
Elliptic Curve Cryptography ASIC for

Radio Frequency Authentication

Master Thesis

Author:
Daniel Hein, dhein@student.ethz.ch

Advisors:
Luca Henzen, henzen@iis.ee.ethz.ch

Matthias Brändli, braendli@iis.ee.ethz.ch
Norbert Felber, felber@iis.ee.ethz.ch

Co-Advisor:
Johannes Wolkerstorfer, johannes.wolkerstorfer@iaik.tugraz.at

Prof. Dr. W. Fichtner
Integrated Systems Laboratory (IIS)

ETH Zürich 2008

Acknowledgements

First I would like to thank Johannes Wolkerstorfer from Graz University of
Technology for proposing this thesis and his patience with my questions on
elliptic curve cryptography. He also co-examined this thesis.

Next I would like to thank Norbert Felber for paving the way to write this
thesis at the Integrated Systems Laboratory of the ETH Zürich, his constructive
criticism and of course for examining this document.

My thanks also go to Luca Henzen for being my first point of contact for
all hardware relevant questions. His efforts in providing useful answers and
discussing my implementation ideas are appreciated. In addition, I would also
like to thank him for co-examining this thesis.

For his invaluable advise concerning the tools involved, I would like to thank
Mathias Brändli. His aid with my questions about synthesis and backend design
is greatly appreciated.

I would also like to thank the enitre IIS team of the ETH Zürich for their
support and the warm welcome they provided.

In addition, I would also like to acknowledge the assistence given by the Mo-
bilitätstelle of the ETH Zürich. Thank you, for providing me with an ERASMUS
scholarship, without great ado.

Last, but most certainly not least, my special thanks go out to my fiancée
Kari for her unwaivering support and understanding. Finally I would like to
thank my parents for their long-standing aid over the course of my academic
studies.

Abstract

Radio Frequency Identification (RFID) technology is currently revolutionizing
supply chain management. Cloning-resistant RFID tags could put a permanent
stop to product piracy. Tag authentication based on Elliptic Curve Cryptogra-
phy (ECC), a sound and standardized cryptographic methodology, could provide
this copy protection facility.

The small key sizes achievable with ECC render it the only public-key
cryptosystem viable for an RFID application. Current low power, small area
ECC implementations are realized as Application-Specific Integrated Circuits
(ASICs) using full precision datapaths optimized for a specific underlying finite
field.

This work presents a new approach for ECC on devices with a fiercely con-
strained die area and power budget. It employs a datapath with a word size
of 16 bit. The core component of the datapath is a F2 arithmetic unit, which
realizes operations in the binary extension field F2163with a fixed standardized
irreducible polynomial.

A design space-exploration of word level algorithms led to the development
of a new multiplication with interleaved modular reduction method. Minor
modifications to a multiply accumulate (MAC) unit produced a hardware com-
ponent capable to implement this and all other algorithms required for the
elliptic curve point multiplication most efficiently. The point multiplication is
the operation that lends security to all ECC based cryptographic primitives like
authentication.

The ECCon ASIC designed and fabricated as part of this thesis is rounded
off by an ISO-18000-3-1 compliant digital RFID front-end augmented with the
capability to perform a restricted version of the elliptic curve digital signature
algorithm (ECDSA). Special attention was paid to the possibility of side channel
attacks and measures were implemented to provide high resilience against them.

The ECCon processor was fabricated using the UMC L180 GII 180 nm
CMOS technology. The area it necessitates is equal to 151125 µm2 or 13685
gate equivalents. It performs an elliptic curve point multiplication in 306587
clock cycles and has a power consumption of 11.4 µW at a clock frequency of
106 kHz.

Keywords: Elliptic curve cryptography, Radio frequency identification, au-
thentication, tag-cloning, security, binary extension fields, ASIC, hardware im-
plementation

Contents

List of Algorithms iii

List of Tables iv

List of Figures v

List of Acronyms viii

1 Introduction 1
1.1 Overview . 1
1.2 Outline . 2

2 Radio Frequency Identification 3
2.1 The RFID tag . 3
2.2 Radio Frequency Identification (RFID) is poised to supersede the

barcode . 5
2.3 RFID privacy issues . 6
2.4 RFID based authentication . 7

3 A brief introduction to cryptography 9
3.1 Cryptography - Definition and goals 9

3.1.1 Goals of Cryptography . 10
3.1.2 Kerckhoffs’ Principle . 12

3.2 The key distribution problem . 12
3.2.1 Symmetric-key cryptography 12
3.2.2 The problem with symmetric-key cryptography 12
3.2.3 Trusted Third Partys . 13

3.3 Public-key cryptography . 14
3.3.1 Asymmetric cryptography - An example 15
3.3.2 Key distribution . 15

3.4 Challenge-response authentication 16
3.5 Digital Signature Algorithms . 17

3.5.1 The use of digital signature algorithms in challenge-response
protocols . 18

CONTENTS ii

4 Elliptic Curve Cryptography 19
4.1 The Elliptic Curve Digital Signature Algorithm (ECDSA) 20
4.2 Definition of an elliptic curve . 21

4.2.1 Simplification and curve selection 22
4.3 Binary extension fields . 23

4.3.1 Abelian group . 23
4.3.2 Finite fields in general . 23
4.3.3 Generators . 24
4.3.4 Prime fields . 24
4.3.5 Binary extension fields in detail 24

4.4 Elliptic Curve Cryptography (ECC) arithmetic 25
4.4.1 Group law . 25
4.4.2 Projective coordinates . 27
4.4.3 Point multiplication . 28

5 The ISO-18000-3-1 standard 32
5.1 Physical layer . 32
5.2 Interrogator-tag communication 33
5.3 Anti-collision sequence . 33
5.4 Optional commands . 34
5.5 Custom ECC commands . 35

6 Architecture 36
6.1 Prerequisites for a circuit in a RFID application 36
6.2 ECCon . 37
6.3 RFID front-end . 39
6.4 ECC processor architecture . 39

6.4.1 Datapath . 39
6.4.2 Datapath design alternatives 44
6.4.3 Control unit . 45
6.4.4 Interface . 46

7 Binary field algorithms 47
7.1 Conventions . 48

7.1.1 Field element representation 48
7.1.2 Algorithm descriptions . 48
7.1.3 Instruction Set Architectures 49

7.2 Definition of potential Arithmetic Logic Unit (ALU) Instruction
Set Architectures (ISAs) . 49

7.3 Addition and Subtraction . 50
7.4 Multiplication . 52

7.4.1 Integer multiplication algorithms 52
7.4.2 Operand scanning form 52

7.5 Squaring . 56
7.5.1 Direct hardware implementation 57
7.5.2 An alternative squaring method 57
7.5.3 Implementation . 58
7.5.4 Conclusion . 59

7.6 Modular reduction . 59
7.6.1 Methodologies - Interleaved versus stand-alone reduction 59

CONTENTS iii

7.6.2 Hard-wired reduction . 60
7.6.3 Software reduction algorithms 60
7.6.4 Repeated multiplication reduction 61
7.6.5 Multiplication with interleaved reduction 62
7.6.6 Squaring with interleaved reduction 65

7.7 Inversion . 66
7.7.1 Extended Euclidian Algorithm based inversion 66
7.7.2 Fermat based inversion 67
7.7.3 Conclusion . 70

8 Implementation 71
8.1 Conventions . 71
8.2 Power saving techniques . 72

8.2.1 Dynamic power consumption 72
8.2.2 Clock gating . 72
8.2.3 Operand isolation . 73

8.3 RFID front-end . 73
8.3.1 RFID Asynchronous Receiver Transmitter (RART) 73
8.3.2 Clock gate enable operation frequencies 73
8.3.3 RFID Control Unit (RCU) implementation 75

8.4 ALU . 76
8.4.1 The Simplex ALU . 76
8.4.2 The Complex ALU . 78
8.4.3 Comparison . 78

8.5 Memory . 81
8.6 Control . 86

8.6.1 The basic operations control unit 86
8.6.2 The ECC operation control unit 88

8.7 Design For Test . 91
8.7.1 The Built-In Self-Test (BIST) 91

8.8 Side-channel attack resilience . 92
8.9 Synthesis . 93
8.10 Results . 94

8.10.1 Area . 95
8.10.2 Power . 97
8.10.3 Comparison with related work 99

8.11 Layout . 100

9 Conclusion and outlook 101

A Datasheet 103
A.1 Key Features . 103
A.2 Circuit Configuration . 103

A.2.1 Operation Modes . 103
A.2.2 Design for Testability (DFT) 106

A.3 Port Description and Pinout . 106

Bibliography 109

List of Algorithms

4.1 ECDSA signature generation . 20
4.2 ECDSA signature verification . 21
4.3 Point multiplication, binary method 29
4.4 Projective Montgomery point ladder 30
4.5 Madd (Point addition algorithm) 30
4.6 Mdouble (Point doubling algorithm) 31
7.1 Addition/Subtraction . 52
7.2 Addition - Simplex implementation 52
7.3 Multiplication (operand scanning form) 53
7.4 Multiplication (operand scanning form) - Simplex implementation 54
7.5 Multiplication (product scanning form) 54
7.6 Multiplication (product scanning form) for 3-digit operands (loop

unrolled) . 56
7.7 Squaring - Simplex - implementation 58
7.8 Repeated multiplication reduction - Implementation 62
7.9 Multiplication (product scanning form) with interleaved reduction

- Complex implementation . 64
7.10 Squaring with interleaved reduction - Complex implementation . . 65
7.11 Counting EEA using reduction polynomial 67
7.12 Square-and-multiply MSB-first method 68
7.13 Square-and-multiply: recursive method - inner inversion operation

(inInvOp(a(z), b(z), number) . 68
7.14 Square-and-multiply: fully recursive method 69
7.15 Square-and-multiply: recursive, k-ary method 69

List of Tables

3.1 A comparison of the number of necessary keys in different cryp-
tosystems . 15

6.1 Domain parameters of Curve B-163 41

7.1 Simplex ALU operations . 50
7.2 Simplex ALU operation names 50
7.3 Complex ALU Operations . 51
7.4 Complex ALU Operation Names 51
7.5 Multiplication runtime comparison of operand and product scan-

ning form. 56
7.6 Runtime comparison of inversion algorithms on a 16-bit MAC core 70

8.1 Comparison of the Simplex and Complex ALUs 81
8.2 Definition of storage unit types 84
8.3 Mapping of operations in F2163to the chosen algorithms 88
8.4 Mapping of high level components to the chosen algorithms . . . 88
8.5 Fault coverage . 92
8.6 ECConarea distribution . 96
8.7 ECC processor area distribution 96
8.8 ECCon Application-Specific Integrated Circuit (ASIC) power

distribution over different frequencies 98
8.9 ECC processor power distribution over different frequencies . . . 99
8.10 Comparison with other implementations 99

A.1 RFID command table . 104
A.2 ECC interface commands . 104
A.3 Port description of the ASIC. 107

List of Figures

2.1 Photograph of an RFID tag [Mid06] 4
2.2 Schematic of an RFID tag . 4

3.1 Alice, Bob and Eve . 10
3.2 Bob challenges Alice . 11
3.3 Symmetric-key cryptography key exchange 13
3.4 Key exchange in a public-key cryptosystem 16

4.1 Elliptic curve E : y2 = x3 − x over R 22
4.2 Point addition: R=P+Q . 26
4.3 Point doubling: R=P+P . 26

6.1 Top level architecture . 38
6.2 ECC processor architecture . 40
6.3 A comparison of different datapath widths 42

7.1 An element of F2163as array of t words. 48
7.2 The operand scanning form multiplication for two 3-bit integers . 53
7.3 An illustration of the product scanning form for two 3-digit integers 55
7.4 Squared binary polynomial a(z)2. 57
7.5 Squaring using the multiplication unit, product scanning style . . 58
7.6 Two step reduction for the NIST-163 elliptic curve 61

8.1 Color scheme for signal and logic block types 72
8.2 Clock gated register . 74
8.3 Operand isolation . 74
8.4 Displaced clock gate enable signal creation 75
8.5 Simplex -ISA - ALU implementation 77
8.6 Complex -ISA - ALU implementation 79
8.7 Complex -ALU select-and-add (SAA) unit 80
8.8 Complex -ALU SAA slice . 80
8.9 Memory flip-flop wx . 82
8.10 Memory clock gating logic . 83
8.11 Memory word . 83
8.12 Operand isolated multiplexer . 84

LIST OF FIGURES vii

8.13 Memory unit . 85
8.14 Memory core . 85
8.15 The binary extension field operations control module 87
8.16 Interaction between one Finite State Machine (FSM) and the

shared components . 87
8.17 The high level operations control module 89
8.18 Observable clock gate . 91
8.19 A× P diagram over different optimization steps 94
8.20 Area comparison of the ECCon components 95
8.21 Area comparison of the ECC processor components 96
8.22 Power consumption comparison of the ECCon components . . . 97
8.23 Power consumption comparison of the ECC components 98
8.24 The layout of the ECCon processor 100

A.1 Pinout of ASIC. 108

List of Acronyms

ECC Elliptic Curve Cryptography

RFID Radio Frequency Identification

ASIC Application-Specific Integrated Circuit

IFF Identification, Friend or Foe

WWII World War II

ID Identity

EPC Electronic Product Code

NFC Near Field Communication

HF High Frequency

EM Electromagnetic

NVRAM Non Volatile Random Access Memory

MAC Message Authentication Code

DSA Digital Signature Algorithm

ECDSA Elliptic Curve Digital Signature Algorithm

AES Advanced Encryption Standard

TTP Trusted Third Party

IFP Integer Factorization Problem

DLP Discrete Logarithm Problem

ECDLP Elliptic Curve Discrete Logarithm Problem

PKI Public-Key Infrastructure

STS Station-to-Station

EC Elliptic Curve

LIST OF FIGURES ix

ECIES Elliptic Curve Integrated Encryption Scheme

SPA Simple Power Analysis

FPGA Field Programmable Gate Array

ITF Interrogator Talks First

IC Integrated Circuit

RART RFID Asynchronous Receiver Transmitter

RCU RFID Control Unit

UID Unique Identity

RAM Random Access Memory

ROM Read Only Memory

ALU Arithmetic Logic Unit

MAC Multiply Accumulate

FSM Finite State Machine

XOR Exclusive Or

DSS Digital Signature Standard

HDL Hardware Description Language

ISA Instruction Set Architecture

CPU Central Processing Unit

EEA Extended Euclidean Algorithm

GCD Greatest Common Divisor

CMOS Complementary Metal-Oxide Semiconductor

SOF Start Of Frame

RTL Register Transfer Level

VHDL Very high speed integrated circuit Hardware Description Language

LUT Lookup Table

DFT Design For Test

ATPG Automated Test Pattern Generator

BIST Built-In Self-Test

MATS++ Modified Algorithmic Test Sequence

DPA Differential Power Analysis

PRNG Pseudo Random Number Generator

VLSI Very Large Scale Integration

GE Gate Equivalent

Chapter 1
Introduction

1.1 Overview

Security for Radio Frequency Identification (RFID) devices has received increas-
ing attention over the past few years. This is partially due to privacy issues,
which might hamper the acceptance of RFID technology. A second reason is
the applicability of RFID technology for product authentication.

Product piracy, the production and selling of counterfeit products, often
using the supply chain of the legitimate manufacturer, is an economically cru-
cial problem. The losses incurred by it easily achieve the multi-billion range
[LLMF07]. Product authentication has the potential to at least alleviate, if not
completely stop, product piracy. RFID technology is already employed in sup-
ply chain management as a replacement for the barcode identification system.
If it could be enabled with authentication capabilities this would be a great leap
forward.

Security in information systems has always been linked with cryptography.
The employment of sound cryptographic primitives is difficult for an RFID
application. The RFID tag, the device central to all RFID technologies, is
fiercely constrained.

Elliptic Curve Cryptography (ECC) is the most resource conservative public-
key cryptosystem currently known. The severe conditions entailed by an RFID
environment make ECC the only viable solution for sound cryptography for
RFID technology. The security of every ECC primitive, including authentica-
tion, depends upon the point multiplication operation.

This thesis aims to develop a point multiplication component that could be
deployed on an RFID tag. For this an approach novel to low power, small area
ECC design for RFID applications was chosen. In addition special care was
taken to make the circuit resilient against side channel attacks.

The ECC component is supplemented with a standard compliant RFID
front-end. The synthesis of these two components composes the ECCon1 pro-
cessor, which was fabricated into silicon using the UMC Taiwan L180 GII pro-
cess.

1ECCon is a portmanteau of ECC and an abbreviated version of the word economic.

1.2 OUTLINE 2

1.2 Outline

Chapter §2 will give an overview of RFID technology in general and RFID based
entity identification in particular. The latter is a possible application for the
Application-Specific Integrated Circuit (ASIC) presented in this work.

The next chapter §3 gives a brief introduction into cryptography. As a com-
prehensive overview easily attains book length, the aim is to at least graze all
concepts that are necessary to understand digital signature based challenge-
response authentication protocols. Such protocols allow for secure authentica-
tion of one party to another and are a feasible solution for the RFID authenti-
cation problem.

The next part of this work finally introduces elliptic curves in §4. Again it is
just a quick sketch of the most fundamental ideas that are absolutely essential
to define ECC. It discusses the Elliptic Curve Digital Signature Algorithm
(ECDSA) as a cryptographic primitive that is applicable to the challenge-
response protocols mentioned above and it provides a concrete algorithm to
compute the point multiplication, the ECC operation that is central to ECDSA.

In the following chapter (§5) the most important facts about the ISO-18000-
3-1 [ISO04] standard are summarized. It is one of the protocols specifically
developed for RFID tags in supply chain management and the ASIC developed
as part of this thesis employs an ISO-18000-3-1 compliant RFID interface.

This concludes the theoretic background part and the next chapter (§6)
covers the architecture of the ECCon processor It sets out by defining the exact
prerequisites an RFID application demands. Then it continues by detailing the
different primary components of the ASIC.

After ascertaining the architecture and assorted design decisions, it becomes
necessary to discuss the different options for implementing the binary exten-
sion field operations required by the point multiplication. This is done in
§7. Amongst others it introduces two algorithms specifically developed for this
project, which efficiently solve the multiplication and squaring with interleaved
modular reduction problem for a binary extension field with a specific irreducible
polynomial.

The implementation chapter details the realization of the ECCon processor.
First the power saving techniques applied in the design of the final circuit are
deliberated and then it highlights its most important specifics of the implemen-
tation of the different components of the ASIC. It also gives a brief introduction
to side channel attacks and countermeasures against them. It concludes with a
presentation of its results and a comparison with related work.

