport (which is a desired effect) and possible damage to the ecological communities, considered in the criterion

"Enviroment". Interruption of the sediment transport is a big issue at the PCS area, so the indicators "sediment output" and "bedload transportation" have a higher significance for the tree.

High concentrations of suspended material during flushing events can damage the fish population; therefor the indicators of the suspended sediment concentration are also very important for this PCS.

Figure 4: Increased suspended sediment concentration during the flushing of the reservoir in July 2012

Flushing efficiency is the most important indicator (80%) inside the Environment criterion. Landscape and tourism criteria have a lower importance in the MCA, being the sum equal to 0.1. This is due to the characteristics of the river reach and the surrounding area, which is poor of touristic elements, with the exception of fishing activity. The same applies to the indicator risk, which also has only a partial importance and is weighted rather low with 10%.