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Abstract. Suppose we are given an infinite, finitely generated group G and a
transient random walk on the wreath product (Z/2Z) o G, such that its projec-
tion on G is transient and has finite first moment. This random walk can be
interpreted as a lamplighter random walk on G. Our aim is to show that the
random walk on the wreath product escapes to infinity with respect to a suit-
able (pseudo-)metric faster than its projection onto G. We also address the case
where the pseudo-metric is the length of a shortest “travelling salesman tour”.
In this context, and excluding some degenerate cases if G = Z, the linear rate
of escape is strictly bigger than the rate of escape of the lamplighter random
walk’s projection on G.
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1. Introduction

Let G be an infinite group generated by a finite symmetric set S, and imagine
a lamp sitting at each group element. These lamps have two states: 0 (“off”)
or 1 (“on”), and initially all lamps are off. We think of a lamplighter walking
randomly on G and switching lamps on or off as he walks. We investigate
the following model: at each step the lamplighter may walk to some random
neighbour vertex, and may flip some lamps in a bounded neighbourhood of
his position. This model can be interpreted as a random walk on the wreath
product (Z/2Z) o G governed by a probability measure µ. The random walk is
described by a Markov chain (Zn)n∈N0

, which represents the position Xn of the
lamplighter and the lamp configuration ηn : G → Z/2Z at time n. We assume
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that the lamplighter random walk’s projection on G has finite first moment and
is also transient.

For better visualization, we identify G with its Cayley graph with respect
to the generating set S. Suppose we are given “lengths” of the elements of S
such that s ∈ S and s−1 ∈ S have the same length. The length of a path in G
is the sum of the lengths of its edges, and we denote by d(·, ·) the metric on G
induced by the lengths of the edges. We denote by dTS(η, x) the length of an
optimal “travelling salesman tour” from the identity e to x ∈ G that visits each
point in supp(η) (where η : G → Z/2Z has finite support). Then a natural
length function `(η, x) is given by dTS(η, x)+ cL · |supp(η)| for an arbitrary, but
fixed constant cL ≥ 0. By transience, our random walk escapes to infinity with
respect to this length function.

The (new) topic that we address in this paper is the comparison of the limits
` = limn→∞ `(Zn)/n and `0 = limn→∞ d(e, Xn)/n, which exist almost surely.
They describe the speed of the lamplighter random walk and its projection
on G, respectively. The number `0 is called the rate of escape, or the drift, of
(Xn)n∈N0

and ` is the rate of escape of the lamplighter random walk (Zn)n∈N0
.

It is well-known that the rate of escape exists for random walks with finite
first moment on transitive graphs. This follows from Kingman’s subadditive

ergodic theorem; see [6, 15] and [10]. We will prove that, under some weak
assumptions on G, we have ` > `0, that is, the lamplighter random walk escapes
strictly faster to infinity than its projection onto G, on which we have the
metric d(·, ·). If the lamplighter random walk’s projection on G is transient
and has zero drift, then the acceleration of the lamplighter random walk follows
from results of Kaimanovich and Vershik [12] and of Varopoulos [18]. Thus, we
may restrict ourselves to the case `0 > 0. More explicitly, we will prove that
limn→∞ |supp(ηn)|/n > 0, where ηn is the lamp configuration at time n. From
this it follows directly that ` > `0. We also prove limn→∞ dTS(Zn)/n > `0

(except for some degenerate cases), providing ` > `0.
Let us briefly review a few selected results regarding the rate of escape. The

classical case is that of random walks on the k-dimensional grid Z
k, where k ≥ 1,

which can be described by the sum of n i.i.d. random variables, the increments
of n steps. By the law of large numbers the limit limn→∞ ‖Zn‖/n, where ‖ · ‖
is the distance on the grid to the starting point of the random walk, exists
almost surely. Furthermore, this limit is positive if the increments have non-
zero mean vector. There is an important link between drift and the Liouville
property: the entropy (introduced by Avez [1]) of any random walk on a group
is non-zero if and only if non-constant harmonic functions exist; see [12] and [6].
Moreover, if the rate of escape is zero, then the entropy is zero (first observed
by Guivarc’h [10]). Varopoulos [18] has shown the converse for symmetric finite
range random walks on groups. The recent work of Karlsson and Ledrappier [14]
generalizes this result to symmetric random walks with finite first moment of
the step lengths.
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In this paper we deal with random walks on wreath products, for which there
are many detailed results: Lyons, Pemantle and Peres [16] gave a lower bound
for the rate of escape of inward-biased random walks on lamplighter groups.
Revelle [17] examined the rate of escape of random walks on wreath products.
He proved laws of the iterated logarithm for the inner and outer radius of escape.
For a finitely generated group A, Dyubina [7] proved that the drift w.r.t. the
word metric of a random walk on the wreath product (Z/2Z) o A is zero if and
only if the random walk’s projection onto A is recurrent.

It is not obvious that lamplighter random walks are in general faster than
their projections onto G: e.g., consider the Switch-Walk lamplighter random
walk on Z with drift: in each step switch the lamp at the actual position with
probability p ∈ (0, 1) and then walk to a random neighbour vertex. Then the
rate of escape of the lamplighter random walk is equal to the random walk’s
projection onto Z whenever cL = 0; compare with [3]. However, this example is
more or less the only counterexample. The author of this article has investigated
the rate of escape of lamplighter random walks arising from a simple random
walk on homogeneous trees providing tight lower and upper bounds for the rate
of escape; see [9]. In particular, the lamplighter random walk is significantly
faster than its projection onto the tree. This was the starting point for the
investigation of the relation between ` and `0 on more general classes of graphs.

The structure of this article is as follows: in Section 2 we give an introduction
to lamplighter random walks on groups and some basic properties. In Section 3
we prove that limn→∞ |supp(ηn)|/n > 0 if and only if the lamplighter random
walk’s projection on G is transient. In Section 4 we prove limn→∞ dTS(Zn)/n >
`0 under some weak assumptions on S, which exclude some degenerate cases.
Finally, in Section 5 we give some additional remarks regarding extensions of
the presented results.