The thesis closes with a discussion of the conclusions gained and an outlook
of potential future work in the final chapter (§9).

Chapter 2
Radio Frequency Identification

Radio Frequency Identification (RFID) enables automated contactless entity
identification. Entities in this context include objects, animals or persons. The
idea behind RFID is not a new one, a similar approach was already employed in
WWII for friend or foe identification (IFF). In the past years RFID technology
has received academic and industrial attention because of its applicability in
supply chain management, access control and various other fields.

It has been very accurately described as a form of computer vision in [Jue07].
Computer vision deals not only with the physical process of seeing, but more
prominently tries to teach computers object recognition. A simple feat for a
human, but immensely complex to imitate with machines.

RFID circumvents the problem by enhancing objects with the capability to
inform an interested party of their nature. Unlike its barcode predecessor direct
line of sight and optical scanning of the labeled entity are not necessary. To
stretch above analogy, this is the equivalent to computer X-ray vision.

This chapter gives a concise overview on the subject of RFID. It introduces
the RFID tag, the device at the heart of RFID technology, in §2.1. One of the
major application of RFID is product identification, where it is the successor of
the barcode. Its advantages in comparison to its predecessor are examined in
§2.2. The implications of RFID technology for privacy are detailed in §2.3. In
§2.4 RFID based item authentication is introduced as a weapon against product
counterfeiting.

2.1 The RFID tag

Todays most common physical embodiment of an RFID device is the RFID
label. An RFID label consists of an RFID tag embedded in an adhesive foil or
sticker, similar to those commonly used to add a barcode to an object. RFID
tag and tag will be uses synonymously in this text. A tag is a small antenna
connected to a micro chip (cf. figure 2.1).

RFID is a set of technologies geared towards entity identification. Several
different standards have evolved for RFID communication. They greatly differ
in range, transfer speed and frequency used. The more important suites include

2.1 THE RFID TAG 4

Figure 2.1: Photograph of an RFID tag [Mid06]

the Electronic Product Code (EPC) standard [EPC05] as well as the ISO-14443
[ISO00a], ISO-15693 [ISO00b] and ISO-18000 [ISO04] standard suites.

Many taxonomies are possible to categorize the different RFID tag variants.
One that is important for this work is the distinction between battery powered
and Electromagnetic (EM) field powered devices. The majority of tags belongs
to the second category. This includes all the tag groups that are of primary
concern for item identification purposes.

These product identifying tags are the most constrained of all RFID devices.
The die area of the digital part of the Integrated Circuit (IC) is a major con-
tributing factor to the cost of a tag. It has to be kept at a minimum. This of
course greatly limits the functionality that it is possible to implement on such
a device.

Aside from the die area the other limiting factor is the power budget. The
power that can be supplied by an EM field is severely restricted. The following
deliberations apply to HF-devices using a carrier frequency fc of 13.56 MHz.
According to Feldhofer et al. [FW07a] 15 µA is the upper bound to the mean
current available. Exceeding this implies reducing the operating range of the
tag.

Figure 2.2: Schematic of an RFID tag

2.2 RFID IS POISED TO SUPERSEDE THE BARCODE 5

Figure 2.2 depicts a high level schematic of an RFID tag. The antenna is
connected to an analog front end. This circuit has three tasks.

Extract power from the EM field and provide a stable operating conditions
to the integrated circuit.

Generate a clock signal. The clock of the digital component is derived from
the frequency of the exciting EM field.

Send and receive data and act as interface unit for the digital back-end.
This part is concerned with the physical details of signal modulation and
demodulation.

The digital back-end implements the communication protocol and the higher
level functionality of the tag. It processes the commands sent by an interrogator
and generates appropriate responses. The bare bone function is to send the
Identity (ID) of the tag on request. The ID is stored in a Non Volatile Random
Access Memory (NVRAM). More complex devices include commands to read
and write data to and from this memory. The idea behind this thesis is to add
an ECC module to the digital circuit and extend the communications protocol
with cryptographic capabilities.

2.2 RFID is poised to supersede the barcode

RFID has two primary advantages compared to a barcode system. The first
stems from the radio based communication. With the exception of highly con-
trolled environments barcode scanning requires human intervention. RFID read-
ers, sometimes called interrogators, are not hampered by this limitation. Scan-
ning even hundreds of tags in fast succession is not an issue. Interrogators are
impeded by metal structures abundant in todays logistic centers however. This
is one reason why RFID technology has not yet completely permeated supply
chain management, but it is very likely that this is just a temporary problem.

The second advantage of RFID based item identification protocols is the
potential to label every object with its own unique ID. A barcode on the other
hand just identifies a product class, a certain type of soft drink for example.
The ID of an item in conjecture with a database system facilitates information
linkage. Apart from product specific details like the nutrition value of afore-
mentioned soft drink it is also possible to store the transaction history of the
beverage back to its bottling. As a consequence massive changes to todays logis-
tics database systems are necessary to take full advantage of RFID technology.
Another hampering factor that will vanish over time.

Both advantages in combination offer the potential to revolutionize stock
keeping. Reduced storage area and diminished losses due to avoidance of empty
shelfs in shops turn the application of RFID technology into hard cash. Other
benefits arise from the enhancement of basic identification capabilities with
advanced sensor systems. Cool chain monitoring, tire pressure surveillance or
constant building stress observation through sensors embedded in the concrete
are just some examples that spring to mind.

Returning to the simple item identification tags one should note that these
devices do not cease to exist when a product is put into a shopping cart. An
intelligent shopping card or a smart phone with an RFID reader function could

2.3 RFID PRIVACY ISSUES 6

automatically compare the contents of the cart with a preconceived shopping
list. At the check out all items are billed to an RFID enhanced credit card with
a minimum of human interaction.

Even this cursory survey of just a small subset of possible applications for
RFID technology reveals a very positive outlook for the future. This is also
supported by current sale projections for RFID tags, which anticipate that they
will proliferate into the billions within the next few years.

2.3 RFID privacy issues

As with every technology there is a distinct downside to the RFID concept.
Tags for supply chain and sales applications as mentioned above would adhere
to the EPC standard suite, whose development is controlled by the EPCglobal
Inc.. This corporation is a joint venture of the regulation bodies that are respon-
sible for the barcode supervision. The particular standards are understandably
optimized for automated reader tag interaction and a minimalistic tag function-
ality. The later limits tag fabrication costs, while the former is at the heart of
the whole RFID paradigm.

As is so often the case when security is involved, the goals ease of use and cost
minimization clash with at least one of the objectives of security engineering. In
this case the privacy requirements of the user. Two very real threats to privacy
arise from the fact that tags that comply to an EPC standard1, responds to
an RFID reader without user notification. These are clandestine tracking and
inventorying [Jue06].

Clandestine tracking As each tag carries an unique identifier and answers
freely to interrogators, tracking a subject carrying at least one tag becomes
exceedingly simple as long as the target is within range of a reader device.

Spy movie scenarios set aside, tracking customers might be interesting for
shops. An RFID enabled establishment that monitors shelf content for
stock keeping reasons, already has all the infrastructure in place. The
information, how much time a customer spends in front of a certain shelf,
is actually usable for marketing purposes. Furthermore, if a credit card is
used for payment in such a shop, it becomes possible to link the gathered
information to the name of the tracked subject.

This form of privacy attack might even work if each RFID tag of a target
is secured against tracking, but the collection of all tags in the vicinity of
a victim leaks some form of uniquely identifiable information.

Clandestine inventorying RFID technology serves to identify entities and
objects in particular. This necessitates a link between the information
an RFID tag transmits to an interrogator and the item it identifies. In
clandestine scanning this is used to profile a victim.

The information revealed thus could be perceived as harmless, and the
subject might very well reveal it freely on request like his shoe size and
which kind of clothing brands he prefers. Recalling the afore mentioned
example of an RFID enabled credit card and extending it with similarly

1Or any equivalent standard for that matter.

2.4 RFID BASED AUTHENTICATION 7

enhanced shop bonus cards the disclosed information becomes more criti-
cal. Other even more threatening scenarios can easily be devised.

Currently, RFID reader devices are still rare and also quite expensive, but
in all probability this situation will change in the future. Ambitions exist to
integrate Near Field Communication (NFC) capabilities into mobile phones.
The NFC communication standard is compatible with some of the more promi-
nent RFID communication standards. Thus, cheap RFID readers become easily
available to everyone, albeit in this case with a very limited range.

The RFID privacy challenge has and still is a very active field of research.
Numerous schemes have been devised over the past few years to protect the pri-
vacy of the user in an RFID permeated world. Solutions range from simple but
brutal tag kill commands to complex schemes using proxy devices and jamming.
Many of them rely on cryptographic primitives of varying complexity. Even a
brief overview of employed methodologies would go beyond the scope of this
introduction. For a detailed survey confer to [Jue06] and for recent research on
minimalist cryptography for RFID privacy see [LLM07].

2.4 RFID based authentication

Product counterfeiting becomes an increasing problem in todays brand driven
markets. There exists a veritable counterfeiting industry copying products of
all kinds. While its more amateur outgrowths like Adibas shoes and Naik bags
might be considered funny, its professional wing causes great financial harm. If
for example medicines are involved product piracy becomes outright dangerous.

Often counterfeits enter the regular distribution channels of genuine products
and are thereafter very difficult to differentiate from their genuine counterparts.
Automated means to secure these licit supply chains against pirated products
have the potential to permanently stop product forgeries.

This is where RFID comes into play. It provides automated identification
of items. It is already adopted in supply chains for this virtue. It seems to
practically lend itself to product authentication. There is one condition how-
ever. Businesses are ultimately profit driven. The cost of a measure to prevent
counterfeiting must be smaller than the losses incurred by product piracy.

It is important in this context to distinguish between identification and au-
thentication. The later is similar to the first but also provides corroborative
evidence to confirm the claimed ID. For more detailed information confer to
§3.4.

Sound cryptography based authentication protocols exist, but the area and
power budget constraints in an RFID environment complicate the implementa-
tion of hard cryptographic primitives. As a consequence the field of research
for alternative authentication schemes has flourished over the past few years.
New paradigms for product authentication that do not depend on cryptography
were introduced. Also many procedures using only lightweight cryptography,
cheaper in terms of die area an power consumption but less secure and often
only of academic interest, arose. For a current survey on the topic of RFID
product authentication techniques confer to [LSMF06].

In [LLMF07] Lehtonen et al. give an in-depth analysis of trust and security
in RFID-based product authentication systems. Among other points of inter-
est tag-cloning, the copying of RFID tags to bestow authenticity to counterfeit

2.4 RFID BASED AUTHENTICATION 8

products is revealed as the most probable point of attack on a supply chain. Au-
thentication schemes based on sound cryptography have the inherent advantage
of high tag cloning resistance.

Sound cryptographic primitives are pitted against very powerful attacker
models. According to [LLMF07] these models are only partially applicable in
an RFID enhanced supply chain with the emphasis that a real attacker would
be much more limited in his options.

Furthermore the assurance granted by authentication protocols based on
hard cryptography is not absolutely required. For a real application a certain
level of confidence that a product is genuine might be sufficient. This concept
is also formalized by Lehtonen et al. in [LLMF07]. Even the RFID inherent
property of item unique IDs already affords a certain protection against product
piracy and might be sufficient.

That does not disqualify cryptographic based authentication schemes. They
are still potentially the most secure variant and the intrinsic tag cloning resis-
tance is another point in their favor. Yet another advantage that is specific
to public key cryptography solutions is that they are relatively easy to deploy
and maintain, as little cooperation between different participants in the supply
chain is required.

Those alternate methods arose from a need to find a feasible substitute for
asymmetric cryptographic primitives. This just emphasizes the point that hard
cryptographic primitives have to become smaller and thus cheaper while at the
same time require less power.

Elliptic Curve Cryptography is the only public-key cryptosystem that has a
chance to fulfill these requirements. Its comparatively small key sizes and the
resulting minuscule chip area for hardware implementations makes it the ideal
candidate.

Chapter 3
A brief introduction to

cryptography

Cryptography is a vast and complex topic. This chapter only touches on the
issues necessary to follow the design decisions made herein. One of its intention
is to define what cryptography is and to explain where its applications lie.
Public-key cryptography needs to be addressed as to rationalize its employment
for digital signature generation which in turn is the tool of choice for entity
authentication the concept at the core of this work.

This chapter tries to give a short introduction about the subject of cryptog-
raphy in general in §3.1 and then briefly immerses the reader in the details of the
key-distribution problem (§3.2) and how public-key cryptography (§3.3) can be
applied to alleviate it. It continues to give a concise overview of authentication
and the use of challenge-response protocols in §3.4. Finally, Digital Signature
Algorithms (DSAs) and their applicability in challenge-response protocols is
discussed in §3.5.

3.1 Cryptography - Definition and goals

The Handbook of Applied Cryptography [MvOV01] defines cryptography as
the study of mathematical techniques related to aspects of information security
such as confidentiality, data integrity, entity authentication and data origin
authentication. It further stipulates that cryptography is not the only means of
providing information security, but rather a set of techniques.

Information security and cryptography are interwoven with antics of three
entities: Alice, Bob and Eve. It seems impossible to detail the concepts of
information security without these three and it would be a stark omission not
to mention them here.

Alice and Bob want to talk. They usually do so over an insecure communi-
cations channel and depending on the details of the scenario with optional high
background noise.

Specifically Alice and Bob want to

• talk in private, without being overheard

3.1 CRYPTOGRAPHY - DEFINITION AND GOALS 10

Figure 3.1: Alice, Bob and Eve

• be certain that what they hear is what the other said, and not garbled by
background noise

• know for sure that Alice is Alice and Bob is Bob and not someone else

• ascertain that what one hears originated with the other party and not
some hidden ventriloquist

Eve on the other hand wants to listen in, mutilate the content of the com-
munication between Alice and Bob, alternatively impersonate Alice or Bob and
intersperse bogus messages that the recipient beliefs have originated with the
authorized conversation partner.

Eve is very powerful and it is generally understood that she is has full access
to the communication channel used by Alice and Bob. Thus, she is capable to
perform the above mentioned malicious actions. The goal of cryptography is to
prevent Eve from doing so in spite of her facilities.

Although there has been some speculation on the nature of Alice, Bob and
Eve [Gor84], introducing them as entities was deliberate. In the following con-
siderations they represent actors in a communication scenario. This of course
encompasses flesh and blood people but also their virtual agents in todays in-
formation networks. Alice might be a human who wants to communicate with
Bob, but could as well be a smart card authenticating itself to an ATM or an
Email application sending a message. Alice et al. will consequently help to
provide descriptive examples for the aspects of information security.

3.1.1 Goals of Cryptography

Confidentiality concerns itself with the protection of data from eavesdropping
by illicit third parties. One way to achieve this is to use encryption. Alice

3.1 CRYPTOGRAPHY - DEFINITION AND GOALS 11

Figure 3.2: Bob challenges Alice

encrypts a message before she sends it to Bob. Even if Eve intercepts
the data, without knowledge on how to decrypt it will be impossible for
her to discover its contents. Bob on the other hand has this additional
knowledge and thus has access to the content of the message.

Data integrity tries to protect the content of messages against accidental or
unauthorized modification. Eve might not just be content with reading
messages passed between Alice and Bob, she could go a step further and
try to alter the data with malicious intend. Multiply Accumulate (MAC)
are the cryptographic tools of choice to achieve this goal.

Entity authentication has the goal to ascertain the identity of one party to
another. In information security it is important to differentiate between
identification and authentication. The difference is best explained by an
example:

Alice and Bob meet. If Alice claims to be Alice to Bob she identifies
herself. To authenticate herself to Bob she needs corroborating evidence.
In this example Alice could show adequate photo identification, issued by
a third party that Bob trusts.

The corresponding attack by Eve is impersonation, whereas Eve attempts
to persuade Alice or Bob that she is the respective other. The cryp-
tographic counter approach is to use challenge-response authentication
protocols. Confer to figure 3.2 for a simple illustration of the concept.

Data origin authentication ensures that a messages originates from the claim-
ant source. If Eve is not capable of impersonating an authorized commu-
nication party, she might be able to intersperse messages into the commu-
nication, that the recipient beliefs to have originated from a valid source.
Eve could send information to Bob claiming that it originated from Alice.
Cryptography applies a technique called keyed-hash functions to combat
this hazard.

3.2 THE KEY DISTRIBUTION PROBLEM 12

3.1.2 Kerckhoffs’ Principle

Kerckhoffs’ principle states that the security of a cryptosystem should depend
solely on the key that is used. Even if every detail of the system but the key is
public knowledge, it should still be secure [Ker83].

In contrast “security through obscurity” hides the intrinsics of a cryptosys-
tem. This is necessary because in this paradigm the security of the system is
linked to its inner workings.

The second concept offers a greater point of attack, as the whole system
has to be kept secret, which makes it more vulnerable. One example for the
catastrophic failure of this paradigm is the repeated leakage of the source code
of the Diebold electronic voting machines.

3.2 The key distribution problem

There exists several different types of cryptographic primitives to achieve the
goals described in §3.1.1. Unkeyed primitives, symmetric-key cryptography and
public-key cryptography are distinguished. Of these three only symmetric- and
public-key cryptography primitives are serious candidates for challenge-response
authentication. Unkeyed primitives are therefore not discussed herein.

3.2.1 Symmetric-key cryptography

The name symmetric-key cryptography derives from the fact, that in this cryp-
tographic approach the same key is used for all cryptographic operations. En-
and decryption is a good example. An encryption function Ek uses the secret
key k to encrypt a message m into the ciphertext c. The decryption function Dk

applies the same key to decrypt the ciphertext. Equation 3.1 further illustrates
this principle. The cryptographic primitive that performs these operations is
called a cipher.

c = Ek(m)
m = Dk(c)

(3.1)

The advantage of the symmetric technique is the efficiency of implementation
of its primitive operations. Feldhofer et al. [FW07a] compare different low power
hardware implementations of cryptographic primitives of all three families. Not
surprising the Advanced Encryption Standard (AES), the de-facto standard
symmetric-key cipher, proved to be the most efficient in terms of chip area
usage and power consumption.

3.2.2 The problem with symmetric-key cryptography

This poses the question why to use ECC, if symmetric-key cryptography seems
to be best suited for usage in an RFID application. The reason for this is the
so called key-distribution problem.

To be secure, the symmetric approach necessitates that every party partici-
pating in a cryptographic protocol needs a unique, authentic secret key for every
other participant. The problem is again best illustrated by an example.

Alice and Bob have a common friend Charlie. Alice wants to write Bob
a message and make sure that Charlie cannot read it, because it concerns his

3.2 THE KEY DISTRIBUTION PROBLEM 13

birthday present. Alice needs to have a shared key with Bob. The same is true
if Alice wanted to discuss Bob’s birthday present with Charlie. The subject
gets really interesting, when Alice, Bob and Charlie want to exchange messages
without Eve being able to eavesdrop. An extra group key could solve this
conundrum.

Two problems become immediately apparent.

1. How to exchange the keys in the first place?

2. What happens if there are not just three participants but thousands?

Figure 3.3: Symmetric-key cryptography key exchange

In the above example the solution is simple. Alice, Bob and Charlie know
each other and can meet face to face to exchange their keys. As they know
each other it is easy for them to visually authenticate their friends and they
can make sure that nobody eavesdrops the keys as they exchange them. The
keys are thus exchanged over an authentic and secure (against eavesdropping)
channel, cf. figure 3.3.

Todays applications are not that simple. What happens if Alice is a customer
and Bob is an Internet based shopping mall. In all probability thousands of
kilometers separate Alice and the office of ”Bob” and they have never met and
very probably never will. In this case it would not be possible to personally
exchange keys.

3.2.3 Trusted Third Partys

A Trusted Third Party (TTP) is a concept that helps to alleviate part of the
problem. A TTP is a trusted agent that handles key exchange on behalf of
clients, comparable to an escrow.

Charlie is a TTP to Alice and Bob. Alice hands the key for Bob over to Char-
lie using the key exchanged with Charlie to secure the communication. Charlie
in turn employs the secret agreed upon with Bob to impede eavesdropping and
authenticate himself, while he transmits Alices’ key to him.

3.3 PUBLIC-KEY CRYPTOGRAPHY 14

Thus, TTPs greatly facilitate the key exchange, but they do not solve the
underlying key-distribution problem. Only through the introduction of public-
key cryptography a practical solution becomes available.

3.3 Public-key cryptography

As ECC is a form of public-key or asymmetric cryptography and ECC is prop-
agated as a solution to the RFID tag authentication challenge it warrants more
than just the cursory explanations spared for the other cryptographic primitives.

Public-key cryptography utilizes not just one secret key, but a pair of keys.
They are distinguished as the public- and the private key. The public key can
and should be freely shared with all participants in an cryptographic protocol.
The private key must be kept secret as the security of the cryptosystem depends
solely on the private key.

Public-key cryptography primitives utilize trapdoor one-way functions. These
functions are easy to compute in one direction, but close to impossible to solve
in the other direction.

At this point the trapdoor part comes into play. It is intractable to compute
the inverse of such a function, unless an additional information, the trapdoor, is
known. In that case, the calculation of the inverse becomes reasonably simple.

Currently there are three prominent mathematical problems that serve as
foundation for trapdoor one-way functions employed by todays public-key cryp-
tosystems.

Integer Factorization Problem (IFP) is the mathematical base for RSA
public-key cryptography primitives. The IFP is defined in the following
way: Given an integer composite number, find the factors that multiplied
together again yield that integer. In case that the composite number is
large enough, there exists no algorithm that can solve the problem in a
reasonable time frame. It is computationally infeasible, unless of course a
sufficient number of factors is already known.

Discrete Logarithm Problem (DLP) supplies its hardness to the Diffie-
Hellman key agreement protocol as well to the ElGamal cryptographic op-
erations. Without going too deep into the number theoretic background,
the problem in brief is: Given an equation of the form y = gx mod p finding
x, when y, g and p are known.

Elliptic Curve Discrete Logarithm Problem (ECDLP) is a transforma-
tion of the DLP onto an elliptic curve. It is essential for the elliptic curve
en-/decryption schemes and more relevant to this work the elliptic curve
digital signature algorithm. The intrinsics of ECC will be detailed in
chapter §4.

For a more detailed and mathematical exhaustive specification of both the
IFP and DLP please refer to a cryptographic reference book like the Handbook
of Applied Cryptography [MvOV01].

3.4 PUBLIC-KEY CRYPTOGRAPHY 15

3.3.1 Asymmetric cryptography - An example

The concept of public-key cryptography is best illustrated by examining an
encryption/decryption process. Alice needs to send a message to Bob and she
wants to make sure that no third party is able to read it. She first acquires Bobs
public key PubB and uses it to encrypt her message m. The ciphertext c of the
encrypted message is sent to Bob. Bob in turn decrypts c with his private key
PrivB .

c = EPubB
(m)

m = DPrivB
(c)

(3.2)

Knowledge of the public key does not allow decryption of the message. Even
if c, E, PubB and m are known it should be infeasible to find PrivB, as it should
be intractable to compute m if an attacker is in possession of c, E and PubB.

3.3.2 Key distribution

The fact that every part of a public-key cryptosystem but the private key can be
made public, has a fundamental effect on key distribution. Unlike in symmetric
systems the total number of keys is restricted to the number of participants (n).
Table 3.1 compares the symmetric, symmetric with Trusted Third Party and
public-key cryptography approaches with respect to the total number of keys
(k) required.

Cryptographic system Number of required keys

Symmetric-key k = n·(n−1)
2

Symmetric-key with TTP k = n
Public-key k = n

Table 3.1: A comparison of the number of necessary keys in different cryptosystems

The second point of interest in conjecture with the key-distribution problem
is that asymmetric systems do not necessitate the use of a secure and authentic
channel to exchange keys. Authenticity is still imperative, but as the public key
is not secret it is not necessary to protect against eavesdropping. Figure 3.4
depicts the key exchange process for a public-key cryptosystem.

Providing authenticity to a key exchange is still a formidable challenge taken
up by so called Public-Key Infrastructures (PKIs). They use cryptographically
secured digital certificates to lend credibility to public keys distributed through
a network, most prominently the Internet. Discussing these issues warrants its
own chapter and is beyond the scope of this work. It is sufficient to note that,
public-key cryptography provides the best known solution to the key exchange
problem.

In an RFID supply chain scenario, where the number of participating parties
may be equal to the number of RFID tags involved, key management is a critical
issue. For this reason asymmetric cryptography is also the theoretical most
suitable facility for this field of application.

3.4 CHALLENGE-RESPONSE AUTHENTICATION 16

Figure 3.4: Key exchange in a public-key cryptosystem

3.4 Challenge-response authentication

So far no clear means how cryptography can help to proof the identity of an
entity have been established. This is partially due to the fact that confidentiality
provides more practical examples to illustrate cryptographic concepts. It is time
to remedy this omission.

As mentioned before the difference between identification and authentica-
tion lies in providing corroborative evidence. There are three paradigms how
authenticity can be assured. These are based on:

Something known. A person draws close to a door in a dimly lit back al-
ley and knocks. A small viewing window opens up, a pair of suspicious
eyes glares at the late night visitor and asks in a deep rumbling voice:
“Password?”.

This is an exaggerated example of password based authentication, but it
illustrates the point. This kind of authentication depends on the ability
to convince the authenticator that the subject knows a secret. This is
not quite the same as revealing the information. Cryptographic methods
belong to this class.

Something possessed. The prime example for this is a passport. The object
or person authenticating itself has an additional object to corroborate its
identity.

Something the claimant is. The idea behind this is that an entity has an
intrinsic property that uniquely identifies it and hopefully is not duplica-
ble. Biometric authentication methods fall into this category. For objects
or an object class it could be the specific resistance between two points
on its surface at a certain voltage.

The principle of challenge-response has already been outlined in figure 3.2. In
this case for an authentication process based upon something the authenticating

3.5 DIGITAL SIGNATURE ALGORITHMS 17

subject has. The same procedure can be translated to the “something known“
paradigm using cryptography.

The authenticator sends a message, the challenge, to the authenticating
entity. The receiver, the claimant, uses a cryptographic primitive to perform
an operation on the message and transmits the result the validating party. The
challenger then either performs the same operation on the original message and
compares the result to the received one, this works for shared secret systems, or
the received data is verified with the public part of a secret, in case of asymmetric
cryptography.

A simple challenge response protocol based on symmetric-key cryptography
works like demonstrated by equation 3.3. A and B consistently denominate
Alice and Bob respectively in all of the following examples. Ek is a symmetric
key encryption and Dk the corresponding decryption function.

A→ B : n
A← B : c = Ek(n)

A : Ek(n) = c?
(3.3)

Eve wants to attack the authentication. The goal is the impersonation of
Bob to Alice. The security of the above protocol greatly depends on the nature
of n. If n is the same in every protocol execution, in the face of Eve’s vast
capabilities (cf. §3.1), the procedure is insecure.

The encryption function Ek(n) will always yield the same result if n does
not change. Eve has the ability to eavesdrop on the communication between
the licit parties. Thus she can easily impersonate Bob by replaying his response
to Alice. This attack is called a replay attack. Protocols that are immune
against this scheme are termed strong authentication protocols, otherwise they
are called weak. The password based authentication that served as an example
for the “something known” paradigm belongs to the weak category.

The easiest way to secure the above protocol against this form of attack is
to let n be an integer number and to increment it every time it is used. It is
important that every n is used only once. Such a number is called a nonce1.

There exist other more complex forms of deception (cf. to [MvOV01]) and
the determination of the security of a protocol against them is a difficult and
error prone process. It is therefore advisable to employ proven standards that
have undergone rigorous examination by specialists.

3.5 Digital Signature Algorithms

Challenge-response authentication protocols that use public-key cryptosystems
are more complex then their symmetric counterparts and often rely on a cryp-
tographic primitive called digital signatures.

Signature algorithms allow to create a digital signature that does not only
depend on the private key of the signer, but also on the content of the message
signed. This linkage of signature and data distinguishes it from its real life
equivalent.

To create signatures for arbitrary length messages another cryptographic
primitive becomes necessary, the hash function (hash). Hash functions are a

1Possibly from number used once or number used only once.

3.5 DIGITAL SIGNATURE ALGORITHMS 18

subgroup of the aforementioned unkeyed primitives. There sole input is a data
stream of arbitrary length m. The input is mapped to a finite set of values.
Thus there are an infinite number of input message texts that map to the same
output value h.

It is a required property of a cryptographic hash functions that for any given
input text, it is computational infeasible to find a second message that generates
the same result h = hash(m1) = hash(m2). This is called collision resistance.

The use of public and private key is reversed for signature generation and
verification compared to en- and decryption. A signature generation algorithm
uses the private key of the signer to create the result, while the verifier uses the
corresponding public key to check the signature.

This is important, because only the knowledge of the private key enables
signature fabrication, which concords with Kerckhoffs’ principle and the advan-
tages of asymmetric cryptography with respect to key distribution hold.

3.5.1 The use of digital signature algorithms in challenge-
response protocols

Having introduced signature algorithms, the final ingredient to present public-
key based challenge-response protocols that can be used for entity authentication
is in place.

A variant of the Station-to-Station (STS) protocol witch is limited to entity
authentication will serve as an example for such a procedure. The ECDSA an
elliptic curve based DSA that is implemented by the processor presented in this
thesis will be discussed in the next chapter (§4.1).

The authentication only STS protocol [DvOW92] is a reasonably simple but
secure challenge-response protocol. It requires a random number generator G
which serves as nonce creator and a signature algorithm Sk, whereas k is the
public key of the signer. The | denominates the concatenation operator in this
context.

A→ B : x = GA()
A← B : y = GB(), s1 = SB(y|x)
A→ B : s2 = SA(x|y)

(3.4)

Alice generates a random number x and sends it to Bob. He in turn also
creates another nonce y and concatenates y and x. Next Bob computes the
signature of y|x and sends both y and s1 to Alice. She uses her private key to sign
x concatenated with y and transmits the result s2 to the other participant. Both
parties then use the public key of the other to verify the exchanged signatures. In
case the signature validation is successful, mutual authentication is established.
Bob is assured that he is communicating with Alice and vice versa.

The STS protocol guarantees strong authentication as the probability for
arriving at the same pair of nonces can be held reasonably small by making the
image set of the random number generator large enough.

RFID tag authentication only requires that the tag is capable to prove its
authenticity to the interrogator. If Alice represents the RFID reading device
and Bob the tag in equation 3.4 the protocol run could be aborted after “Bob“
sends his response to the RFID reader. This has the downside that the tag has
no guarantee that it talks with a legitimate interrogator, but on the upside it
removes the necessity for implementing the signature verification procedure on
the tag.

Chapter 4
Elliptic Curve Cryptography

ECC is a huge field and many different variants of cryptography based on Elliptic
Curves (ECs) exist. It does not provide a single best solution for all crypto-
graphic problems but a wide range of possibilities. This makes ECC highly
versatile as it allows customization of a variety of parameters to find an optimal
solution for a specific application.

The application outlined in chapter §1 is entity authentication for RFID tags.
In §3 it was ascertained that public-key cryptography based on ECC primitives
is an appropriate choice in this case. Next the ideal set of ECC parameters,
that allow the implementation of an integrated circuit with optimized die area
and minute power consumption, must be found.

It has already been determined in §3.5.1 that the interesting authentication
schemes depend on Digital Signature Algorithms. The most prominent ECC
based DSA is the ECDSA introduced in §4.1. Therein the basic ECC operation
the point multiplication is presented. This is the function the ECCon ASIC
designed in this thesis has to implement.

Section §4.2 finally introduces Elliptic Curves and reveals that more than
one possible curve to choose from exists. The structure of the curve has to be
adapted to the underlying field, thus the choice of curve goes hand in hand
with the selection of the underlying field. The efficiency of an ECC primitive
implementation is highly dependent on this decision made in §4.2.1.

Further discussion of EC arithmetic necessitates a brief review of finite fields
in general and of binary extension fields more specifically in §4.3. Finally, section
§4.4 defines an arithmetic for the chosen EC and details an adequate point
multiplication algorithm, which concludes this section.

A last remark: Many of the definitions and algorithms presented in this
chapter are either directly taken or adapted from Hankerson et al. [HMV04].
Their “Guide to Elliptic Curve Cryptography” is a comprehensive resource for
everything related to ECC and this part relies on it as a primary source of infor-
mation. References to this book will therefore not be cited explicitly throughout
this chapter, as this would only impede its readability. All other sources are
cited as needed.

4.1 THE ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM (ECDSA) 20

4.1 The Elliptic Curve Digital Signature Algo-

rithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a standardized
digital-signature creation and verification method. It has been widely adopted
into standards by several organizations including the IEEE, the NIST and the
ANSI. The FIPS-186-2 [Fed00] published by the NIST is a specific example.

The ECDSA procedures require an elliptic curve cryptographic primitive
and a collision resistant hash function H . The parameters P and n are the
base point, a special point on the elliptic curve and the order of that point,
respectively. Their exact meaning will be specified in detail later in this chapter.
The only ECC operation required for signature generation is the so called point
multiplication k · P in step 2 of algorithm 4.1. The point multiplication is
also denoted by the term scalar multiplication. Those two names are used
synonymously throughout this text. The parameter k is called the ephemeral
key.

Algorithm 4.1: ECDSA signature generation

Input: P , n, private key d, message m.
Output: Signature (r, s)
Select k ∈R [1, n− 1];1

Compute kP = (x1, y1) and convert x1 to an integer x1;2

Compute r = x1 modn;3

if r = 0 then4

Goto step 1;5

Compute e = H(m);6

Compute s = k−1(e + dr)modn;7

if s = 0 then8

Goto step 1;9

return (r, s);10

The validation procedure detailed in algorithm 4.2 requires an additional
parameter. The public key Q is a point on the elliptic curve and is defined as Q =
d ·P , where d is the private key. The verification is given for completeness sake
and to detail how and why signature evaluation works. It has no real relevance in
an RFID tag authentication scenario which does not require signature validation
on the tag side.

The reason why algorithm 4.2 works is, that given a genuine signature s =
k1(e + dr)modn, rearranging of this formula gives

s = k−1(e + dr)modn
k ≡ s−1e + e−1r
k ≡ we + wrd
k ≡ u1 + u2dmodn

(4.1)

and multiplying the last line with P yields equation 4.2.

kP = (u1 + u2d)P = u1P + u2Q = X (4.2)

4.2 DEFINITION OF AN ELLIPTIC CURVE 21

Algorithm 4.2: ECDSA signature verification

Input: ECC domain parameters, public key Q, message m, signature
(r, s).

Output: Signature validity: accept or reject
if r, s /∈ [1, n− 1] then1

return reject ;2

Compute e = H(m);3

Compute w = s−1 modn;4

Compute u1 = ew modn and u2 = rw modn;5

Compute X = u1P + u2Q;6

if X =∞ then7

return reject ;8

Convert the x-coordinate x1 of X to an integer x1; compute v = x1 modn;9

if v = r then10

return accept11

else12

return reject13

Thus v = r, if s was generated by the legitimate signer.
Under certain conditions, depending on the security of the hash function

and the underlying elliptic curve, as well as the randomness of the parameter
k the ECDSA is so far assumed to be secure. This and its standardized nature
make it an suitable candidate for use in an authentication protocol similar to
STS introduced in §3.5.1.

4.2 Definition of an elliptic curve

Elliptic curves have been a field of interest for mathematicians for more than a
hundred years. In 1985 their use for cryptography was independently suggested
by Neal Koblitz and Victor Miller. ECC and with that the ECDSA draws its
hardness from the Elliptic Curve Discrete Logarithm Problem (ECDLP). The
ECDLP primarily relies on the non-invertibility of the point multiplication. To
fully understand the ECDLP it is first necessary to introduce elliptic curves and
then define an arithmetic on them.

Definition 4.1 An elliptic curve E over a field K is defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 | a1, a2, a3, a4, a6 ∈ K (4.3)

and ∆ 6= 0, where ∆ is the discriminant of E and is defined as follows:

∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4























(4.4)

If L is any extension field of K, then the set of L-rational points on E is

E(L) = {(x, y) ∈ L×L : y2+a1xy+a3y−x3−a2x
2−a4x−a6 = 0}∪{∞} (4.5)

4.3 DEFINITION OF AN ELLIPTIC CURVE 22

where ∞ is the point at infinity.

Equation 4.3 is called a Weierstrass equation and E is defined over K (E|K)
because the coefficients a1, a2, a3, a4 and a6 of E are elements of the underlying
field K. The condition ∆ 6= 0 is responsible for ensuring that there exists no
points where the curve has more than one tangent line. The L-rational points
are all points (x, y)|x , y ∈ L that satisfy equation 4.3 E.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

y

x

Figure 4.1: Elliptic curve E : y2 = x3
− x over R

4.2.1 Simplification and curve selection

It is possible to greatly simplify the Weierstrass equation using a so called
admissible change of variables. The curve of interest for this thesis is the non-
supersingular curve defined by equation 4.6 derived from equation 4.3 using the
admissible change of variables given by equation 4.7.

y2 + xy = x3 + ax2 + b (4.6)

(x, y)→

(

a2
1x +

a3

a1
, a3

1y +
a2
1a4 + a2

3

a3
1

)

(4.7)

Singling out this curve is necessary because there are several valid choices
of elliptic curves for cryptographic purposes. The structure of the curve is
depending on the underlying field. Equation 4.6 defines a variant where the
field K has a characteristic of 2. This makes this curve equation suitable for
use with a binary extension field.