2. Lamplighter groups

2.1. Groups and random walks

Consider an infinite, finitely generated group G with identity e and a finite,
symmetric set of generators S ⊆ G \ {e}, which generates G as a semigroup.
We assign to each s ∈ S a length l(s) = l(s−1) > 0. We write r1 := mins∈S l(s).
These lengths induce a metric on G: the distance between x, y ∈ G is given by

d(x, y) := min

{ n
∑

i=1

l(si)
∣

∣

∣
s1, . . . , sn ∈ S such that y = xs1s2 · · · sn

}

.

We identify G with its Cayley graph with respect to S. A path in G is a finite
sequence of group elements [x0, x1, . . . , xn] such that x−1

i−1xi ∈ S. The length

of this path is
∑n

i=1 l(x−1
i−1xi). The ball B(x, r) centered at x ∈ G with radius

r ≥ 0 is given by the set of all elements y ∈ G with d(x, y) ≤ r.
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2.2. Lamplighter random walks

Imagine a lamp sitting at each vertex of G, which can be switched off or
on, encoded by “0” and “1”. We think of a lamplighter walking on G and
switching lamps on and off. The lamp configurations are encoded by functions
η : G → Z/2Z. Writing Z2 := Z/2Z, the set of finitely supported configurations

of lamps is
N :=

{

η : G → Z2 | |supp(η)| < ∞
}

.

Here, |A| denotes the cardinality of a set A. Denote by 0 the zero configuration,
which will be the initial lamp configuration of the random walk, and by

�
x the

configuration where only the lamp at x ∈ G is on and all other lamps are off.
The wreath product of Z2 with G is

L :=
(

∑

x∈G

Z2

)

o G = Z2 o G.

The elements of L are pairs of the form (η, x) ∈ N × G, where η represents a
configuration of the lamps and x the position of the lamplighter. For x, w ∈ G
and η ∈ N , define

(xη)(w) := η(x−1w).

A group operation on L is given by

(η1, x)(η2, y) :=
(

η1 ⊕ (xη2), xy
)

,

where x, y ∈ G, η1, η2 ∈ N , ⊕ is the componentwise addition modulo 2. The
group identity is (0, e). We call L together with this operation the lamplighter

group over G.
A natural symmetric set of generators of L is given by

SL :=
{

(
�

e, e), (0, s) | s ∈ S
}

.

Consider the Cayley graph of L with respect to SL. We lift d(·, ·) to a (pseudo-)
metric dL(·, ·) on L by assigning the following lengths to the elements of SL:
l((0, s)) := l(s) for s ∈ S and l((

�
e, e)) := cL ≥ 0, where cL is some arbitrary,

but fixed non-negative constant. These lengths induce a (pseudo-)metric on L.
The distance between (η, x) and (η′, y) is then the minimal length of all paths
in the Cayley graph of L joining both vertices. More explicitly, we denote by
dTS(η, x) the minimal length of a “travelling salesman tour” on G (not on L)
from e to x, which visits each y ∈ supp(η). With this notation, we have

`(η, x) := dL

(

(0, e), (η, x)
)

= dTS(η, x) + cL · |supp(η)|.

The case cL = 0 can also be interpreted as the model where SL is replaced by
{(0, s), (

�
e, s) | s ∈ S} and where the length of (

�
e, s) equals l(s). In this case,

lamp switches are not charged by the pseudo-metric.
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We now consider an irreducible, transient random walk on L starting at
the identity (0, e) such that the random walk’s projection onto G is also tran-
sient. For this purpose, consider the sequence of i.i.d. L-valued random variables
(in)n∈N governed by a probability measure µ which satisfies the following con-
ditions:

(1) 〈supp(µ)〉 = L.

(2) There is a non-negative real number R such that

µ(η, x) > 0 implies d(e, y) ≤ R for all y ∈ supp(η).

(3) The projection of µ onto G has finite first moment, that is,

∑

(η,x)∈L

d(e, x)µ(η, x) < ∞.

We write µ(n) for the nth convolution power of µ. A lamplighter random walk
starting at (0, e) is described by the sequence of L-valued random variables
(Zn)n∈N0

in the following natural way:

Z0 := (0, e), Zn := Zn−1in for all n ≥ 1.

More precisely, we write Zn = (ηn, Xn), where ηn is the random configuration
of the lamps at time n and Xn is the random group element at which the
lamplighter stands at time n. As a general assumption we assume transience of
(Xn)n∈N0

. We explain below what happens if this assumption fails.
The corresponding single and n-step transition probabilities of the random

walk on L are denoted by p(·, ·) and p(n)(·, ·). We write Pz[ · ] := P[ · | Z0 = z]
for any z ∈ L, if we want to start the lamplighter walk at z instead of (0, e).

Observe that by transience of (Xn)n∈N0
each finite subset of G is visited

only finitely often yielding that the sequence (ηn)n∈N0
converges pointwise to

a random limit configuration η∞ : G → Z2, which is not necessarily finitely
supported. On the other hand, (Xn)n∈N0

leaves every finite set after some finite
time forever, that is, d(e, Xn) goes to infinity.

As a consequence of Kingman’s subadditive ergodic theorem there are non-
negative numbers `0, ` ∈ R such that

`0 = lim
n→∞

d(e, Xn)

n
and ` = lim

n→∞

`(Zn)

n
almost surely;

see [6] and [10]. The number `0 is called the rate of escape or drift of the
lamplighter random walk’s projection onto G. Analogously, ` is the rate of

escape of the lamplighter random walk. Moreover, we can write

` = `TS + cL · `supp, (2.1)
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where

`TS := lim
n→∞

dTS(ηn, Xn)

n
(core rate of escape) and

`supp := lim
n→∞

|supp(η)|

n
(asymptotic configuration size).

The latter limits exist for the same reason as above. Obviously, ` ≥ `TS ≥ `0.
By Kaimanovich and Vershik [12], we have h ≤ ` · g, where

h = lim
n→∞

−
1

n

∑

(η,x)∈N×G

p(n)
(

(0, e), (η, x)
)

log p(n)
(

(0, e), (η, x)
)

is the asymptotic entropy and g = limn→∞(log |BL(n)|)/n is the growth rate

of L, where BL(n) denotes the ball around (0, e) of radius n with respect to
dL(·, ·). Existence of h and g follows again from Kingman’s subadditive ergodic
theorem. We have g < ∞ even if one considers the balls with respect to the
pseudo-metric dTS(·, ·), because of the relation

{

(η, x) ∈ L | dTS(η, x) ≤ n
}

⊆ BL

(

n + (bn/r1c + 1)cL
)

.

Furthermore, we also have h > 0: the mapping

(η, x) 7−→ P(η,x)[η∞(e) = 0]

defines a non-constant bounded harmonic function. Thus, the Poisson boundary
is non-trivial, that is, h > 0; see [11] and [13]. Thus, we get ` > 0. As an
additional remark, let us mention that Dyubina [7] proved that lamplighter
random walks w.r.t. the word metric have non-zero drift if and only if the
projection on G is transient. Since S is finite and the lengths of edges are
bounded, we have in our situation ` = 0 if G is recurrent.

Our basic aim is to show that ` is strictly bigger than `0, that is, the lamp-
lighter random walk escapes faster to infinity than its projection onto G. For
this purpose, we will show `supp > 0 in the following section, giving ` > `0 in
the case cL > 0. In Section 4, we will prove `TS > `0 under suitable weak as-
sumptions on G, which exclude degenerate cases for special choices of S and l(·)
when G = Z.

3. The asymptotic configuration size

In this section we want to show that the number of lamps which are on
increases asymptotically at linear speed. We show that `supp > 0, giving ` > `0

in the case cL > 0.
Consider now the lamplighter random walk’s projection on G and its range

Rn ⊆ G, which is the set of visited elements up to time n. By Derriennic [6],
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|Rn|/n converges to P[∀n ≥ 1 : Xn 6= e], which is strictly positive in our case
by transience. For j ∈ N, let

sj := min
{

n ∈ N0 | |Rn| = j
}

.

By transience, sj < ∞ almost surely. For k ∈ N0, let

∆k,j :=

{

1, if ηsj+k(Xsj
) = 1,

0, otherwise.

With this definition we have for all n ∈ N0

|supp(ηn)| ≥

|Rn|
∑

j=1

∆n−sj ,j . (3.1)

We give now a uniform lower bound for the probability P(η,x)[η∞(x) = 1] with
(η, x) ∈ N × G.

Lemma 3.1. There are κ ∈ N and C > 0 such that for all (η, x) ∈ N × G

P(η,x)[∀n ≥ κ : ηn(x) = 1] ≥ C.

Proof. By transience and bounded range of the random walk (Xn)n∈N0
, there

is at least one vertex y ∈ G with R < d(e, y) such that

p̃ := P(η′,y)[∀n ≥ 1 : Xn /∈ B(e, R)] > 0 for each η′ ∈ N .

Moreover, there are κ0, κ1 ∈ N such that C0 := µ(κ0)((0, y)) > 0 and C1 :=
µ(κ1)((

�
e, y)) > 0. Transitivity provides that the probability of walking from

(η, x) to some (η′, xy) with x ∈ supp(η′) in at most κ := max{κ0, κ1} steps is
at least C ′ := min{C0, C1}. With C := C ′ · p̃ follows the claim of the lemma.

2

The next lemma gives a non-trivial uniform lower bound for E[∆n,j ] with
n ≥ κ:

Lemma 3.2. For all j, n ∈ N with n ≥ κ we have E [∆n,j ] ≥ C > 0.

Proof. In order to bound P[∆n,j = 1] uniformly from below, we decompose
according to all possible states of Xsj

, followed by walking steps to some Xsj
y ∈

G \B(Xsj
, R), such that the lamp at Xsj

— if necessary — will be switched on
and after reaching Xsj

y the random walk does not return to B(Xsj
, R).

By vertex-transitivity and Lemma 3.1, the probability of starting in Xsj
and

walking in at most κ steps to some vertex Xsj
y ∈ G \B(Xsj

, R), such that the
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lamp at Xsj
rests on and no further visit in B(Xsj

, R) after reaching Xsj
y is at

least C > 0.
Observe that, by transience we have for each j ∈ N

∑

x∈G

∑

m≥0

P[sj = m, Xm = x] = P[sj < ∞] = 1.

We get for n ≥ κ:

E [∆n,j ] =
∑

(η,x)∈L

∑

m≥0

P
[

sj = m, Zm = (η, x), ηm+n(x) = 1
]

≥
∑

(η,x)∈L

∑

m≥0

P
[

sj = m, Zm = (η, x)
]

· P(η,x)[ηn(x) = 1]

≥ P[sj < ∞] · C = C > 0.

2

Now we can conclude:

Theorem 3.1. For the lamplighter random walk with respect to the infinite,

finitely generated group G,

`supp > 0.

Moreover, if cL > 0, then ` > `0.

Proof. Recall the definition of κ from Lemma 3.1. We have:

`supp = lim
n→∞

|supp(ηn+κ)|

|Rn|

|Rn|

n

n

n + κ
= `1 · F̄ ,

where

`1 := lim
n→∞

|supp(ηn+κ)|

|Rn|

and
F̄ := P[∀n ≥ 1 : Xn 6= e] > 0.

As `supp exists, the limit `1 also exists. If we set

Dn :=

|Rn|
∑

j=1

∆n+κ−sj ,j

|Rn|
,

then (3.1) yields the inequality `1 ≥ lim supn∈N Dn. Since the Dn’s are bounded,
Fatou’s lemma yields

`1 ≥ E
[

lim sup
n∈N

Dn

]

≥ lim sup
n∈N

E [Dn].
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With the help of Lemma 3.2 we obtain:

E

[

1

|Rn|

|Rn|
∑

j=1

∆n+κ−sj ,j

]

=

n+1
∑

m=1

P[|Rn| = m] · E

[

1

|Rn|

|Rn|
∑

j=1

∆n+κ−sj ,j

∣

∣

∣

∣

|Rn| = m

]

≥
n+1
∑

m=1

P[|Rn| = m] · C = C > 0.