Binary extension fields have the great advantage that arithmetics based on
them can be implemented very efficiently in hardware. As this work targets
RFID applications where fierce restrictions with respect to area usage and power
consumption apply, this choice becomes natural.

4.3 BINARY EXTENSION FIELDS 23

4.3 Binary extension fields

Binary extension fields henceforth also called binary fields, are one of the three
most prominent valid choices for cryptographic purposes. The other two are
prime fields and optimal extension fields. All three are finite fields.

Before binary fields are discussed in greater detail, an introduction of a math-
ematical field is in order. The basic building block of a field is the mathematical
group. In this case the Abelian group laws are required.

4.3.1 Abelian group

Definition 4.2 An Abelian group (G, *) consists of a set G with a binary
operation *: G×G→ G satisfying the following properties:

(i) (Associativity) a ∗ (b ∗ c) = (a ∗ b) ∗ c, ∀ a, b, c ∈ G.

(ii) (Existence of an identity) ∃ e, e ∈ G| a ∗ e = e ∗ a = a, ∀ a ∈ G.

(iii) (Existence of inverses) ∀ a ∈ G, ∃ b ∈ G| a ∗ b = b ∗ a = e. The element b
is called the inverse of a.

(iv) (Commutativity) a ∗ b = b ∗ a, ∀ a, b ∈ G.

In layman terms, an Abelian group is nothing else but the definition of an
operation and its inverse on a set of numbers F. An identity element is also part
of the specification. One such operation, that is widely know is the addition. In
this case the identity element is zero, as a + 0 = a and the inverse serves as a
base to define the subtraction: a− a = a + (−a) = 0 and a− b = a + (−b). In
mathematical notation (F, +) forms an Abelian group with the identity element
denoted by zero.

4.3.2 Finite fields in general

A field in general is an abstract algebraic structure that provides certain opera-
tions on a set of numbers. The most familiar ones are the rational numbers Q,
the real numbers R and the complex numbers C. The set of operations consists
of addition, subtraction, multiplication and division.

Definition 4.3 A field F consists of a set F with two binary operations
+,*: F× F→ F that satisfy the following arithmetic properties:

(i) (F, +) is an Abelian group with the (additive) identity denominated 0.

(ii) (F \ {0}, ·) is an Abelian group with the (multiplicative) identity 1.

(iii) The distributive law holds: (a + b) · c = a · c + b · c, ∀ a, b, c ∈ F

If the set of numbers F is finite, then the field is said to be finite.

As subtraction is the inverse operation to addition the same is true for the
division being the inverse to the multiplication. The division is again defined
using the inverse element of the multiplication: a/a = a∗a−1 = 1 and it follows
that a/b = a ∗ b−1.

4.3 BINARY EXTENSION FIELDS 24

The order of a finite field is the number of elements in it. There exists a
finite Field F of order q if and only if q is a prime power (q = pm, m ≥ 1),
where p is prime. The prime p is called the characteristic of F. Finite fields are
usually denoted by Fp (prime fields) or F2m (binary fields) to distinguish their
nature. Alternatively, finite fields are also known as Galois Fields and therefore
the representations GF (p) or GF (2m) are frequently used.

4.3.3 Generators

A generator g is an element of a finite field Fq that can create all other elements
in the field, hence the name, through exponentiation gi, i ∈ {0, . . . , q−2}. This
is due to the fact that the nonzero elements form a cyclic group under the
multiplication (F∗

q).

4.3.4 Prime fields

In case Fq=p1 the field is called a prime field. Prime fields are best explained
using modular arithmetic. They facilitate the understanding of binary extension
fields and prime field arithmetic is also a prerequisite for the ECDSA signature
generation, which warrants a brief deliberation of them.

A prime field Fp is defined by the prime p, which is called the modulus of
the field. The set of numbers in Fp is limited to {0, 1, . . . , p− 1}. All operations
in such a field are performed modulo p: (mod p). If a number is greater than p
it is still in F, but not in its basic representation. To obtain that, the number
n is divided by p. The remainder of the operation r is the base representation
and the operation n mod p = r is called modular reduction.

For a quick example consider the prime field F3. The addition of two plus
two equals four which is congruent to 1 in F3. Addition, subtraction and multi-
plication work pretty much the same as in R, apart from the reduction. Division
in a prime field on the other hand is surprisingly different. Consider the follow-
ing: 1 ≡ 2/2 ≡ 2 · 2−1 ≡ 2 ∗ 2 mod 3. Two is its own multiplicative inverse in
F3.

4.3.5 Binary extension fields in detail

If a field has the characteristic 2 and m ≥ 2 it is a called a binary extension field
(F2m). Binary fields can be constructed using different basis representations,
where the polynomial basis representation is perhaps the most intuitive one1.
In this representation, elements of F2mare binary polynomials.

Definition 4.4 A binary polynomial is a polynomial of the form

F2m = {am−1z
m−1 + am−2z

m−2 + . . . + a1z
1 + a0 : ai ∈ {0, 1}}

where the coefficients are elements of the prime field F2. The degree of the
polynomial is at most m− 1.

An equivalent to the modulus of prime fields is necessary to define the base
representation of polynomials in F2m . This is the irreducible binary polynomial
f(z) of degree m. Irreducible polynomials derive their name from the fact, that

1
F2m is interpretable as a vector space

4.4 ECC ARITHMETIC 25

they cannot be factored as a product of binary polynomials each of a degree less
than m. Finding one efficiently is reasonably simple and they exist for every m.

To find the base representation for a binary polynomial a(z) whose degree
exceeds m, it is necessary to perform the polynomial long division of a(z) by
f(z). The residue r(z) is the reduced result. Again this operation is called
reduction, only this time modulo f(z).

Binary field arithmetic for polynomial basis representations is similar to the
one for polynomials in R, except that the coefficient arithmetic is done modulo
2. The implication of this is that addition is the same as performing an XOR
(⊕) operation on coefficients of identical degree. As a consequence addition and
subtraction are the same operation. Multiplication in contrast to addition can
lead to polynomials with a degree equal to or greater than m. Such polynomials
necessitate a modular reduction.

Consider the following examples for arithmetic in F23 with a irreducible
polynomial f(z) = z3 + z + 1.

Addition : (z2 + z) + (z + 1) ≡ (z2 + 1)mod f(z)

Multiplication : (z2) · (z2) ≡ z4 mod z3 + z + 1 ≡ z2 + z mod f(z)

Inversion : (z2 + z + 1) · z2 ≡ z4 + z3 + z2 mod z3 + z + 1 ≡ 1 mod f(z)

4.4 ECC arithmetic

To be able to perform the point multiplication on an elliptic curve it is first
necessary to define an arithmetic on it. It is well known that a multiplication
can be represented by a succession of additions (3 · 7 = 7 + 7 + 7).

Translating this to a point multiplication it becomes apparent that an op-
eration to add one point on the EC to itself is required. Many advanced point
multiplication algorithms also necessitate the ability to add two different points.
Those two functions are termed point addition and point doubling.

There exists a chord-and-tangent rule for closed addition of two points on
an EC and together with the set of points F2m , E(F2m) forms an Abelian group
with respect to addition. The point at infinity serves as identity element.

Both point addition and point doubling are best discussed in geometric con-
text. The following observations are only valid on an EC defined over R, but
they illustrate the idea behind the operations. To add two points P and Q to
yield a third point on the curve R a line is drawn through P and Q. This line
will intersect the elliptic curve in a third point. R the sum of P and Q is the
reflection of that point about the x-axis. Figure 4.2 details the procedure.

The doubling of a point P is done by creating a tangent in this point. The
tangent line will intersect the elliptic curve in yet another point. The point
R = P + P is again the reflection of the intersection point about the x-axis.
This is illustrated in figure 4.3.

4.4.1 Group law

Definition 4.5 The elliptic curve E/F2m : y2 + xy = x3 + ax2 + b forms
an Abelian group with respect to the two operations point addition and point
doubling, which has the following properties:

4.4 ECC ARITHMETIC 26

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

y

x

Q

R

P

Figure 4.2: Point addition: R=P+Q

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

y

x

R

P

Figure 4.3: Point doubling: R=P+P

4.4 ECC ARITHMETIC 27

(i) Identity: P +∞ =∞+ P = P, ∀P ∈ E(F2m)

(ii) Negatives: If P = (x, y) ∈ E(F2m), then (x, y)+(x, x+y) =∞. The point
(x, x + y) is denoted by −P and is called the negative of P; note that −P
is indeed a point in E(F2m). Also −∞ =∞.

(iii) Point addition: Let P = (x1, y1) ∈ E(F2m) and Q = (x2, y2) ∈ E(F2m),
where P 6= ±Q. Then P + Q = (x3, y3), where

x3 = λ2 + λ + x1 + x2 + a and y3 = λ(x1 + x3) + x3 + y1

with

λ =
(y1 + y2)

(x1 + x2)

(iv) Point doubling: Let P = (x1, x2) ∈ E(F2m), where P 6= −P . Then
2P = (x3, y3), where

x3 = λ2 + λ + a = x2
1 +

b

x2
1

and y3 = x2
1 + λx3 + x3

with

λ =
x1 + y1

x1

Point addition and point doubling are performed as a sequence of operations in
a finite field, in this case a binary extension field F2m .

4.4.2 Projective coordinates

The two-coordinate representation (x, y) of points in E(F2m) used so far is
termed affine point representation. It is possible to transform the set of affine
points A(K) = (x, y) : x, y ∈ F2m with the help of an equivalence relation into
the set of projective points P(K)∗ = (X : Y : Z) : X, Y, Z ∈ F2m , Z 6= 0

This is a desirable property, because of the inversions necessary to perform
the divisions in the point operations. As will become clear later, inversions
in F2mare very time consuming in comparison to the other field operations.
There exists coordinate representations that have the advantage of minimizing
the number of inversions in F2m in exchange for an increase of additions and
multiplications. The total of the time consumed for the additional operations
might be less, than the time needed for the affine variant with its higher number
of inversions.

The projective equation for the elliptic curve y2 + xy = x3 + ax2 + b for
standard projective coordinates (The projective point (X : Y : Z), Z 6= 0,
corresponds to the affine point (X/Z, Y/Z).) has the form:

Y 2Z + XY Z = X3 + aX2Z + bZ3

The point at infinity ∞ corresponds to (0 : 1 : 0), while the negative of
(X : Y : Z) is (X : X + Y : Z).

4.4 ECC ARITHMETIC 28

4.4.3 Point multiplication

The point multiplication Q = kP of a point P with a scalar k, is the only elliptic
curve operation in the ECDSA signature generation algorithm. It is also the
most time consuming and complex computation in the whole procedure. This
is also true for other EC based cryptographic primitives like the Elliptic Curve
Integrated Encryption Scheme (ECIES).

Optimization of this operation is therefore absolutely imperative. As a result
thorough research in the field of scalar multiplications was and still is conducted.
This has led to a variety of algorithms. They can be categorized into methods
that work for an arbitrary P and others that depend on a fixed point. Further-
more, some procedures facilitate precomputation of values, which necessitates
additional memory resources, in exchange for greater execution speed.

Memory is one of the main contributing factors to cost of hardware ECC
implementations and therefore a scheme that requires precomputation is beyond
question. The point P , sometimes called the base point is a fixed domain param-
eter in the ECDSA signature creation algorithm, so a fixed point method would
be appropriate for this application. Due to the fact that most require precom-
putation to provide any advantage at all, they can just as easily be dismissed
again.

Montgomery point ladder

The candidate point multiplication algorithm that was chosen for this master
thesis is called Montgomery’s method or alternatively Montgomery point ladder.
The procedure works for arbitrary scalars and base points, does not depend
on any precomputations in its basic form and despite of that compares very
favorable in the performance sector.

It also has a second advantage that makes it the ideal choice for this work.
Due to the structure of the algorithm it is inherently immune against Simple
Power Analysis (SPA) and timing based side channel attacks.

A side channel attack tries to find the private key used in an cryptosystem,
not by tackling the cryptography itself but the implementation. A side channel
is an extra source of information like the execution time of an algorithm or
the power consumption of the underlying hardware. Side channel attacks are
discussed in detail in section §8.8.

The basic structure of this particular scalar multiplication procedure is illus-
trated by algorithm 4.3. The so called binary method is the ECC equivalent of
the square and multiply algorithm for exponentiation. The algorithm works by
analyzing the binary string representation of the ephemeral key k denoted by
(kl−1, kl−2, . . . , k1, k0)2, where the index l − 1 identifies the first highest order
bit of (k)2 which is not zero.

It is based on an observation by Montgomery, that if P1 = (x1, y1) and P2 =
(x2, y2) denote two point in E(F2m), where P1 6= P2 and P3 = P1+P2 = (x3, y3)
and P4 = P1 − P2 = (x4, y4), that facilitating the laws defined in §4.4.1 it can
be shown that

x3 = x4 +
x2

x1 + x2
+

(

x2

x1 + x2

)2

.

This allows the computation of x3 from x1, x2 and x4. In conjecture with

4.4 ECC ARITHMETIC 29

Algorithm 4.3: Point multiplication, binary method

Input: An integer k = (kl−1, kl−2, . . . , k1, k0)2, where kl−1 = 1 and a
point P

Output: Q = kP
Set P1 ← P, P2 ← 2P ;1

for i = l − 2 downto 0 do2

if ki = 1 then3

Set P1 ← P1 + P2, P2 ← 2P2;4

else5

Set P2 ← P2 + P1, P1 ← 2P1;6

return (Q = P1);7

the y-coordinate recovery formula

y1 = x−1(x1 + x)[(x1 + x)(x2 + x) + x2 + y] + y

it is possible to derive Q = (xq , yq) = kP without need to store or compute a
y-coordinate until the end of the algorithm. ECDSA signature generation does
not even require the yq-coordinate, so its restoration is not necessary.

Montgomery’s method works by sustaining the loop invariant P2 − P1 = P .
Maintaining the invariant is important because P4 = P2 − P1 = P ⇒ x4 = x.
Also in every step only the x-coordinate of kiP , where i is the integer represented
by the i leftmost bits of k, is computed.

An efficient version of the Montgomery point ladder for F2m is due to López
and Dahab [LD99]. They provide both an affine and a projective variant of
their algorithm. As inversions are very expensive on the target hardware, the
projective version was chosen and is presented by algorithm 4.4.

The first step of the scalar multiplication algorithm is to check for specific in-
put constellations (zero input) that terminate the execution immediately. Next
the two start points P1 = P and P2 = 2P are initialized. Only the x-coordinates
of the P1 and P2 are necessary and stored in standard projective form X1/Z1

and X2/Z2.
The main body of the procedure then performs the double and add algo-

rithm, only ever computing the x-coordinate of the points involved. After the
output of the main loop is tested for certain exit conditions (division by zero),
the projective x-coordinate is transformed into an affine result and returned.

The functions Madd (algorithm 4.5) and Mdouble (algorithm 4.6) are respon-
sible for the computation of the point addition and point doubling operations
respectively. They expect the input in projective coordinates and deliver the
output likewise in projective coordinates. output. The doubling procedure is
sped up using a precomputed value c, which is derived from the EC domain
parameter b. As b is a parameter of the EC, it does link the implementation to
a certain EC, but k and P can still be chosen arbitrarily.

Algorithm 4.5 requires four multiplications, two additions and one squaring
operation in F2m , as well as one temporary variable T1. The point doubling
procedure needs only two multiplications, four squaring runs and one addition.
It too necessitates one temporary variable.

4.4 ECC ARITHMETIC 30

Algorithm 4.4: Projective Montgomery point ladder

Input: An integer k = (kl−1, kl−2, . . . , k1, k0)2, where kl−1 = 1 and a
point P = (x, y) ∈ E(F2m)

Output: xq, Q = (xq, yq) = kP
if k = 0 or x = 0 then1

return xq = 02

Set X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2;3

for i = l − 2 downto 0 do4

if ki = 1 then5

Madd(X1, Z1, X2, Z2), Mdouble(X2, Z2);6

else7

Madd(X2, Z2, X1, Z1), Mdouble(X1, Z1);8

if Z1 = 0 then9

return xq = 0;10

if Z2 = 0 then11

return xq = x;12

Z2 = Z−1
1 ;13

X1 = X1 · Z2;14

return xq = X1;15

The whole point multiplication has a runtime of approximately

6blog2(k)cM + (1I + 1M).

M denotes a multiplication and I an inversion. One can see that only one
inversion is required.

Additions and square operations require only a fraction of the runtime of a
multiplication. It is therefore save to disregard them for a first order approxi-
mation runtime analysis.

In case of a fixed curve and a fixed base point but a random k, the algo-
rithm needs exactly 6 variables (k, X1, X2, Z1, Z2 and T1), and four constants
(b, x, y and c). An optimized affine version of algorithm 4.4 requires one variable

Algorithm 4.5: Madd (Point addition algorithm)

Input: The x-coordinate of P (x) and the x-coordinates X1/Z1 and
X2/Z2 for the points P1, P2 ∈ E(F2m)

Output: The x-coordinate X1/Z1 for the point P1 + P2

X1 = X1 · Z2;1

Z1 = Z1 ·X2;2

T1 = X1 · Z1;3

Z1 = Z1 + X1;4

Z1 = Z2
1 ;5

X1 = Z1 · x;6

X1 = X1 + T1;7

return X1/Z1;8

4.4 ECC ARITHMETIC 31

Algorithm 4.6: Mdouble (Point doubling algorithm)

Input: The x-coordinate X/Z of point P and c = b2m−1

⇒ c2 = b
Output: The x-coordinate X/Z for the point 2P
X = X2;1

Z = Z2;2

T1 = Z · c;3

Z = Z ·X ;4

T1 = T 2
1 ;5

X = X2;6

X = X + T1;7

return X/Z;8

less, but it requires 10 times as much execution time on the target hardware.

Chapter 5
The ISO-18000-3-1 standard

Several RFID standards were mentioned in the introduction, but so far no indi-
cation as to which of them is implemented by the RFID tag front-end of the cir-
cuit designed in this work. Amongst the multitude of possible choices the EPC
class 1 gen 2 [EPC05] and the ISO-18000-3-1 [ISO04] standard are the two most
likely candidates to provide a viable solution for supply chain management. Be-
cause of the availability of ISO-18000-3-1 compatible Field Programmable Gate
Array (FPGA) based test hardware this standard was chosen.

The ISO-18000-3-1 standard document specifies the physical layer and the
communications protocol that a compatible tag has to support. The physical
layer is implemented by the test hardware(analog front-end) in conjecture with
a third party module (digital front-end) available for this project.

5.1 Physical layer

The physical layer is still relevant to this work, because of its implications for the
architecture of the circuit and the impact it has on the communication protocol.

The operating frequency of the carrier field fc is 13.56 MHz. The clock for
the digital part of the RFID chip derived from this base frequency. That implies
that it is easy to create clock signals with a frequency that is an integer fraction
of 13.56 (fclock = fc

i
, i ∈ N).

Tag to interrogator communication uses the load modulation technique to
transfer information. Load modulation denotes the controlled inclusion of a
specific load into the receiver circuit of the RFID tag, that is also responsible
for powering the unit. Interrogators are capable of detecting these minimal
changes in the inductive coupling area between reader and tag. Load modulation
is a passive method, the tag does not emit its own field, which would require
comparatively excessive amounts of power. That is a clear advantage in this
context.

There is also a distinct downside to this scheme, that occurs if these simple
RFID tags are enhanced with additional functionality. The RFID device draws
the power required to supply it from the EM field. Thus nominal operation of
the tag already loads the field. This is not a problem in itself, as the threshold

5.3 INTERROGATOR-TAG COMMUNICATION 33

the reader reacts to is beyond the variabilities induced by the digital circuit of
a pure identification tag.

Problems arise for more complex devices that are complemented with mod-
ules for let’s say ECC to give a concrete example. The current needed to power
an ISO-18000-3-1 protocol controller is diminutive in comparison to that of an
ECC unit. If said extension has great differences in its power consumption
profile, due to activation and deactivation of larger functional blocks, this can
produce changes in the field load that are actually interpreted as attempts at
communication by the interrogator.

One property of the load modulation communication scheme of the ISO-
18000-3-1 protocol is, that if more than one party tries to load the field with
two different values at the same time, the collision this causes on the carrier is
detectable by the RFID reader. The communication protocol capitalizes on this
fact to distinguish all units currently in the vicinity of the reader.

The operating distance of this protocol is limited to approximately 1.5 me-
ters. This constraint arises from the problem of powering the passive devices
and not from the communication range. The data rates specified by the ISO-
18000-3-1 standard are between 1.65 kbits/s up to 26,69 kbits/s. The EM-field
strength is limited due to internationally varying regulations on acceptable EM
emissions.

5.2 Interrogator-tag communication

The nature of the communication protocol defined by the ISO-18000-3-1 spec-
ification is understandably simple. The communication is always initiated by
the reader device. It sends a command to the tag. Depending on the type of
the message the tag may have to reply. This is called an Interrogator Talks
First (ITF) scheme.

The standard defines a set of instructions or commands that fall into two
categories: Mandatory and optional. There are only two mandatory commands
that a compliant unit has to support. Both are connected to the primary func-
tion of RFID tags, the identification of entities.

The exchanged messages are structured into a logical block called frame. A
frame consists of several fields containing information like the type of command
or flags. The protocol itself is bit oriented, but every field is an integer multiple
of one byte.

The reader device can either broadcast commands to all tags or select a
specific recipient in the addressed mode, where the Unique Identity (UID) of
the intended target is appended to the request. In this case only that tag will
react to the command.

5.3 Anti-collision sequence

The first mandatory instruction is the inventory command. The primary pur-
pose of RFID technology is the rapid automated identification of entities. The
task of an interrogator is to correctly detect all RFID tags in its vicinity, each
of which has a 64-bit number uniquely identifying it (UID).

5.4 OPTIONAL COMMANDS 34

This poses an interesting problem. How to correctly identifiy all units in
the EM field, without prior knowledge about their numbers and which IDs to
expect. A protocol that sequentially queries all 264 possible UIDs is clearly out
of question, considering the available data rates.

The solution provided by the ISO-18000-3-1 standard is termed anti-collision
sequence. As mentioned before the interrogator is capable of detecting a colli-
sion on the carrier field if two or more passive device try to respond to at the
same time. The granularity of the detection is fine enough to identify at which
transmitted bit the collision occurred.

To start the process the RFID reader sends out an inventory command.
All tags in range will answer at exactly the same time ± a small acceptable
variation. The responses contain the 64-bit UID of the tags. If at least two tags
react, a collision is ensured, due to the fact that the IDs are unique and have
to differ at least in one bit.

The reader notes the first occurrence and starts the second round of the
scheme by transmitting a special version of the inventory message. It contains
the UID up to and including the bit that caused the collision, setting it either
to one or zero. Only tags that have an ID that begins with the received bit
sequence will respond to that request.

At this time all UIDs are dividable into two categories. Those which have
a zero at the point of collision and those which are fixed to a one. The same
is true for all the following collision occurrences. This is evocative of a binary
decision tree. At every node of the tree (point of collision) the reader selects one
of the two branches and recursively continues to do so until the UID of a tag
becomes distinguishable. It then retraces back to the last node and performs
the same procedure for the other branch. This is repeated until all tag IDs are
identified.

The standard propagates two different variants of the anti-collision scheme.
So far, the simpler one of them has been explained. The second form partitions
all tags by the first four bits of their UID into 16 different response time slots.
The anti-collision is performed normally on each slot.

The second mandatory function is the stay quiet instruction. This request
is always addressed at a certain recipient device. The targeted RFID tag will
not responed to inventory requests any more.

5.4 Optional commands

The ISO-18000-3-1 standard defines a range of optional commands. While most
of them are of no concern to this work, two of them facilitate the transfer of
arbitrary data blocks between interrogator and tag and vice versa.

Read single block transfers a block of data from the memory of the RFID
tag to the reader. Utilizing this instruction the interrogator requests the
results of cryptographic operations computed by the ECC processor.

Write single block The opposite of the read single block request. It stores a
data value into the memory of the passive device. For the ECC enabled tag
presented herein, this command allows amongst other things, to specify a
certain k for the point multiplication.

5.5 CUSTOM ECC COMMANDS 35

A second group of optional functions that was adopted by this implemen-
tation allows to select a specific tag. The select instruction is an addressed
command that puts the recipient into the selected mode. The interrogator can
then use the Select flag to talk to that specific device, without the necessity to
append the address to every request.

The corresponding counter-command is called reset to ready. This is another
addressed instruction that resets a target from either quiet or selected state back
to the normal mode of operation: The ready state.

5.5 Custom ECC commands

The final set of instructions concerns the addition of cryptographic capabilities
to the RFID functionality. The ISO-18000-3-1 standard reserves a certain part
of the valid command identifiers for manufacturer dependent and independent
extensions. The following three instructions are implemented as manufacturer
dependent extensions.

ECC reset is responsible for initializing the Random Access Memory (RAM)
of the ECC processor with the start values for the scalar multiplication.

ECC k × P actually performs the point multiplication.

ECC sign performs a limited version of the ECDSA signature creation algo-
rithm. A fully standard compliant variant is not possible, due to a lack of
certain required hardware components, the design of which was not part
of this thesis.

Chapter 6
Architecture

After the discussion of cryptography in general and Elliptic Curve Cryptography
in particular and the choice of the ISO-18000-3-1 standard for the RFID front-
end, it is time to select an appropriate architecture for the ECCon circuit
designed as part of this thesis.

As a prerequisite for understanding the topics treated by this chapter, basic
knowledge of digital hardware design concepts is fundamental and it is assumed
that the reader is familiar with ideas like single-edge-triggered one-phase clock-
ing (synchronous hardware), gates, registers, datapath and control flow.

The chapter starts out by formulating the requirements an RFID application
necessitates in §6.1. Next, §6.2 introduces the high level architecture of the
ECConprocessor. In §6.3, the architecture of the RFID front-end is briefly
discussed. The ECC processor the central piece of this work is deliberated in
detail in §6.4.

In section §6.4.1 the intended structure of the unit and the design decisions
that led to it are considered at great length because of their fundamental impor-
tance. Specifically, a standard compliant elliptic curve is selected, the bit-width
of the datapath is decided upon and the nature of the arithmetic core and the
structure and size of the memory are fixed.

The chapter concludes with a discussion of the control unit and the interface
of the ECC processor in §6.4.3 and §6.4.4, respectively.

6.1 Prerequisites for a circuit in a RFID appli-
cation

Prior to a detailed discussion on the architectures of the components of the
ECCon processor, it is necessary to review the limiting factors of Integrated
Circuits (ICs) for RFID applications.

An RFID tag is a tightly constrained environment. On the one hand they
have to be as cheap as possible. A substantial amount of the expenses is due to
the area of the digital part of the IC at the heart of every passive RFID device.
The first directive for the design of any component in this context is to minimize
its area.

6.2 ECCON 37

On the other hand the second important factor is the power budget of the
tag. According to [FW07a], the available current supply is restricted to 15µA.
This allows a peak power consumption of approximately 27µW at 1.8V . It is
illusive to believe that goal is achievable with the process used for the ASIC
developed by this thesis, but it emphasizes the importance of a power aware
design.

The last prerequisite is a constant power consumption. As mentioned in
the discussion of the ISO-18000-3-1 physical layer (§5.1), abrupt changes in the
supply current may lead to an erroneous transmission of data.

This has a profound effect on the power savings strategy that must be ap-
plied. Traditionally, the goal of power aware design is to reduce the consumption
to a minimum. If any component is not necessary for a certain amount of time,
it is virtually switched off. The reason for this is that applications that use that
scheme usually depend on a battery.

A battery is limited reservoir of energy. Once it is depleted it must be
exchanged. Therefore, the drain on it at any given time must be minimal to
increase its lifetime. The de- and reactivation of components this implies is a
problem in the given context.

Passive RFID devices are powered by an EM field created by an RFID reader
and for this consideration, it is assumed that the reader has an unlimited power
supply. The current available to the tag might be diminutive to say the least,
but its supply is inexhaustible for all intents and purposes.

The best applicable low power design strategy is therefore to minimize the
current drain of the circuit, such that it does not exceed the power budget and
to keep all of its components constantly active.

6.2 ECCon

ECCon the IC designed in this master thesis is subdivided into several mod-
ules. These modules are the analog front-end, the RFID Asynchronous Receiver
Transmitter (RART), the RCU that implements the communication protocol
and governs the forth part, the ECC processor. The exact top level architecture
is depicted in figure 6.1

The analog front-end is connected to the antenna and manages data modu-
lation and demodulation, clock generation and power supply. The structure of
this interface, although an interesting topic by itself, is not part of this work.
Its relevance is therefore limited to the fact, that there exists a device that per-
forms the aforementioned functions and in addition deasserts a reset, whenever
the power supply has stabilized enough for a normal mode of operation.

The RART has two tasks. First, it serves as a converter between the bit ori-
ented analog front-end and the system bus that connects the other components.
The bus has a width of one byte. The second function is to generate certain
protocol specific events that influence the control unit. An efficient implemen-
tation of this element was supplied by Mr. Martin Feldhofer from the Institute
of Applied Information Processing and Communications at Graz University of
Technology.

The RCU implements an extended version of the ISO-18000-3-1 protocol. It
handles the RART, the data exchange between the transceiver and the ECC
processor and operates the ECC processor.

6.2 ECCON 38

Figure 6.1: Top level architecture

6.4 RFID FRONT-END 39

Last but certainly not least the ECC processor is capable to perform an
EC point multiplication as its primary mode of operation. Apart from that it
is capable to execute a restricted version of the ECDSA signature generation
algorithm with it.

6.3 RFID front-end

The RFID part of the circuit consists of the analog front-end, the RART and
the control unit. The analog front-end is beyond the scope of this work and
therefore warrants no further discussion.

The RART is a third party module. It implements the digital part of the
physical layer of the ISO-18000-3-1 standard. The implementation is not com-
plete, but suffices to work with most standard compliant reader devices.

The RFID Control Unit is a straight forward FSM (confer to §6.4.3) based
implementation of the protocol commands detailed in chapter §5.

6.4 ECC processor architecture

The ECC processor is designed to compute the point multiplication on an elliptic
curve. The base requirements for this are:

1. A memory that posses the capability to store the elements of the under-
lying finite field that make up the points on the EC.

2. An ALU that has the ability to perform operations on them.

3. A control unit that governs the datapath consisting of the memory and
the ALU.

4. An interface that establishes a connection to the outside world.

Figure 6.2 illustrates the primary components that make up the ECC pro-
cessor core. The difference between a register and a module is that a module
consists of registers and a combinatoric logic, while the register consists solely
of flip-flops and possibly a clock gating component. Both registers and mod-
ules all have a clock, reset and clock enable input that was omitted from the
illustration.

6.4.1 Datapath

Several design decisions with regards to the datapath have to be ascertained.
The first concerns the size of the finite field that the EC is defined upon.

Curve selection

In 4.2.1 a binary extension field, or simply binary field, was chosen as finite field
on which the EC is defined, as it is the most appropriate candidate. The reason
for this is that the addition in a binary field corresponds to an Exclusive Or
(XOR) operation, which greatly simplifies implementation of all field operations.

The next step is to specify its degree. The degree defines the size of an
element in memory, therefore the smallest degree that provides adequate security

6.4 ECC PROCESSOR ARCHITECTURE 40

Figure 6.2: ECC processor architecture

6.4 ECC PROCESSOR ARCHITECTURE 41

has to be selected. This is due to the fact that memory is one of the main
contributing factors to the die area.

The NIST FIPS-186-2 Digital Signature Standard (DSS) [Fed00] provides a
set of possible curves categorized by the degree of the associated field. From
it Curve B-163 (F2163), the smallest possible curve provided by that standard,
was selected. The definition includes the domain parameters n (degree), a, b
(curve coefficients), the base point P , and an irreducible polynomial f(z).

Name Value
n 163
a 1
b 20a601907b8c953ca1481eb10512f78744a3205fd

Px 3f0eba16286a2d57ea0991168d4994637e8343e36
Py 0d51fbc6c71a0094fa2cdd545b11c5c0c797324f1

f(z) z163 + z7 + z6 + z3 + 1

Table 6.1: Domain parameters of Curve B-163

The reason for choosing this particular curve is that, according to Hankerson
et al. [HMV04], it provides approximately the same security as an 80-bit AES
implementation, while at the same time n is still reasonable small. The degree
of the next curve proposed by the NIST standard (233) is significantly higher.

Datapath width

Traditional hardware architectures for ECC processors [Wol04] employ full pre-
cision datapaths that are equivalent in width to the size of an element in memory.
The advantage of this approach is that it simplifies the algorithms that imple-
ment the field operations. The downside is due to the size of the elements. A
full precision architecture affords an ALU with an accumulator register the size
of which is equal to the degree of the field.

In this case 163 registers would be required. For every operation performed
at least these 163 registers would change at every clock cycle and that does not
consider writing of the results to the memory or the combinatoric logic involved.

Three distinct problems arise from this fact. The first stems from the sheer
size of a 163 bit accumulator. The area taken up by it is considerable. The
second more stringent problem is the power consumption of such a unit. The
problem is not solely the power supply but also the possible disruption of the
load modulation based communication. Such a number of registers switching
values at once draws a critical amount of current, which can lead to the afore-
mentioned communication disruptions.

This obvious example illustrates that an RFID application necessitates a
more suitable solution. Therefore, for the ASIC developed as part of this thesis,
a datapath width that is distinctly smaller than the degree of the curve was
selected. This has the disadvantage that the operations in F2163need to be
implemented by more complex algorithms that work with smaller bit-widths.

To distinct between a full precision element of F2m in general and F2163 in
particular and an element fit for the datapath the following definition is made: A
full precision element of a field shall furthermore be denoted by the term element,

6.4 ECC PROCESSOR ARCHITECTURE 42

whereas an element with the same width as the datapath shall henceforth be
called a word.

To determine a suitable word size for the datapath with respect to the re-
quirements formulated in section §6.1, it is necessary to find some kind of esti-
mation for the relation between the word-width and the area requirements and
power consumption of the datapath. This is strongly dependent on the nature
of the memory and the ALU implementation.

The following procedure was applied to gain the necessary assessment. A
Hardware Description Language (HDL) model of the candidate ALU was de-
veloped. The bit-width of the ALU is a parameter of this model. The HDL
description was then synthesized into a hardware implementation for all word-
widths between 8 and 31 bits. The reasons for choosing this range will become
clear later. For each bit-width the area and power usage estimations of the
synthesizing tool were noted.

For an accurate evaluation of the datapath, the timing is also required. The
critical path of the circuit is secondary in the projected application scenario,
where the ECC processor is going to be driven by the lowest possible frequency.
Therefore, a different more significant replacement metric has to be found. This
is the total number of clock cycles necessary to compute a point multiplication,
which directly depends on the bit-width. The rule is: The larger the word size,
the faster the computation. This value was provided by the Java software model
of the ECC processor.

Figure 6.3: A comparison of different datapath widths

The estimations of all three relevant values, the area, the power consumption
and the cycle count were normalized to their respective maximums. The results
were then combined to form the 4 different metrics depicted in figure 6.3.

Considered separately the three estimates have the following behavior: The

6.4 ECC PROCESSOR ARCHITECTURE 43

area A increases more or less linearly with the bit-width. The same is true for
power P . The number of necessary cycles to compute the point multiplication
C decreases quadratically with larger word sizes.

The area×cycles×power product A ·C ·P is the baseline for comparison with
the other metrics. The A ·C ·P 2 product emphasizes the influence of the power
consumption, but shows a similar characteristic as the first metric. Both the
A · C2 · P and the A · C2 · P 2 are timing dominated.

Considering figure 6.3 it should become clear, why the 8 to 31 bit range was
chosen. The A ·C ·P and the A ·C ·P 2 functions increase almost quadratically
with the bit-width. Every datapath width above 31 would require to much
power and area. The number of cycles to compute the point multiplication is
inversely proportional to the bit-width and increases quadratically as the bit-
width decreases. Thus every datapath below eight bit would be too slow.

No single metric shows a conclusive result, but by combined evaluation one
may arrive at the conclusion that a datapath width of 15 bit is possibly the best
choice. After the 15-bit point both the A ·C ·P and the A ·C ·P 2 product begin
to increase with before unseen steepness, while both timing driven metrics show
a local minimum at 15 bit.