This yields
`supp ≥ F̄ · lim sup

n∈N

E [Dn] ≥ F̄ · C > 0.

The rest follows by (2.1) and ` ≥ `TS ≥ `0. 2

We can generalize the last theorem, if we do not necessarily assume tran-
sience of the projection (Xn)n∈N0

:

Theorem 3.2. For the lamplighter random walk with respect to the infinite,

finitely generated group G, we have `supp > 0 if and only if (Xn)n∈N0
is transient.

Proof. By Theorem 3.1, transience implies `supp > 0. For the proof of the
inverse direction assume now `supp > 0. We have

|supp(ηn)| ≤ |B(e, R)| · |Rn|.

This yields

0 < `supp = lim
n→∞

|supp(ηn)|

n
≤ lim

n→∞

|B(e, R)| · |Rn|

n

= |B(e, R)| · P [∀n ≥ 1 : Xn 6= e].

Thus, P [∃n ≥ 1 : Xn = e] < 1, that is, (Xn)n∈N0
is transient. 2

We get also as a consequence of Theorem 3.1:

Corollary 3.1. The core rate of escape satisfies `TS > 0.

Proof. We have dTS(ηn, Xn) ≥ (|supp(ηn)| − 1) · r1. Dividing both sides of the
inequality by n and taking limits yields the proposed claim. 2

Finally, we give an explicit formula for `supp for the special case of a “Walk-
Switch” lamplighter random walk.
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Example 3.1. Suppose we are given a probability measure µ0 on G with finite
support and 〈supp(µ0)〉 = G. Then a “Walk-Switch” lamplighter random walk
over G is given by the transition probabilities

p
(

(η1, x1), (η2, x2)
)

:=
1

2
µ0(x

−1
1 x2)

for x1, x2 ∈ G and η1, η2 ∈ N with η1 = η2 or η1 ⊕
�

x2
= η2. It is easy to see

that E [|supp(ηn)|] = E [|Rn|]/2, providing

`supp =
1

2

(

1 − P [∃n ≥ 1 : Xn = e]
)

.

4. The core rate of escape

In this section we want to prove `TS > `0 whenever G is generated as a
semigroup by a symmetric set S with at least three elements. If, however, G = Z

we have to make some weak assumption on the lengths of the elements of S to
show `TS > `0; otherwise we can construct counterexamples where `TS = `0. In
this section we may again assume `0 > 0, since `TS > 0.

4.1. Groups generated by at least three elements

In this section we assume that S = {s1, . . . , sr} is symmetric with r ≥ 3
such that there is no symmetric set {s, s′} ⊆ S with G = 〈s, s′〉. If G = 〈s, s′〉,
then G is isomorphic to Z or Z2 ∗ Z2 = 〈a, b | a2 = b2 = e〉, and we treat
these cases in Section 4.2. We want to prove that `TS > `0 under the above
assumption to S. Without loss of generality we may assume that the elements
of S are ordered such that l(s1) ≤ l(s2) ≤ · · · ≤ l(sr). Our next aim is to choose
three elements σ1, σ2, σ3 ∈ S such that d(σk , σl) ≥ max{d(e, σk), d(e, σl)} (with
one single exception). For this purpose, we have to make a case distinction:

I. If s1 6= s−1
1 , then we define σ1 := s1, σ2 := s−1

1 and we set σ3 := si with
i = min{k ≥ 2 | sk /∈ 〈s−1

1 , s1, s2, . . . , sk−1〉}, that is, σ3 is not a multiple
of σ1 or σ2. Note that we ensured by the above assumptions on S the
existence of such a σ3.

II. If s1 = s−1
1 and s2 = s−1

2 , then define σ1 := s1, σ2 := s2 and σ3 := si with
i = min{k ≥ 3 | sk /∈ 〈s1, . . . , sk−1〉}. E.g., this may happen in the case
G = 〈a, b, c | a2 = b2 = c2 = e〉.

III. If s1 = s−1
1 and s2 6= s−1

2 , then define σ1 := s1, σ2 := s2 and σ3 := s−1
2 .

E.g., this may happen in the case G = Z/4Z×Z
3, where (2, 0), (1, 0) ∈ S.

We will see that in fact it is not relevant which one of the above cases hap-
pens. In each of the cases we get the following straightforward equalities, resp.
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inequalities:

d(e, σ1) = l(σ1) = r1, d(e, σ2) ≤ l(σ2), d(e, σ3) ≤ l(σ3),

d(σ1, σ2) ≤ l(σ1) + l(σ2), d(σ1, σ3) ≤ l(σ1) + l(σ3), (4.1)

d(σ2, σ3) ≤ l(σ2) + l(σ3).

Moreover, we get the following (uniform) lower bounds:

Lemma 4.1. In all the cases I, II, III,

(i) d(e, σ2) = l(σ2),

(ii) d(e, σ3) = l(σ3),

(iii) d(σ1, σk) ≥ l(σk) for k ∈ {2, 3}.

Furthermore,

(iv)

d(σ2, σ3) ≥

{

l(σ3), in case I and II,

l(σ1), in case III.

Proof. Equation (i) follows from l(σ1) = l(σ−1
1 ) in the case I. In the cases

II and III, we have s2 6= sm
1 ∈ {e, s1} for each m ∈ N. Thus (4.1) yields

equation (i). In case III, equation (ii) holds, since s−1
2 is not a multiple of s1.

For the proof of (ii) in case I and II, assume d(e, σ3) < l(σ3), that is, there
is a path [e, x1, . . . , xm = σ3] with d(xj−1, xj) < l(σ3), that is, σ3 = si can
be written as a product of elements of s−1

1 , s1, . . . , si−1, a contradiction to the
minimal choice of σ3. The inequalities (iii) and (iv) are proved by analogous
arguments. Note that the case distinction in (iv) is necessary, as the equation
s2
2 = s1 in case III may hold. 2

With the last lemma we can prove the following lemma:

Lemma 4.2. Let A = {e, σ1, σ2, σ3} and let ϕ : {1, 2, 3, 4} → A be an injective

function. Then in each of the cases I, II, III,

d(ϕ(1), ϕ(4)) + r1 ≤ d(ϕ(1), ϕ(2)) + d(ϕ(2), ϕ(3)) + d(ϕ(3), ϕ(4)).