Thus a word size of 15 bit seems optimal. A problem that this evaluation
does not take into account is the interface of the processor. Common bus widths
are multiples of eight bits. The ECC processor is equipped with an interface
that is exactly eight bit wide. Converting words of a width w = i · 8, i ∈ N \ 0
to eight bit is much simpler than for arbitrary word widths. Therefore the final
choice for the datapath width is 16-bit.

ALU

The ALU of the ECC processor has to provide facilities to compute basic op-
erations for 16-bit binary polynomials (confer to §4.3.5). These are addition,
subtraction and multiplication. As addition and subtraction are the same for
binary polynomials (XOR), this list reduces to just addition and multiplication.

As will be seen in the discussion of the algorithms that implement all nec-
essary operations in F2163 , it is of advantage when it is possible to perform a
multiplication and then an addition on the result in one clock cycle. This op-
erations is termed MAC and an ALU that has the capability to perform this is
called MAC unit. The ALU of the ECC processor is a MAC unit.

Memory

For the memory architecture a choice between using a RAM macro and a register
based structure has to be made. A RAM macro facilitates the creation of storage
capacity adapted memories built from SRAM or DRAM cells. This approach
produces area optimized results and it is also the most power efficient.

The problem with the RAM macros available to implement the ASIC de-
signed as part of this work is that they have been optimized for speed. High
speed circuits use gates with stronger driving capabilities which are generally
faster but also entail an increased power consumption.

A second point of uncertainty stems from the memory structure. A memory
consists of cells that store the data and a selection logic part, also called memory

6.4 ECC PROCESSOR ARCHITECTURE 44

bus herein. The second component choses which cells to write to and selects a
data word for reading.

This memory bus restricts the allowable choices for acceptable element sizes.
RAM macros have to generate the selection logic automatically, which is difficult
in cases where the element size is not a multiple of eight. Thus to implement a
7×163 bit RAM with a macro a 80×16 structure would have to be chosen. This
structure squanders 139 bits and complicates addressing words with respect to
the element they belong to.

Therefore, a register based implementation built from standard cells was se-
lected for this project. The final memory circuit uses several power optimization
strategies to produce a storage unit with a diminutive current drain, while at
the same time minimizing the required area.

A further advantage of this approach is that it naturally allows to perform
one read and one write operation per clock cycle at the expediency of very little
additional power. Concurrent read and write operations facilitate the creation
of algorithms that require less clock cycles, which is a considerable advantage.

The memory has a total size of 7 × 163 elements. This number arises from
the 6 variables the Montgomery point ladder algorithm for scalar multiplication
on an EC utilizes plus one which is due to implementation details. Each 163-bit
element is split into 10 16-bit words and one 4-bit word that stores the bits 160
to 163.

Memory bus

The ALU is capable to perform additions and multiplications. Both operations
necessitate two operands to create one result. The algorithms that perform the
binary field operations utilizing this MAC unit could be substantially sped up,
if it were possible to select two words from the memory at once.

Theoretically it is possible to add more than one read port (read bus) to a
memory. Preliminary assessments showed that the hardware resources needed
to implement one memory read bus are considerable. The area necessary is
approximately twice the area of a 16-bit ALU, compelling the restriction of the
system to one read bus. This has a direct impact on the minimum number of
cycles needed to perform an operation.

Similarly the write bus allows the write back of one word to memory per
cycle. This imposes no further restrictions on the number of atomic operations
needed for any operation because the number of memory reads is in all cases
equal or greater than the number of writes.

The multiplication will serve as an example to illustrate above considera-
tions. Two operands need to be read and multiplied to generate one result of
double length, which in turn takes two cycles to be written back to memory.
The multiplication is the only operation that produces a double width result.

6.4.2 Datapath design alternatives

Traditional hardware architectures for ECC processors use either bit-serial or
bit-parallel, word-serial multiplication schemes [Wol04]. The later is sometimes
called a high-radix multiplication or digit-serial multiplication. Bit-serial mul-
tipliers are generally more power efficient, while digit-serial multipliers have a

6.4 ECC PROCESSOR ARCHITECTURE 45

greater throughput and are more energy efficient1. In both schemes one operand
is a full-precision field element, while the other is either one bit (bit-serial) or
one word (digit-serial). These methods are often combined with interleaved
modular reduction.

Energy efficient digit-serial multiplication is discussed in some detail by
[SP98]. This was taken up by [OP00] to produce a high throughput ECC solu-
tion, as does [GSE+02]. In more recent works several proposals for digit-serial
multipliers for smart card co-processors have arisen [ABHW04, TWA05], where
area cost is at a premium.

Scalable energy efficient bit-serial multiplication schemes have also been pro-
posed [HLRZ03], but more importantly it has been ascertained by [Wol05, KP06,
FW07b], that the power consumption and area requirements of such architec-
tures are small enough, that they could be used to add ECC capabilities to
RFID tags.

The approach chosen by this work is not uncommon, but has so far been
mostly applied to ISA extensions [EWG+05] and flexible, scalable solutions
[BL06].

6.4.3 Control unit

The control unit governs the datapath. The datapath supplies a set of basic
operations, which, executed in a specific sequence, form usable commands, in
this instance operations in F2163 . The succession of primitive instructions is
called control flow.

There exist three prominent techniques to implement a control flow in hard-
ware [Wol04].

1. Hardwired control

2. Micro-programmed control

3. Micro-controller

Hardwired control is an implementation of the Finite State Machine (FSM)
paradigm. A FSM is an abstract model of behavior that utilizes a set of states
and a next-state function to create a desired sequence of events.

A FSM contains a state variable which holds the current state and in possible
conjunction with other input variables is used to compute the control signals
for the managed datapath. The next state is equally derived by the next-state
function from the current state and depending on the kind of FSM other input
variables.

This is the most efficient concept with respect to area usage and power con-
sumption and it maps especially well to synchronous hardware. The drawback
is that, even using a state-of-the-art HDL, describing a complex flow of events
becomes a tedious task. This can be alleviated in part by hierarchically struc-
turing, where low-level FSMs realize simple operations and high(er)-level ones
use these to implement more powerful functions.

1Bit-serial-multipliers for low power applications require less power than digit-serial-
multipliers, but they need more time to calculate the result, thus this approach requires
more energy.

6.4 ECC PROCESSOR ARCHITECTURE 46

The micro-programmed and micro-controller scheme rely on a set of instruc-
tion stored in a Read Only Memory (ROM), which are either executed by a
specialized FSM based control unit or a full fledged micro processor respec-
tively. Both are powerful approaches to implement complex algorithms. This
comes at a cost of greater area usage and power consumption in comparison to
hardwired logic.

The control flow of the ECC processor is implemented using the hierarchical-
FSM paradigm. The top level command interface of the control unit provides
the three commands already discussed in section §5.5.

6.4.4 Interface

The interface connects the ECC processor to the RFID front-end. It implements
a two-phase full handshake protocol. It is fully registered, every input and
output value is transfered into a register.

It provides two different functionalities. It allows read and write access to
the memory core of the ECC processor and it facilitates the invocation of the
three cryptographic commands implemented by the processor.

The RFID subsystem uses an 8-bit bus, due to protocol considerations. The
internal datapath is 16 bits wide. This necessitates that the interface performs
a conversion for memory access operations.

The interface possesses its own control unit which implements the two func-
tions. This unit is again implemented as a FSM.

Chapter 7
Binary field algorithms

The decisions made in the architecture chapter (§6) of this work require the
implementation of binary extension field operations on an elliptic curve defined
over the binary field F2163 with the irreducible polynomial f(z) = z163 + z7 +
z6 + z3 + 1 as specified in the NIST FIPS-186-2 DSS [Fed00].

Recall that the mathematical field definition specifies a set of basic oper-
ations (confer to §4.3.5). The standard arithmetical operations, addition and
multiplication and their inverse functions, are complemented by squaring and
modular reduction. While the first is introduced for performance reasons, the
later is of course elementary to a finite field. Thus, the list of operations a
binary field arithmetic unit must implement is as follows:

• addition/subtraction; c(z) = a(z)⊕ b(z)

• multiplication; c(z) = a(z) · b(z)mod f(z)

• inversion; c(z) = a(z)−1 mod f(z)

• squaring; c(z) = a(z)2 mod f(z)

• reduction; c(z) = c(z)mod f(z)

A veritable cornucopia of possible choices for the concrete algorithmic real-
ization of these operations exists. This part of the thesis reviews a selection of
candidate methods and introduces two newly developed algorithms.
§7.1 provides material on the conventions used for algorithm descriptions,

specifies the representation of elements in the binary field F2163 and presents the
concept of ISA. In §7.2, the character of two candidate ISA is discussed. Next
§7.3 covers the addition/subtraction operation, while §7.4 talks about multi-
plication in some detail. Section §7.5 addresses the issue of squaring and §7.6
considers method and implementation of the reduction operation. It also intro-
duces two new, highly optimized algorithms specifically developed to streamline
the multiplication, squaring and reduction operations in certain binary exten-
sion fields with the support of a special-purpose instruction set. The chapter is
concluded by an analysis of possible inversion algorithms in §7.7. This section
closes with a presentation of appropriate inversion/scalar-point-multiplication
combinations.

7.1 CONVENTIONS 48

7.1 Conventions

7.1.1 Field element representation

Section §4.3.5 detailed that the elements of a binary field F2m can be represented
by polynomials in the form a(z) = am−1z

m−1 + · · · + a1z + a0, where the
coefficients ai are either 0 or 1. This is called polynomial or standard basis
representation. The degree deg of a binary polynomial deg{a(z)} is defined as
the degree of the highest order term in a(z). The length l of a polynomial is
l = deg{a(z)} + 1. This value is equal to the number of flip-flops required to
save the coefficients of one polynomial.

Specifically an element of the field F2163 has the following structure: a(z) =
a162z

162 + · · · + a1z + a0. As has been ascertained in section §6.4.1, the term
element will be used to denote a full precision element of a field.

Polynomials structured as discussed above lend themselves to a binary string
representation. Each coefficient is thus represented by a single bit in hardware.
Elements in F2163 are stored in a memory structure with a fixed length of 163
bits.

As was deliberated in section §6.4.1, the datapath is not capable to handle
full precision elements. Therefore, the field elements need to be broken down
into smaller fractions w(z) = wn−1z

n−1 +w1z +w0, n ≤ m. In accordance with
the definition made in the aforementioned section, these will be called words.
Digit is also an acceptable synonym for these polynomials. The length w of a
word is equal to the datapath width. Thus a field element is split into t = dm/we
words.

7.1.2 Algorithm descriptions

The following sections use precise pseudo-code descriptions to detail the pre-
sented algorithms. Many have been adapted from [HMV04]. As a consequence,
a similar style is used to describe the algorithms.

To better understand the descriptions, a few remarks on the nomenclature
are in order. An element is interpreted as an array of t words, therefore the array
index notation common to many programming languages is used, where A[i]
selects the ith word of a(z). Variables in lower case always represent a complete
polynomial, e.g. a describes a(z) ∈ F2163 . The (z) part is often omitted for
brevity. Upper case letters stand for words. Furthermore, little-endian word
ordering applies, where the lowest order digit has the index 0.

Figure 7.1: An element of F2163as array of t words.

7.2 DEFINITION OF POTENTIAL ALU ISAs 49

7.1.3 Instruction Set Architectures

This chapter aims to compare different algorithms for implementing the bi-
nary field operations. A problem arises due to the fact that the diverse methods
have varying prerequisites with respect to the hardware they are executed upon.

To formalize these requirements, a technique from Central Processing Unit
(CPU) design is borrowed. The functionality of such a device is characterizable
by the instructions it understands, while at the same time it does not specify
too many implementation details. This set of instructions is denoted by the
term Instruction Set Architecture (ISA). The ISAs will serve to describe the
potential ALUs that could implement the algorithms introduced in this chapter.

A single instruction consists of a set of basic operations. Each of these is
composed from an expression and a local storage component descriptor. The
latter indicates where the result of the expression should be saved to. The
expression itself consists of a mathematical function applied to at least one
input operand. An input operand can either be supplied by one of the local
storage components or the input port of the ALU described by the ISA.

A storage component, or register of the virtual ALU is denoted by a bold
type face (B, ACCH etc.). Together with a mathematical function they form
expressions like A · B. To indicate where the result should be stored a ← is
used (C ← A · B). The letter I is used to denominate the input of the ALU.
The output of the ALU is always the current state of the lowest 16 bits of
the accumulator, a special register in the ALU candidate, which is identified
by ACCL. All registers in the potential ALUs, as well as the input and the
output, are all 16 bits wide, unless specifically noted differently.

The invocation of an instruction in an algorithm takes the form of a function
call, using the name of the instruction to select it. The input value, which can
be left unspecified is appended in parenthesis. To indicate that the output value
should be stored in a memory word, which is identified using the conventions
defined in the above section (§7.1.2), the left arrow ← is applied.

The Load register B command C[i] ← LDB(A[i]) will serve as a concrete
example to illustrate an instruction invocation. In this case, the register B will
be loaded with the value stored in the memory cell A[i] and the current value
of ACCL will be saved to C[i].

The ISA algorithm representation is employed whenever an implementation-
specific variant is presented. For algorithms that illustrate a concept, the simpler
pseudo code variant is used.

7.2 Definition of potential ALU ISAs

Two different ISAs are of interest. The first ALU candidate is called Simplex.
It is indeed very simple but has the potential to implement all required binary
field operations. It utilizes three registers (B, ACCH, ACCL), one polynomial
multiplication unit and one polynomial adder. It supports the instructions
detailed in table 7.1. Table 7.2 explains the mnemonic names identifying the
instructions.

ACCH and ACCL together constitute the accumulator ACC. This special
register stores the result of the basic functions(⊕, ·). The accumulator might be
treated as one logic unit and not two separated storage containers. An example
of this is the SRE command. It shifts the whole ACC 8 bits to the right.

Complex the is the second possible ALU that is considered herein. A look

7.3 ADDITION AND SUBTRACTION 50

LDB B← I; ACCL ← ACCH; ACCH ← 0;
ADD ACCL ← ACCL ⊕ I
MAC ACC← I ·B⊕ACCH

SRE ACC� 8

Table 7.1: Simplex ALU operations

LDB LoaD B
ADD ADD
MAC Multiply ACcumulate
SRE Shift Right accumulator by Eight (8) bits

Table 7.2: Simplex ALU operation names

at table 7.3 gives an idea, how the name was derived. Despite the multitude
of instructions it provides, its actual hardware implementation is still relatively
simple. It requires 5 internal registers (B, RC, MC, ACCH and ACCL), one
polynomial multiplier and two polynomial adders. The RC register is only 13
bits wide.

The terms SR and SL denote constants for shift operations. SR = m mod t
which is equal to 3 if the degree m = 163 and the number of words t = 11.
Then SL = w−SR = 13 in case the word width w equals 16. They are required
to indicate which bits of the 16-bit ACCL are stored in the 13 bits wide RC
register and at which position the content of the RC register should be loaded
into the accumulator (confer to operations SMR and SAA).

The pipe | is used as concatenation operator. The SAA command contains
an operation of the form ACCL ← {(ACCL � SL)|RC}. This is to be
interpreted as shift ACCL to the left by SL bits, concatenate that with the
content of RC and store the result in ACCL.

The term r(z) denotes the reduction polynomial, a special variant of the
irreducible polynomial f(z). It will be explained in §7.6.4. For the following
considerations it is important to distinguish between the Simplex and Complex
MAC operations as they differ.

7.3 Addition and Subtraction

As discussed in §4.3.5, addition is a very simple operation in any binary field.
Addition is equivalent to the exclusive-or operation. Furthermore, addition and
subtraction are identical in binary fields. The sum of two elements is the result
of the XOR operation applied digit by digit to the input values. The addition
finishes after t operations and order is of no consequence as the XOR function
has no carry.

The implementation version of the addition algorithm is basically the same
for both the ISAs detailed in §7.2. Therefore, only the simplex variant is given
here. For this implementation specific algorithm, it is possible to asses the
number of cycles needed to compute an addition of two field elements. As the
number of operands that can be read from memory per clock cycle is limited to
one, the optimally achievable minimum of cycles is two per word addition.

7.3 ADDITION AND SUBTRACTION 51

LDB B← I
LDO B← 1
LBS B← I;ACC← ACC� 16
SRW ACC← ACC� 16
SRE ACC← ACC� 8
SMR ACC← ACC� 16;MC← I;RC← ACCL � SR

SMC ACCH ← 0;ACCL ←MC;MC← ACCH

SAM ACCH ← 0;ACCL ←MC;MC← I ⊕ACCH

SAA ACCH ← I ⊕ MC;ACCL ← {(ACCL � SL)|RC};MC ←
ACCH;RC← ACCL � SR

SLB ACCH ← MC;ACCL ← (ACCL � SL)|RC;MC ←
ACCH;RC← ACCL � SR;B← I

SMA ACCH ←MC;ACCL ← I ⊕ACCL;MC← ACCH

SRD ACCH ← MC;ACCL ← I ⊕ ACCL;MC ← ACCH;RC ←
ACC� SR

RAC ACCH ← I;ACCL ← RC
ADD ACCL ← I ⊕ACCL

MAH ACC← I ·B⊕ACCH

MSM ACC← I ·B⊕MC;MC← ACCH

MAC ACC← I ·B⊕ACC
MAR ACC← ACCL · r(z)⊕ACCH

Table 7.3: Complex ALU Operations

LDB LoaD B
LDO LoaD B with the constant One (1)
LBS Load B and Shift right accumulator by word width (16)
SRW Shift Right accumulator by Word width (16)
SRE Shift Right accumulator by Eight (8) bits
SMR Set Multiplication carry and save Reduction carry
SMC Swap Multiplication Carry register
SAM Swap and Add Multiplication carry register
SAA Swap And Add multiplication carry register and swap reduction

carry register
SLB Swap multiplication and reduction carry registers and Load B
SMA Swap Multiplication carry register and add Add A to accumulator
SRD Swap multiplication and reduction carry Registers and Add A to

accumulator
RAC Restore ACcumulator with reduction register and A
ADD ADD A to accumulator
MAH Multiply Accumulate with accumulator high word
MSM Multiply and add and Swap multiplication carry register
MAC Multiply Accumulate with the Complete accumulator
MAR Multiply with the special irreducible polynomial r(z) and add accu-

mulator high word

Table 7.4: Complex ALU Operation Names

7.4 MULTIPLICATION 52

Algorithm 7.1: Addition/Subtraction

Input: a, b ∈ F2m

Output: c = a + b; c ∈ F2m

foreach C[i] ∈ c do C[i] = A[i]⊕B[i];1

return C ;2

Algorithm 7.2: Addition - Simplex implementation

Input: a, b ∈ F2m

Output: c = a⊕ b; c ∈ F2m

LDB(1);1

MAC(A[i]);2

ADD(B[i]);3

for i← 1 to t− 1 do4

C[i]←MAC(A[i]);5

ADD(B[i]);6

C[t− 1]← LDB(0);7

The runtime of algorithm 7.2 presented here is

tcycles = 2 + 2 · t.