Proof. The lemma states that for each choice of ϕ a shortest tour from ϕ(1) to
ϕ(4) visiting ϕ(2) and ϕ(3) on this trip has length at least d(ϕ(1), ϕ(4))+ l(σ1).
Assume for the moment that ϕ(1) = e and ϕ(4) = σ3. Then before finally
reaching σ3 a shortest tour visiting all elements of A has to pass through σ1
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and σ2 in this order (or first through σ2 and then σ1); it is not forbidden to
visit e or σ3 twice. This tour has a length of at least

d(e, σ1) + d(σ1, σ2) + d(σ2, σ3) ≥

{

l(σ1) + l(σ2) + l(σ3), in cases I and II,

2l(σ1) + l(σ2), in case III.

But d(e, σ3) ≤ l(σ3) in case I and II, and d(e, σ3) ≤ l(σ2) in case III. Thus, the
claim follows for the specific choice of ϕ with ϕ(1) = e, ϕ(2) = σ1, ϕ(3) = σ2,
ϕ(4) = σ3. For all other choices of ϕ the same result follows; compare with
Figure 1: the first four columns build a case distinction for the choice of ϕ (we
use symmetries!), the fifth column gives an upper bound for d(ϕ(1), ϕ(4)); the
sixth column gives a lower bound for the right hand side of the inequality in
the lemma and the last column is a lower bound for the difference between the
sixth and fifth column

(

recall that l(σ1) ≤ l(σ2) ≤ l(σ3)
)

. For case III, we
only summarize the different possibilities, where ϕ(i − 1) = σ2, ϕ(i) = σ3 or
ϕ(i − 1) = σ3, ϕ(i) = σ2, where we use Lemma 4.1(iv); the lower and upper
bounds for all other choices for ϕ coincide with case I and II. Compare also
with Figure 2, where the labels on the dotted lines are the lower bounds for the
distances between two points. This proves the lemma. 2

In other words, the lemma states that a shortest tour starting at some a ∈ A
visiting all other elements of A and finishing at some a′ ∈ A has length of at
least d(a, a′) + r1. We will now apply this lemma independently of which of
the cases I, II, III applies. For y ∈ G let By := {y, yσ1, yσ2, yσ3} and let be
xy ∈ G \ By. Obviously, for each choice of w, z ∈ By,

d(e, xy) ≤ d(e, w) + d(w, z) + d(z, xy). (4.2)

Let F be the set of all injective functions ϕ : {1, 2, 3, 4} → By. Then the last
lemma and (4.2) yield the following inequality:

dTS

( �
y ⊕

�
yσ1

⊕
�

yσ2
⊕

�
yσ3

, x
)

(4.3)

≥ min
ϕ∈F

{

d(e, ϕ(1)) +

3
∑

i=1

d(ϕ(i), ϕ(i + 1)) + d(ϕ(4), x)

}

≥ d(e, x) + r1.

We now come back to our lamplighter random walk. Our next aim is to bound
dTS(Zn) from below with the help of (4.3), independently of which of the cases
I, II, III holds. For this purpose, define hitting times

t1 := 0,

tk := min

{

m ∈ N

∣

∣

∣

∣

m > tk−1, Xm /∈
k−1
⋃

j=1

B
(

Xtj
, 2l(σ3)

)

}

for k ≥ 2,
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Cases I and II:

ϕ(1) ϕ(2) ϕ(3) ϕ(4) d(ϕ(1), ϕ(4)) Right Side ≥ Difference ≥

≤

e σ1 σ2 σ3 l(σ3) l(σ1) + l(σ2) + l(σ3) l(σ1) + l(σ2)
e σ1 σ3 σ2 l(σ2) l(σ1) + 2 l(σ3) l(σ1) + l(σ3)
e σ2 σ1 σ3 l(σ3) 2 l(σ2) + l(σ3) 2 l(σ2)
e σ3 σ1 σ2 l(σ2) l(σ2) + 2 l(σ3) 2 l(σ3)
e σ2 σ3 σ1 l(σ1) l(σ2) + 2 l(σ3) 2 l(σ3)
e σ3 σ2 σ1 l(σ1) l(σ2) + 2 l(σ3) 2 l(σ3)

σ1 e σ2 σ3 l(σ1) + l(σ3) l(σ1) + l(σ2) + l(σ3) l(σ2)
σ1 e σ3 σ2 l(σ1) + l(σ2) l(σ1) + 2 l(σ3) l(σ3)
σ1 σ2 e σ3 l(σ1) + l(σ3) 2 l(σ2) + l(σ3) l(σ2)
σ1 σ3 e σ2 l(σ1) + l(σ2) l(σ2) + 2 l(σ3) l(σ3)

σ2 e σ1 σ3 l(σ2) + l(σ3) l(σ1) + l(σ2) + l(σ3) l(σ1)
σ2 σ1 e σ3 l(σ2) + l(σ3) l(σ1) + l(σ2) + l(σ3) l(σ1)

Case III:

ϕ(1) ϕ(2) ϕ(3) ϕ(4) d
`

ϕ(1), ϕ(4)
´

≤ Right Side ≥ Difference ≥

e σ1 σ2 σ3 l(σ2) 2 l(σ1) + l(σ2) 2 l(σ1)
e σ1 σ3 σ2 l(σ2) 2 l(σ1) + l(σ2) 2 l(σ1)
e σ2 σ3 σ1 l(σ1) l(σ1) + 2 l(σ2) 2 l(σ2)
e σ3 σ2 σ1 l(σ1) l(σ1) + 2 l(σ2) 2 l(σ2)

σ1 e σ2 σ3 l(σ1) + l(σ2) 2 l(σ1) + l(σ2) l(σ1)
σ1 e σ3 σ2 l(σ1) + l(σ2) 2 l(σ1) + l(σ2) l(σ1)

Figure 1. Comparison for the choice of ϕ.