It is almost optimal. The architecture adds a certain overhead, due to operand
loading and result flushing.

7.4 Multiplication

7.4.1 Integer multiplication algorithms

There are two prominent integer multiplication algorithms [HMV04], the operand
scanning form and the product scanning form. The product scanning form is
sometime called Comba’s method or Comba multiplication. Both are examined
in their applicability with respect to the two ISAs introduced above.

A third and very interesting integer multiplication technique is the so called
Karatsuba-Ofmann multiplication [KO63]. It applies the basic divide and con-
quer paradigm to reduce the length of the operands involved, at the cost of
additional additions and subtractions. The overhead of the classic Karatsuba-
Ofmann algorithm does not warrant its application for this project.

Peter and Langendoerfer [PL07] however devised an energy-efficient multi-
plier based on a modified Karatsuba-Ofman method, specifically for ECC cir-
cuits. The stringent peak power consumption restrictions prevent its deploy-
ment as integer multiplication algorithm, but it might prove a true alternative
to the array multiplier core of the MAC unit.

7.4.2 Operand scanning form

The operand scanning form integer multiplication algorithm could also be termed
schoolbook multiplication algorithm, because it is just that. It is the algorithm

7.4 MULTIPLICATION 53

that is presumably taught to most persons, that are educated in basic mathe-
matics. It works by multiplying each digit of multiplicand with one digit from
the multiplier for all digits in the multiplier. The resulting rows are aligned
appropriately and the added up. Figure 7.2 depicts the process.

Figure 7.2: The operand scanning form multiplication for two 3-bit integers

Algorithm 7.3: Multiplication (operand scanning form)

Input: a, b ∈ F2m

Output: c = a · b; deg(c) ≤ 2m− 2
foreach C[i] ∈ c do C[i] = 0;1

for i← 0 to t− 1 do2

U ← 0 for j ← 0 to t− 1 do3

(U |V)← C[i + j] + A[i] ·B[i] + U ;4

C[i + j]← V ;5

C[i + t]← U ;6

return c;7

Algorithm 7.3 details the necessary steps. The term (U|V) describes the
double word width result of the inner product operation A[i] ·B[i]. In (U|V), U
represents the higher order and V the lower word of the result.

The operand scanning form can be efficiently implemented with the simplex
ALU outlined by the ISA given in table 7.1. The hardware specific implemen-
tation of algorithm 7.3 is given by algorithm 7.4.

The inner product operation can be performed in two cycles, which is the
minimal possible cycle number with one read bus. The last two operations

7.4 MULTIPLICATION 54

Algorithm 7.4: Multiplication (operand scanning form) - Simplex imple-
mentation
Input: a, b ∈ F2m

Output: c = a · b; deg(c) ≤ 2m− 2
for j ← 0 to t− 1 do1

C[i + j − 1]← LDB(B[j]);2

C[i + j]←MUL(A[i]);3

for i← 1 to t− 1 do4

ADD(C[i + j − 1]);5

C[i + j − 1]←MUL(A[i]);6

ADD(C[i + j]);7

C[i + j]← LDB(0);8

C[i + j + 1]← LDB(0);9

can be used to initiate the reduction process, thus reducing the runtime of a
combined multiplication and subsequent reduction operation by two cycles. The
number of cycles needed for field multiplication is

tcycles = (2 ∗ t + 1) ∗ t + 3.

The runtime of the multiplication is quadratic in nature.

Product scanning form

The product scanning form computes all partial products, that contribute to a
certain digit of the result and adds them up, hence it’s name. It scans through
the product determining one digit of the result at the time. This reduces the
number of memory write operations.

Algorithm 7.5: Multiplication (product scanning form)

Input: a, b ∈ F2m

Output: c = a · b; deg(c) ≤ 2m− 2
R0, R1, R2 ← 0;1

for k ← 0 to 2t− 2 do2

foreach {(i, j)|i + j = k, 0 ≤ i, j ≤ t− 1} do3

(UV)← A[i] · B[i];4

(ε, R0)← R0 + V ;5

(ε, R1)← R1 + U + ε;6

R2 ← R2 + ε;7

C[k]← R0, R0 ← R1 ← R2, R2 ← 0;8

C[2t− 1]← R0;9

return C ;10

Algorithm 7.5 gives a detailed description of the product scanning form and
figure 7.3 is a visualization of the necessary steps to compute the product of two
3-digit numbers.

7.4 MULTIPLICATION 55

Figure 7.3: An illustration of the product scanning form for two 3-digit integers

It is possible to implement the multiplication using the product scanning
form with the Complex ISA. The given architecture produces one partial result
in two clock cycles, which is optimal. Also, it needs less write cycles than
the operand scanning form because it fully determines one product digit before
writing it back to memory. The inherent advantage is counterbalanced by a
very complex pattern of operand read operations.

To better understand the runtime analysis, algorithm 7.6 presents a loop-
unrolled variant of hardware-specific version of the product scan algorithm for
3-digit operands.

At a first glance at the procedure it becomes apparent that the control logic
for this algorithm is more complex, than that of the operand scanning form.
The price paid in control logic complexity is rewarded by a shorter runtime.

From the structure of algorithm 7.6, one can see that the computation of
the first product digit takes 2 cycles to complete, the second needs 3 cycles, the
third 5, the fourth 3 again, the fifth 2 and finally one extra cycle is needed to
write back the highest order result. This behavior mirrors the block nature of
the multiplication groups depicted in figure 7.3. Studying it, it becomes clear
that the first digit of the product needs one multiplication, the second two, and
so forth.

After the central block of multiplications the pattern repeats. Only one
operation is required to produce the first temporary result of a block, because
of the overlapping operand indices. Every other multiplication in a block needs
two cycles to compute. These observations lead to the following equation to

7.5 SQUARING 56

Algorithm 7.6: Multiplication (product scanning form) for 3-digit
operands (loop unrolled)

Input: a, b ∈ F2m

Output: c = a · b; deg(c) ≤ 2m− 2
LBS(A[0]);1

MAC(B[0]);2

C[0]←MAH(B[1]);3

LDB(A[1]);4

MAC(B[0]);5

C[1]←MAH(B[1]);6

LDB(A[0]);7

MAC(B[2]);8

LDB(A[2]);9

MAC(B[0]);10

C[2]←MAH(B[1]);11

LDB(B[2]);12

MAC(A[1]);13

C[3]←MAH(A[2]);14

C[4]← SRW ();15

C[5]← SRW ();16

determine the runtime of algorithm 7.6

tcycles = 2 ·

[{

t
∑

i=2

(i · 2)− 1

}

+ 2

]

+ 1.

Comparison and conclusion

The product scanning form has a clear advantage over the operand scanning
form when it comes to the number of clock cycles needed to compute the field
multiplication. Table 7.5 gives an overview of cycle times for different MAC
input widths. The price for the higher speed is paid with a more complex

MAC operand width [Bits] 8 12 16 20 24
Words for 163 Bit EC 21 14 11 9 7

Op. Scan [cycles] 906 409 256 174 108
Pr. Scan [cycles] 844 368 224 148 88

Table 7.5: Multiplication runtime comparison of operand and product scanning form.

control logic and ALU implementation.

7.5 Squaring

Squaring in a binary field is a much simpler operation than multiplication.
Informally, to square a binary polynomial is to splay it to double size, inserting
a zero at every other position into the binary string representation. For a more
mathematically inclined description, as found in [HMV04], consider a binary

7.5 SQUARING 57

polynomial a(z) = am−1z
m−1 + · · ·+ a2z

2 + a1z + a0. The squared polynomial
a(z)2 has the following structure:

a(z)2 = am−1z
2m−2 + · · ·+ a2z

4 + a1z
2 + a0.

The binary representation will take the form outlined in figure 7.4. The length
of the binary representation is again 2m − 1 bits, the same as with the multi-
plication result.

Figure 7.4: Squared binary polynomial a(z)2.

7.5.1 Direct hardware implementation

The obvious solution to the squaring problem is to use rewiring in conjunction
with a set of multiplexers to choose the correct input signal and an array of
AND gates to mask every other input. The hardware costs for such an imple-
mentation are minimal. The power consumption, the other important factor
to consider, could also be minimized by circumventing the hardware multiplier
unit using operand isolation. This would pose no advantage, as deactivation of
the multiplier leads to unwanted fluctuations in the power consumption (refer
to §6.1).

7.5.2 An alternative squaring method

There exists an implementation that manages the squaring operation without
additional hardware resources and that utilizes the hardware multiplication unit
of the MAC [GK03a]. The strategy used by this squaring procedure is best ex-
plained using figure 7.5. It illustrates the application of the product scanning
form multiplication algorithm to the polynomial squaring problem. The cancel-
lation effect in the illustration is due to the following facts:

1. (F\{0}, ·) is an Abelian group. Therefore, the multiplication is commuta-
tive a · b = b · a, ∀a, b ∈ F2m .

2. As explained in §7.3, addition in a binary extension field is equivalent to
the XOR operation and performing the XOR operation on two identical
terms always yields zero: a⊕ a = 0, ∀a ∈ F2m .

It is easily discernible, that almost all partial products cancel each other. Only
multiplications of factors with the same index remain. Applying this observation
to the problem at hand yields a simple and fast method to solve it. Squaring a
field element is reduced to squaring each of its digits, without the necessity to
worry about dependencies between the intermediate results. The steps necessary
to compute the final result include squaring of each word and writing back the
almost double length result. The runtime of this elegant technique is linear with
respect to the number of digits in the field element.

7.5 SQUARING 58

Figure 7.5: Squaring using the multiplication unit, product scanning style

7.5.3 Implementation

Algorithm 7.7 presents a Simplex ALU specific implementation of the procedure
described in §7.5.2. Adapting it to the ISA of the Complex ALU is reasonably
easy, therefore only one variant is given. The procedure is indeed very similar
to the operand scanning form multiplication method detailed in algorithm 7.4.

Algorithm 7.7: Squaring - Simplex - implementation

Input: a ∈ F2m

Output: c = a2; deg(c) ≤ 2m− 2
LBS(A[0]);1

MAC(A[0]);2

for i← 1 to t− 1 do3

C[2i− 2]← LDB(A[i]);4

C[2i− 1]←MAC(A[i]);5

C[2t− 2]← LDB(A[i]);6

C[2t− 1]← LDB(0);7

A quick analysis of the necessary steps yields

tcycles = 2t + 4

for a runtime estimation.
A square operation in F2163without reduction using a 16-bit variant of the

ALU would require 26 cycles to complete. That amounts to approximately 10%

7.6 MODULAR REDUCTION 59

of the time needed to perform one multiplication without reduction. Fortu-
nately, this is only marginally worse than what could have been achieved with
dedicated square hardware, as the write bus limits the speed of an inner square
operation1 to at least two cycles. As with the multiplication, it is again pos-
sible to use the last two steps in the square operation to implement the first
two instructions of the reduction. In doing so the number of cycles needed to
compute the combined operation is reduced by two.

7.5.4 Conclusion

The squaring algorithm 7.7 seems to be the most appropriate choice. The ad-
ditional resources for a direct hardware implementation are diminutive, but the
small speed-up does not justify them. The possibility to switch off the multi-
plication unit would be a good way to conserve energy, but in this application
scenario, this poses no advantage. It might even be detrimental because it
would lead to unwanted fluctuations in the power consumption of the circuit.
This could interfere with the load-modulation based communication.

7.6 Modular reduction

The output polynomials of the multiplication and squaring operations c(z)
deg{c(z)} ≤ 2m− 2 are not in the base representation of an element of the field
F2m . This necessitates the modular reduction of c(z). As detailed in §4.3.5, this
is equivalent to computing c(z)mod f(z), where f(z) is the irreducible polyno-
mial defining the field. The modular reduction will henceforth also be denoted
simply by the term reduction.

7.6.1 Methodologies - Interleaved versus stand-alone re-
duction

There exist two paradigms to apply the reduction [DF96]. Option one is to
reduce the intermediate results of the multiplication or squaring operations while
performing the respective procedure. The other possibility is to reduce the final
result of those operations.

The primary advantage of the first method is that the intermediate results
ctemp are length limited to deg(ctemp mod f(z)) ≤ m−1. This is beneficial if bit-
parallel word-serial multiplication schemes are used, because it helps to reduce
the size of the accumulator. The second advantage is the possible speedup
compared to separated reduction. In both word- and bit-serial architectures, it
is possible to efficiently implement interleaved reduction. Examples for these
techniques can be found in [TWA05] for bit-parallel word-serial and in [Wol04]
for bit-serial multiplication.

The benefits of the immediate reduction method are difficult to translate
to the architecture chosen for this work. The main drawback of performing a
reduction after a multiplication or squaring operation is finished, is that the
result takes up two element slots in memory. This is mainly detrimental to the

1The squaring of a digit.

7.6 MODULAR REDUCTION 60

area requirements but not to the peak power consumed per clock cycle2.
Immediate reduction could alleviate this problem, but at a first glance only

at considerable cost to runtime. Reduction requires a result the degree of which
exceeds the allowed bounds. Utilizing the operand scanning form multiplication
that applies to all partial products a · B[i]. Using a reduction method similar
to that presented in section §7.6.4, reduction of the partial product would need
an increasing number of multiplications, depending on the index i of the partial
product a ·B[i].

Intuitively, one could estimate the runtime in the range of O(n2) as op-
posed to the linear relation of the “reducing the final product” scheme. For an
implementation that uses this approach, confer to [BL06].

At a second glance, or more correctly after extensive study of the prob-
lem, the author of this work arrived at a solution that allows both multiplica-
tion and squaring with interleaved reduction, without derogative effects on the
speed. The idea was inspired by the Montgomery multiplication3, as presented
in [GK03b]. To facilitate understanding, it is beneficial to consider the other
options to implement the modular reduction.

7.6.2 Hard-wired reduction

The reduction after computation approach is implementable by a special reduc-
tion unit using hard-wired reduction [PLP07]. This method is very fast and has
relatively moderate hardware requirements. Unfortunately, there are several se-
vere drawbacks, which inhibited the application of this idea. For an illustration
of the operation the reduction unit has to implement, refer to figure 7.6.

The hard-wired reduction module works on the entire target polynomial at
once. As the input is a polynomial of a potential degree up to 2m− 2, the unit
would require its own bus system. This and the broad data path impose area
and peak power requirements that exceed the acceptable limits.

Apart from that, a structure as large as this would suffer from the same
undesirable accidental load modulation condition, that was discussed in §6.1.
Considering that the width of an operand is 325 bits, the problem would in all
probability even be worse.

It is possible to break down this process to word length. This is exactly
what the repeated multiplication reduction algorithm presented in §7.6.4 does.

7.6.3 Software reduction algorithms

Next, the applicability of the software reduction procedures detailed in [HMV04]
was inspected. These algorithms are specifically tailored to one of the NIST
reduction polynomials proposed in [Fed00]. Furthermore, they are optimized for
general-purpose processors that lack native F2m arithmetic operation support.

An analysis of the appropriate algorithm showed that this method could
only be applied to the ISAs introduced in §7.2 with the addition of elaborate
shifting capabilities to the accumulator. Although possible, the reduction with
this technique would be exceedingly slow and the control logic for the operation
would be cumbersome to say the least.

2The additional memory only adds to the static power dissipation, because clock gating
will be used.

3Not to be mixed up with the Montgomery point ladder.

7.6 MODULAR REDUCTION 61

During deliberation of an adaption of the software reduction algorithm, the
author of this work devised a method of reduction that was termed repeated
multiplication reduction by [PLP07]. For a detailed description of this tech-
nique, confer to [GSE+02]. The application domain for this methodology are
flexible solutions that support more than one binary field. Surprisingly, this
algorithm class produces a nearly perfectly suited incarnation for the NIST re-
duction polynomial f(z) = z163 + z7 + z6 + z3 + 1 of the finite field F2163 in
conjunction with the ISAs presented in §7.2.

7.6.4 Repeated multiplication reduction

As stated in [HMV04] and albeit a little different than [GSE+02], the irreducible
polynomial

f(z) = zm + r(z), deg{r(z)} ≤ m− 1,

where r(z) is called the reduction polynomial. The result polynomial

c(z)| deg{c(z)} ≤ 2m− 2

is congruent to

c(z) = c2m−2z
2m−2 + · · ·+ cmzm + cm−1z

m−1 + · · ·+ c1z + c0

≡ (c2m−2z
m−2 + · · ·+ cm)r(z) + cm−1z

m−1 + · · ·+ c1z + c0 (mod f(z)).

By using the NIST-specified curve for 163 bits, the irreducible polynomial is
defined as f(z) = z163 + z7 + z6 + z3 + 1, and r(z) = z7 + z6 + z3 + 1. So,
by multiplying r(z) and cH = (c2m−2z

m−2 + · · · + cm), and adding the result
to cL = cm−1z

m−1 + · · · + c1z + c0 a new temporary output is derived which
only has a degree of m = 168. The process described above is then repeated
once more and the final reduced result is computed. Confer to figure 7.6 for a
visualization of the necessary procedure.

Figure 7.6: Two step reduction for the NIST-163 elliptic curve

Großschädl and Kamendje introduced an almost identical method in [GK03a].
Their reduction algorithm uses partial reduction, as its projected field of opera-
tion are small microprocessors with instruction-set extensions. Due to the fixed
memory word size4 of such processors, there is always a certain amount of un-
used bits when mapping an element to a memory array. Partial reduction stops

4Usually a multiple of eight.

7.6 MODULAR REDUCTION 62

as soon as the element fits into the t-word representation. This representation
is congruent to an element in F2m .

If the word width of the MAC equals or exceeds 6 bits, it is possible to com-
pute the reduction with one element ·word and two word ·word multiplications.
If the MAC width is equal to or greater than 7 bits, the same is possible with
one word · word multiplication less.

Algorithm 7.8: Repeated multiplication reduction - Implementation

Input: c(z)|deg(c(z)) ≤ 2m− 2, r(z)|r(z) = z7 + z6 + z3 + 1
Output: c(z) ∈ F2163

LDB(r(z));1

MAC(CH [0]);2

for i← 0 to t− 2 do3

ADD(CH [i]);4

CL[i]←MAC(CH [i + 1]);5

ADD(CH [t− 1]);6

CL[t− 1]← LDB(r(z));7

MAC(CH [0]);8

ADD(CL[0]);9

CL[0]← LDB(0);10

Algorithm 7.8 details the steps necessary to perform the repeated multipli-
cation reduction with the Simplex ISA presented in §7.2. The word width w of
the implementing ALU must be at least 8.