s1 s1
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e
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I

i i i

1 1

  l   l   l

  l  l
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s i

2  l
s2

e
2

II

i i i

1

  l   l   l

  l   l
s1

2  l
s2

s2
−1

e
2 1

2

2

III

1

  l   l   l

  l   l

Figure 2. Distances between e, σ1, σ2, σ3 with l1 = l(s1), l2 = l(s2) and
li = l(si).
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that is, tk is the first instant of time after time tk−1 for which the random
walk leaves the finite set ∪k−1

j=0B
(

Xtj
, 2l(σ3)

)

. By transience, tk < ∞ almost
surely. Furthermore, we write Hk := Xtk

and R′
n := {Xtj

| j ∈ N with tj ≤ n}.
Observe that

{Hk,Hkσ1,Hkσ2,Hkσ3} ∩ {Hl,Hlσ1,Hlσ2,Hlσ3} = ∅ (4.4)

for k 6= l. The idea is to investigate, if enough lamps are on in B
(

Xtj
, l(σ3)

)

such that we have dTS(η, y) > d(e, y), where y ∈ G and supp(η) is a subset of
this ball. Our aim is to construct deviations to establish such a situation for
each of these balls with a strict positive probability independently of k. See
Figure 3.

H1

H2

H3

H4

H5

Figure 3. Hitting points.

For n ∈ N0, k ∈ N, define

∆n,k :=

{

r1, if
{

Hk,Hkσ1,Hkσ2,Hkσ3

}

⊆ supp(ηtk+n),

0, otherwise.

If n ≥ tk and ∆n−tk ,k = 1, a shortest tour from e to Xn visiting each element
of supp(ηn) has to visit in particular each element of

{

Hk,Hkσ1,Hkσ2,Hkσ3

}

.
But by Lemma 4.2 and (4.3) this means that

dTS(Zn) ≥ d(e, Xn) + r1.

Due to (4.4), iterated applications of the triangular inequality and Lemma 4.2
yield

dTS(Zn) ≥ d(e, Xn) +

|R′

n|
∑

j=1

∆n−tj ,j . (4.5)

Our next aim is to bound P [∆n,k = r1] for n big enough, and thus E [∆n,k],
uniformly from below by a non-zero constant.
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Proposition 4.1. There exist λ ∈ N and D > 0 such that

E [∆n,k] ≥ D

for all k, n ∈ N with n ≥ λ.

Proof. By transience, there is y ∈ G with d(e, y) ≥ R + l(σ3) such that

p̂ := P(η′,y)

[

∀n ≥ 1 : Xn /∈ B(e, R + l(σ3))
]

> 0 for all η′ ∈ N .

For each subset A ⊆ {e, σ1, σ2, σ3} there is λA ∈ N such that

DA := µ(λA)
((

∑

w∈A

�
w, y

))

> 0.

We sum over all possibilities for the hitting point Hk. Assume now for a mo-
ment that x is the hitting point. Thus, the probability of walking from x with
configuration η to xy such that the lamps at x, xσ1, xσ2, xσ3 are on when the
lamplighter reaches xy is at least

D′ := min
{

DA | A ⊆ {e, σ1, σ2, σ3}
}

.

The lamplighter will not return to B(x, R + l(σ3)) when starting at xy with a
positive probability, namely with a probability of at least p̂. We now obtain for
n ≥ λ := max

{

λA | A ⊆ {e, σ1, σ2, σ3}
}

:

E [∆n,k]

= r1 · P [∆n,k = r1]

= r1 ·
∑

(η,x)∈L

∑

m≥0

P
[

tk = m, Zm = (η, x), {x, xσ1, xσ2, xσ3} ⊆ supp(ηm+n)
]

≥ r1 ·
∑

(η,x)∈L

∑

m≥0

P
[

tk = m, Zm = (η, x)
]

· D′ · p̂

= r1 · D
′ · p̂

=: D.

2

Now we can summarize:

Theorem 4.1. For the lamplighter random walk on the infinite, finitely gen-

erated group G, generated as a semigroup by the symmetric set S such that

G 6= 〈sk, sl〉 for sk, sl ∈ S,

` ≥ `TS > `0.
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Proof. In view of inequality (4.5), Fatou’s lemma and Proposition 4.1 give

`TS =

∫

lim
n→∞

dTS(Zn+λ)

n
dP

≥

∫

lim sup
n∈N

(

d(e, Xn+λ)

n
+

1

n

|R′

n|
∑

j=1

∆n+λ−tj ,j

)

dP

≥ `0 + lim sup
n∈N

∫
(

1

n

|R′

n|
∑

j=1

∆n+λ−tj ,j

)

dP

= `0 + lim sup
n∈N

n+1
∑

k=1

P [|R′
n| = k] · E

[

1

n

|R′

n|
∑

j=1

∆n+λ−tj ,j

∣

∣

∣

∣

|R′
n| = k

]

.

This provides

`TS ≥ `0 + lim sup
n∈N

n+1
∑

k=1

P[|R′
n| = k] ·

k

n
· D = `0 + D · lim sup

n∈N

E [|R′
n|]

n
.

By Kingman’s subadditive ergodic theorem E [|R′
n|]/n converges, and due to

the inequality |Rn| ≤ |B(e, 2l(σ3))| · |R′
n| its limit is bounded from below by

some constant D̄ > 0, completing the proof. 2

4.2. Z-isomorphic groups

In this section we consider the remaining case, where G is generated as a
semigroup by two elements sk, sl ∈ S, that is, G ' Z or

G ' Z2 ∗ Z2 = 〈a, b | a2 = b2 = e〉.

For the sake of completeness we prove the following lemma:

Lemma 4.3. Any irreducible random walk (Xn)n∈N0
on G = Z2 ∗Z2 governed

by a probability measure µ0 with finite first moment is recurrent. In particular,

`TS = 0.

Proof. Observe that
Z := {(ab)z | z ∈ Z} ' Z

is a subgroup of G, which has index 2. We identify from now on the elements
of Z with integers and write Z for the complement G\Z. Consider the stopping
times T0 := 0, Tn := min{m ∈ N | Xm ∈ Z, m > Tm−1} for m ∈ N, and
define Yn := XTn

. Then the random walk (Xn)n∈N0
on G is recurrent if and

only if (Yn)n∈N0
is recurrent. We now compute the expectation of the drift
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Dn := Yn − Yn−1, which is independent of n. We write µZ(z) = µ0(z)/µ0(Z)
for every z ∈ Z and dZ =

∑

w∈Z w µZ(w). Observe that for each w, w′ ∈ Z we
have ww′ ∈ Z and ww′ = −w′w. Now we can compute the expected drift by
distinguishing how one can walk from Yn−1 to Yn:

E [Dn] =
∑

w∈Z

w µ0(w) +
∑

n≥1

∑

w0,wn∈Z

∑

w1,...,wn−1∈Z

(w0 − w1 − · · · − wn−1 + wn)

× µ0(w0)µ0(w1) · · ·µ0(wn−1)µ0(wn)

= µ0(Z) · dZ +
∑

n≥1

µ0(Z)n−1
(

∑

w0,wn∈Z

(w0 + wn)µ0(w0)µ0(wn)

+ (1 − µ0(Z))2 ·
∑

w1,...,wn−1∈Z

(−w1 − · · · − wn−1)µZ(w1) . . . µZ(wn−1)
)

= µ0(Z) · dZ − (1 − µ0(Z)) · dZ

∑

n≥1

(n − 1)µ0(Z)n−1(1 − µ0(Z))

= µ0(Z) · dZ − (1 − µ0(Z)) · dZ · µ0(Z)/(1 − µ0(Z)) = 0.

By Chung –Ornstein [5] it follows that (Yn)n∈N0
is recurrent, and thus (Xn)n∈N0

is recurrent. From [7] follows `TS = 0. 2

We want to show that Theorem 4.1 holds also in the case G = Z under
suitable assumptions on the lengths of the elements of S. Note that we may
assume again that `0 > 0 and that |S| ≥ 3. If |S| = 2, then G is isomorphic
to Z = 〈S〉 with S = {−1, 1}, whose Cayley graph is the infinite line, on which
one can easily show that the lamplighter random walk has the same speed as its
projection onto G; see also [3]. Thus, we only have to take a closer look on Z

generated by a symmetric set S with −1, 1 ∈ S and |S| ≥ 3. Observe that if
±1 /∈ S, then we may apply the results of the previous section. Furthermore,
assume that there is s ∈ S \ {±1} with l(s) < |s| · l(1); otherwise we are more
or less in the situation of S = {±1}, see the end of this section. Moreover, we
may assume that d(0, 1) = d(0,−1) = l(1); otherwise [x0 = 0, x1 = 1] is not a
shortest path from 0 to 1, that is, S \ {−1, 1} provides the same metric as the
metric induced by S, that is, we may apply the results of Section 4.1 in such
case. Due to the same argument we may assume that the only shortest path
from 0 to 1 is [x0 = 0, x1 = 1].

We proceed similarly to Section 4.1. We make a case distinction and define:

I. If there is s ∈ S \ {±1} such that r1 = l(s) < l(1), then define σ1 = s,
σ2 = s−1 and σ3 = 1.

II. Otherwise we set σ1 = 1, σ2 = −1 and σ3 = s, where s ∈ N∩(S\{1}) such
that l(s) < |s| · l(1) and l(s) ≤ l(s′) for all s′ ∈ S with l(s′) < |s′| · l(1).
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In case I we have trivially d(0, s) = d(0, s−1) = l(s) = r1 and d(s, s−1) ≥ l(s) =
r1, while in case II we have d(0, 1) = d(0,−1) = l(1) = r1 and d(1,−1) ≥ l(1).
Moreover:

Lemma 4.4. We have the following equations and lower bounds:

(1) In case I there is some ε0 > 0 such that

(i) d(0, 1) = l(1),

(ii) d(s, 1) ≥ l(1) − l(s) + ε0,

(iii) d(s−1, 1) ≥ l(1) − l(s) + ε0.

(2) In case II there is some ε0 > 0 such that

(i) d(0, s) = l(s),

(ii) d(1, s) ≥ l(s) − l(1) + ε0,

(iii) d(−1, s) ≥ l(s) − l(1) + ε0.

Proof. Equation (1).(i) holds by the assumption made above. For the proof
of (1).(ii) assume that d(s, 1) ≤ l(1) − l(s). Then there is a shortest path
[s, x1, . . . , xn = 1] with d(xi−1, xi) ≤ l(1) − l(s), that is, x−1

i−1xi 6= ±1. But this
means that there is another path from 0 to 1 of length at most l(1), namely
[0, s, x1, . . . , xn], distinct from [0, 1], a contradiction to the assumptions above.
As S is finite, existence of ε0 is ensured. Inequality (1).(iii) is proved analogously.

Assume that equation (2).(i) does not hold. This implies that there is a
shortest path [0, x1, . . . , xn = s] from 0 to s with d(xi−1, xi) < l(s), that is,
we may assume x−1

i−1xi = ±1 by minimality of l(s). But this implies l(s) >
d(0, s) = |s| · l(1), a contradiction to the choice of s. To prove (2).(ii) assume
d(1, s) ≤ l(s) − l(1), that is, there is a shortest path [1, x1, . . . , xn = s] with
d(xi−1, xi) ≤ l(s) − l(1), that is, we may assume x−1

i−1xi = ±1 by minimality
of l(s). But this provides now l(s) ≥ l(1) + d(1, s) = |s| · l(1), a contradiction to
the choice of s. Inequality (2).(iii) is proved analogously. 2

We get the analogue to Lemma 4.2:

Lemma 4.5. Let be A = {0, σ1, σ2, σ3} and let ϕ : {1, 2, 3, 4} → A be an

injective function. Then in each of the cases I and II,

d(ϕ(1), ϕ(4)) + min{ε0, l(s), l(1)}

≤ d(ϕ(1), ϕ(2)) + d(ϕ(2), ϕ(3)) + d(ϕ(3), ϕ(4)).

Proof. The proof works analogously to the proof of Lemma 4.2; compare with
Figure 4 for the comparison of the distances in case I. The inequality for case II
follows analogously by symmetry. 2
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ϕ(1) ϕ(2) ϕ(3) ϕ(4) d(ϕ(1), ϕ(4)) ≤ Right Side ≥ Difference ≥

0 s s−1 1 l(1) 2 l(s)+ l(s) + ε0

(l(1) − l(s) + ε0)

0 s−1 s 1 l(1) 2 l(s)+ l(s) + ε0

(l(1) − l(s) + ε0)

0 1 s−1 s l(s) l(1) + (l(1)− l(1) + ε0

l(s) + ε0) + l(s)

0 s−1 1 s l(s) l(s) + 2(l(1)− ε0

l(s) + ε0)

0 1 s s−1 l(s) l(1) + (l(1)− l(1) + ε0

l(s) + ε0) + l(s)

0 s 1 s−1 l(s) l(s) + 2(l(1)− 2ε0

l(s) + ε0)

s 0 1 s−1 2 l(s) l(s) + l(1)+ ε0

(l(1) − l(s) + ε0)

s 1 0 s−1 2 l(s) (l(1) − l(s) + ε0) ε0

+l(1) + l(s)

s 0 s−1 1 l(s) + l(1) 2 l(s) + (l(1)− ε0

(l(1) − l(s) + ε0)

s s−1 0 1 l(s) + l(1) 2l(s) + l(1) l(s)

s−1 0 s 1 l(s) + l(1) 2 l(s)+ ε0

(l(1) − l(s) + ε0)

s−1 s 0 1 l(s) + l(1) 2 l(s) + l(1) l(s)

Figure 4. Comparison for the choices of ϕ in case I.

Now we can conclude:

Corollary 4.1. For the lamplighter random walk on G = Z, generated as a

semigroup by the symmetric set S such that −1, 1 ∈ S, |S| ≥ 3 and l(s) < |s|·l(1)
for some s ∈ S \ {−1, 1},

` ≥ `TS > `0.

Proof. Due to Lemma 4.5 the proof follows analogously to the considerations of
Section 4.1, where we redefine ∆n,k by

∆n,k :=

{

min{ε0, l(s), l(1)}, if {Hk,Hkσ1,Hkσ2,Hkσ3} ⊆ supp(ηtk+n),

0, otherwise.

2

We now explain the necessity of having some s ∈ S \ {−1, 1} with l(s) <
|s| · l(1). If this assumption is not satisfied, then the metric on G = Z is
d(x, y) = r1 · |x − y|, that is, we have the natural metric on Z if r1 = 1. In this
case the lamplighter random walk has the same speed as its projection onto the
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group G. E.g., consider G = Z generated by S = {±1,±2,±3} with l(±1) = 1,
l(±2) = 3 and l(±3) = 5. Observe that [0, 1, 2, . . . , z] for z > 0 is a shortest
path from 0 to z. Let be p ∈ (1/2; 1). We equip Z2 oZ with a transient random
walk defined by the following transition probabilities:

µ(0, 1) = µ(
�

0, 1) = µ(0, 2) = µ(
�

0, 2) = µ(0, 3) = µ(
�

0, 3) = p/6,

µ(0,−1) = µ(
�

0,−1) = µ(0,−2) = µ(
�

0,−2)

= µ(0,−3) = µ(
�

0,−3) = (1 − p)/6.

Thus, d(e, Xn)/n converges almost surely to 2p−1. Analogously to the case
G = Z = 〈±1〉, it can be shown that the lamplighter does not escape faster than
its projection on Z, that is, we have `TS = `0.

5. Remarks

5.1. Generalization to transitive graphs and Markovian distance

The results of Sections 3 and 4 can be generalized to transient lamplighter
random walks on transitive, connected, locally finite graphs, which are not nec-
essarily Cayley graphs of finitely generated groups. Again, it is assumed that
the lamplighter random walk’s projection onto the base graph is transient. The
results of the previous sections also apply in this case, if graph automorphisms
leave the lamplighter random walk operator invariant; compare with [8].

One can also investigate the rate of escape with respect to the Markovian

distance dP

(

(η, x), (η′, x′)
)

on Z2 o G, which is given by

min







n
∑

i=1

d(xi−1, xi)

∣

∣

∣

∣

n ∈ N0, there are x0, x1, . . . xn ∈ G
with x0 = x, xn = x′, such that

P(η,x)[X1 = x1, . . . , Xn = x′, ηn = η′] > 0







.

The limit `P := limn→∞ dP

(

(0, e), Zn

)

/n exists almost surely by Kingman’s
subadditive ergodic theorem and is almost surely constant. It can be shown
that if the Cayley graph of G has infinitely many ends, then with respect to the
Markovian distance the lamplighter escapes faster to infinity than its projection
onto G. If the assumption is dropped one can find counterexamples such that
the lamplighter is not faster; e.g. if G = Z × Z2.

5.2. Multi-state lamps

The presented techniques for proving the acceleration of the lamplighter
random walks can also be applied to the case that there are more possible lamp
states encoded by elements of Z/rZ with r > 2. In this case one may assign
lengths to a set of generators of Z/rZ. Then the presented results can be proved
analogously.
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5.3. Greenian distance

Another metric on G is given by the Greenian distance

dGreen(x, y) := − ln Px[Ty < ∞],

where Ty is the hitting time of y ∈ G. Analogously, we can define the Greenian
metric for the random walk on Z2oG. These metrics are not path metrics induced
by lengths on the set of generators. Benjamini and Peres [2] proved that the
entropy and the rate of escape w.r.t. the Greenian distance of random walks on
finitely generated groups with finite support are equal. Blachère, Häıssinsky and
Mathieu [4] generalized this result to random walks on countable groups. If the
random walk on G is governed by a probability measure µ0 with 〈supp µ0〉 = G,
then the entropy of the lamplighter random walk on Z2 o G is strictly bigger
than the entropy of the random walk’s projection onto G, because the Poisson
boundary of the lamplighter random walk projects non-trivially onto the one
of the random walk on the base graph; compare with [12, Theorem 3.2]. It
follows that with respect to the Greenian distance the lamplighter random walk
is faster than its projection onto G.
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