The memory read and write operations in the reduction procedure necessi-
tate a complex bus logic for the double-width result register file. As for mul-
tiplication and squaring, a contiguous write is necessary. The result registers
are addressed as one file of almost the double size of a field element. To greatly
facilitate the reduction process, it is essential to be able to read CH and CL as
self-contained register files, independent of their physical position in the result
registers. For the multiplication and squaring operations continuous reading is
mandatory. This difficulty was termed the CH -selection problem by the author
of this work.

Assuming that the second reduction level polynomial is small enough to fit
into ACCL, the correct runtime is given by this equation

tcycles = 5 + 2 · (t− 1). (7.1)

Optimizations due to combining multiplication and squaring with reduction
are taken into account5. For a 16-bit MAC, that amounts to 25 clock cycles, or
approximately 10% of the runtime of a multiplication without reduction.

7.6.5 Multiplication with interleaved reduction

The product scanning form multiplication in conjunction with the repeated
multiplication reduction introduced above enable the efficient implementation
of interleaved reduction. The reason for this is the property of the Comba
multiplication method to generate one digit of the product at a time.

5Otherwise the cycle count would be tcycles = 7 + 2 · (t − 1).

7.6 MODULAR REDUCTION 63

For a multiplication c = a · b, a, b ∈ 2163, the 11th partial product computed
with the product scanning form contains the polynomial c175z

175+. . .+c160z
160.

In accordance with the nomenclature used in figure 7.6 the polynomial c162z
162+

. . . + c160z
160 is the last digit of C0

L (C0
L[10]), while c175z

175 + . . . + c163z
163 is

the first part of CH0 .
The lower three bits representing C0

L[10] are normally stored in the last word
of the memory element that will contain the final product. The lower part of
CH0 is saved in temporary variable RC.

The next partial product (C[11]) that is ascertained will again be split at
the three bit boundary. This time the higher 13 bits (c191z

191 + . . . + c176z
176)

are written to a second temporary space MC. The lower three bit are then
combined with the 13 bits carried over from the last round which are currently
stored in RC.

Together they constitute the 16-bit word c178z
178 + . . . + c163z

163, the first
digit of C0

H . This word is restored in the accumulator. In the next step it is
multiplied with r(z): t = w · r. The lower 16 bit of the result in ACCL are
added to C0

L[0]. The carry of the multiplication in ACCH is than swapped
with the content of MC. Thus, MC alternately stores the carry of the normal
multiplication and the one of the reduction multiplication.

Then the next partial product (C[12]) is computed, and the process is re-
peated. Thus, the repeated multiplication reduction is performed step by step
as the partial products of CH0 and after that CH1 become available.

Algorithm 7.9 describes all the steps that are necessary to compute the
Comba multiplication with interleaved reduction. A wide array of special pur-
pose instructions is required to implement this method. Thus, only the Complex
ISA, which in fact is specially tailored to this application, is capable to perform
the operation.

The function cpi(x, y) simply returns the difference between the two input
values cpi(x, y) = y − x. To minimize the number of read operations for the
product scanning form multiplication, the operands have to be read in a spe-
cific order, as explained in§7.4.2. This optimal sequence of read operations, is
computed by the indi,j function.

The runtime of this multiplication method is given by the following equation

tcycles = 11 + 4 · (t− 1) +

(

t−1
∑

i=1

2 · i

)

+

(

1
∑

i=t−2

2 · i

)

For the 16-bit Complex ALU, the number of cycles totals to tcycles = 251,
which is substantially faster than an operand scanning form multiplication with
subsequent reduction (281 = 256 + 25), and only marginally slower than an
optimal Comba multiplication/modular reduction pair (249 = 224 + 25).

At the same time, it requires one element-memory space less. The analysis
of the Complex ISA showed that two additional registers, the 13 bits wide RC
and the 15-bit storage unit MC are necessary. The net area gain for F2163 is
therefore equivalent to the size of 136 flip-flops. This method would also work
for the NIST curves F2283 and F2571 , where the area gain would be accordingly
larger.

7.6 MODULAR REDUCTION 64

Algorithm 7.9: Multiplication (product scanning form) with interleaved
reduction - Complex implementation

Input: a, b ∈ F2m

Output: c = a · b mod f, c ∈ F2m

LDB(A[0]);1

MAC(B[0]);2

i← 0, j ← 0;3

for i← 1 to t− 1 do4

MAR(B[cpi(indi,j , i)]) ;5

for j ← 1 to i do6

LDB(A[indi,j];7

MAC(B[cpi(indi,j , i);8

T [t− 1]←= SMR(0);9

i← 0, j ← 0;10

LDB(A[indi,j]);11

for i← 0 to t− 2 do12

if i 6= 0 then13

C[i− 1]←MSM(B[cpi(indi,j, t + i)]);14

else15

MAC(B[cpi(indi,j , t + i)]);16

for j ← 1 to (t− 2)− i do17

LDB(A[indi,j]);18

MAC(B[cpi(indi,j , t + i)]);19

SAA(T [i]);20

MAR();21

C[t− 2]← SMC();22

SAA(0);23

MAR;24

SRD(T [i]);25

C[i]← RAC(C[0]);26

MAR();27

C[0]← SRW ();28

// The next two lines are only required for ALUs with a word

width of 8, 11, 12, 14, 15, 21, 24 or 28 bits

SMA(C[1]);29

C[1]← SRW ();30

7.6 MODULAR REDUCTION 65

7.6.6 Squaring with interleaved reduction

The square operation with interleaved reduction algorithm 7.10 utilizes the same
principle as the multiplication with interleaved reduction method. The square
is computed as outlined in §7.5.2 until the first result exceeds the 163-bit limit.
Then, similar to its multiplication counterpart, the algorithm alternates between
computing the reduction and the next partial product of the temporary result.

Algorithm 7.10: Squaring with interleaved reduction - Complex imple-
mentation
Input: a ∈ F2m

Output: c = a2 mod f(z), c ∈ F2m

LBS(A[0]);1

MAH(A[0]);2

i← 1, j ← 0;3

for i← 1 to t/2 do4

T [j + +]← LBS(A[i]);5

T [j + +]←MAH(A[i]);6

T [t− 1]← SMR(T [0]);7

j ← 0;8

for i← bt/2c+ 1 to t− 1 do9

SLB(A[i]);10

MAR();11

C[j + +]←MSM(A[i]);12

SAA(T [j]);13

MAR();14

if i = t− 1 then15

C[j + +]← SMC();16

else17

C[j]← SAM(T [+ + j]);18

SAA(0);19

MAR();20

SRD(T [j]);21

C[j]← RAC(C[0]);22

MAR();23

C[0]← SRW ();24

// The next two lines are only required for ALUs with a word

width of 8, 11, 12, 14, 15, 21, 24 or 28 bits

SMA(C[1]);25

C[1]← SRW ();26

The procedure detailed by algorithm 7.10 only works if t mod 2 = 1. For word
widths w that result in a t such that t mod 2 = 0, a slightly different variant is
required. It will not be discussed here, as it has the same characteristics. The
number of cycles necessary to compute one result is given by

tcycles = 9 + 2 · bt/2c+ (t− 2− bt/2c) · 6.

For a 16-bit ALU implementation of the Complex ISA tcycles = 49 which is
exactly the same as is achievable with two separate operations for squaring and

7.7 INVERSION 66

reduction. This algorithm is required to achieve the area gain outlined for the
multiplication with interleaved modular reduction procedure.

7.7 Inversion

The inversion of an element in F2m is the most complex field operation. Inversion
is required to implement division in a field. Recall that a/b = a·b−1, ∀a, b ∈ F2m .

Again, there are two completely different approaches to perform a field
inversion. This section compares several variants of the Extended Euclidean
Algorithm (EEA) and the Fermat based inversion and discusses possible hard-
ware implementations thereof.

7.7.1 Extended Euclidian Algorithm based inversion

The Extended Euclidean Algorithm for binary polynomials computes the Great-
est Common Divisor (GCD) of two elements a, b 6= 0, a, b ∈ F2m and is denoted
by d = gcd(a, b). The GCD d is the polynomial of highest degree that divides
both a and b. The EEA is an extension to the GCD that computes two ad-
ditional elements g and h, satisfying ag + bh = dmod f , where d = gcd(a, b).
If a is the number of which the inverse is sought, and b = f is the irreducible
polynomial of the field F2mthen, d = gcd(a, f) = 1, ∀a ∈ F2m , a 6= 0. Therefore,
g is the inverse of a, because ag + bh = dmod f ≡ ag ≡ 1 ≡ g = a−1 mod f .
For a description of the basic principles of the EEA algorithm, please refer to a
textbook like [WT02].

The basic EEA method, as can be found in [HMV04] for example, requires
polynomial degree comparison. This is difficult to implement in hardware, there-
fore a modified approach known as the binary inversion algorithm6 is more
appropriate. It is based on three observations [Lai04]:

1. If a and b are both even, gcd(a, b) = 2 · gcd(a/2, b/2)

2. If a is even and b is odd, gcd(a, b) = gcd(a/2, b)

3. If both a and b are odd, gcd(a, b) = gcd(|a− b|/2, b)

According to [HMV04], which presents the binary field variant of the binary
inversion algorithm, the necessary degree calculations can now be reduced to a
comparison of the involved values.

A direct hardware implementation of the comparison is still very resource
intensive, which led to the development of the current state-of-the-art EEA
method for low power, low-die-size applications: the Counting EEA algorithm.
It was first introduced in [Lai04] and later adapted by Fürbass for use in an
ECC processor for RFID [FW07b].

Algorithm 7.11 is the binary field version of the procedure presented in
[FW07b]. The additional exit condition is necessary because in F2m , u⊕ v/2 =
0|u = 1, v = 1, and not (1 + 1)/2 = 1 as in Fp.

A direct translation of the Counting EEA technique to an architecture with
a word width that differs from the element size is cumbersome. The additional

6Take care not mix up the Binary EEA inversion algorithm with inversion in a binary field!

7.7 INVERSION 67

Algorithm 7.11: Counting EEA using reduction polynomial

Input: a(z), b(z)| a(z), b(z) ∈ F2m

Output: x(z) = a(z) · b(z)1 mod f(z)
u← a(z); v ← f(z); x← b(z); y ← 0; k ← 0;1

while u 6= 1 do2

while u0 = 0 do3

u← u� 1;4

x← (x⊕ x0 · f(z))� 1;5

k ← k + 1;6

if k ≤ 0 then7

u↔ v; x↔ y;8

k ← −k;9

u← (u⊕ v)� 1;10

if u = 0 then11

break;12

x← (x⊕ y ⊕ (x0 ⊕ y0) · f(z))� 1;13

instructions needed to augment the ISAs detailed in §7.2 are limited to a 1-
bit shift-right instruction, which is negligible. Runtime is the issue. Due to
the small-word-size paradigm chosen for this work, almost all operations in the
algorithm are slowed down by a factor of t, where t is the number of words
needed to represent an element.

A conservative estimation of the runtime yielded

tcycles = [4 · t + 7 + (4 · t + 3) · l2] · l1

to compute the cycle count, where l1 is the average number of outer loop exe-
cutions and l2 the average number of inner loop executions. A simulation with
one million test cases produced the values l1 ≈ 206, and not surprisingly l2 ≈ 1.
This amounts to a total of tcycles ≈ 20, 188 for one inversion in F2163 on a 16-bit
ALU. That is 80.43×tmul, where tmul is the time required for one multiplication
with interleaved modular reduction.

An efficient implementation of the inversion using a distinct hardware unit,
would drastically reduce the cycle-count into the range of the multiplication
runtime. Unfortunately, the resources required to build such a module include:
A full element-width bus, a full precision accumulator and an full precision
XOR-adder. Setting aside the additional strain this would put on area size and
power management, it would again lead to the same set of problems already
discussed in section §6.1.

7.7.2 Fermat based inversion

Remember that the inverse of an element in F2m can be computed using Fermat’s
little theorem a2m

−2 ≡ a−1 mod f(z). Thus, the inversion problem is reduced
to an exponentiation.

There are several computational approaches to exponentiation. Setting the
trivial multiplicative technique aside, the square-and-multiply algorithm for ex-

7.7 INVERSION 68

Algorithm 7.12: Square-and-multiply MSB-first method

Input: a(z) ∈ F2m,x

Output: a(z)x

d(z)← 1;1

for i← m− 1 to 0 do2

if xi = 1 then3

d(z)← a(z) · d(z)2 mod f(z)4

else5

d(z)← d(z)2 mod f(z)6

ponentiation is probably the best known (algorithm 7.12). It requires m square
operations in total and one multiplication for every bit set in the exponent.

Unfortunately, the reduction exponent 2163−2 of the field used by this work
has 162 of its 163 bits set to one. This amounts to a runtime of 163 square
operations and 162 multiplications, which is very inefficient as multiplications
have a relatively high cycle count (cf. §7.4.2).

Itoh and Tsujii proposed a recursive method to exponentiation in [IT88]. It
focuses on reducing the number of multiplications. Although they use normal
basis representation, which has the advantage of especially fast squaring7, the
same premises apply to the problem at hand. The squaring operation in this
architecture is also significantly faster than the multiplication. The algorithm
they suggest has a complexity of 162 square operations and 18 multiplications
for a 163-bit inversion exponent. The Itoh and Tsujii method works with arbi-
trary exponents and is ideally suited for either a hierarchical multiplier approach
in hardware or a recursive software program. For the hardware architecture pre-
sented in this work, it has the severe handicap, that it would need 81 temporary
element variables. Therefore, it is unacceptable.

To solve that problem and to further improve the cycle count, the structure
of the fixed inversion exponent must be exploited. Ignoring the least significant
bit of the exponent, which is not set, leaves the 162 upper bits for consideration.
Applying the recursive algorithm to those bits, one can discern that all sub-trees
are exactly the same. Thus, they can be merged, yielding an implementation
that requires only 9 multiplications while the number of square operations stays
constant at 162. This is the optimal achievable runtime complexity. Further-
more, this algorithm needs only three storage elements: one for the input value,
one for the output value and one for temporary usage.

Algorithm 7.13: Square-and-multiply: recursive method - inner inversion
operation (inInvOp(a(z), b(z), number)

Input: a(z), b(z) ∈ F2163 , n
Output: a(z)2

n

· b(z)mod f(z)
for i← 0 to n do a(z)← a(z)2 mod f(z);1

a(z)← a(z) · b(z)mod f(z);2

7One cyclic shift.

7.7 INVERSION 69

Algorithm 7.14: Square-and-multiply: fully recursive method

Input: a(z) ∈ F2163

Output: c(z) = a(z)2
163

−2

c(z)← a(z);1

inInvOp(c(z), a(z), 1)d(z)← c(z);2

inInvOp(c(z), d(z), 2);3

c(z)← c(z)2 mod f(z);4

c(z)← c(z) · a(z)mod f(z);5

d(z)← c(z);6

inInvOp(c(z), d(z), 5)d(z)← c(z);7

inInvOp(c(z), d(z), 10)d(z)← c(z);8

inInvOp(c(z), d(z), 20)d(z)← c(z);9

inInvOp(c(z), d(z), 40);10

c(z)← c(z)2 mod f(z);11

c(z)← c(z) · a(z)mod f(z);12

d(z)← c(z);13

inInvOp(c(z), d(z), 81)d(z)← c(z);14

c(z)← c(z)2;15

The only drawback of the implementation described by algorithm 7.14 is,
that it needs the additional temporary variable d(z). Depending on the choice
of the ECC level scalar point multiplication scheme, the number of variables
required by the inversion algorithm directly contributes to the total memory
size. For this case, a modified variant of the recursive approach was developed.
It combines the k-ary method detailed in [Gor98] and the optimization idea
presented by Guarjardo et al. in [GP97] with the recursive method of Itoh and
Tsujii.

Algorithm 7.15: Square-and-multiply: recursive, k-ary method

Input: a(z) ∈ F2163

Output: c(z) = a(z)2
163

−2

c(z)← a(z);1

for i← 0 to 1 do a(z)← a(z)2 mod f(z); a(z) · c(z)mod f(z);2

c(z)← a(z);3

for i← 0 to 1 do4

for i← 0 to 2 do c(z)← c(z)2 mod f(z);5

c(z) · a(z)mod f(z)6

a(z)← c(z);7

for i← 0 to 9 do a(z)← a(z)2 mod f(z);8

a(z) · c(z)mod f(z) c(z)← a(z);9

for i← 0 to 7 do10

for i← 0 to 17 do c(z)← c(z)2 mod f(z);11

c(z) · a(z)mod f(z)12

c(z)← c(z)2 mod f(z);13

The procedure presented in algorithm 7.15 has a runtime complexity of 162

7.7 INVERSION 70

square operations and 13 multiplications. This amounts approximately to a 10%
trade-off compared to the recursive method, but this variant only needs two
variables in total. The original value in a(z) is overwritten, so the advantage
vanishes, if the original a(z) is required after the inversion.

Notice that in both algorithm 7.14, and algorithm 7.15 the reduction ex-
ponent is hard-coded into the structure of the inversion procedure. This is an
added bonus, as it frees one slot in the constant memory (ROM).

7.7.3 Conclusion

Comparing the different solutions discussed in this section, the selection of an
appropriate inversion algorithm becomes rather simple. A direct translation of
the state-of-art EEA variant on the MAC architecture, has no advantages over
the Fermat based inversion methods. It even performs worse than the optimized
Square-and-Multiply techniques, thus it is best discarded.

Algorithm Runtime [cycles]
Square-and-Multiply 53509

S-a-M (partially recursive, k-ary) 11639
S-a-M (fully recursive) 10551

Counting EEA 20188

Table 7.6: Runtime comparison of inversion algorithms on a 16-bit MAC core

The speed increase due to an EEA hardware unit such as the one presented
in [FW07b] would allow the use of the affine version of the Montgomery scalar
multiplication. This would free up one 163-bit memory element. This area gain
does not suffice to compensate the additional hardware costs.

If the extra hardware unit is not an option, and a procedure that recovers the
y-coordinate is required then, the projective Montgomery-Point-Ladder using
the recursive, k-ary Square-and-Multiply method, is the best choice. As the
computation of the missing coordinate is the most memory consuming task,
and incidentally contains the only occurrence of the inversion, this combination
requires in total one temporary variable less .

ECDSA signature generation does not require the above mentioned y-co-
ordinate recovery. Thus, the best scalar point multiplication procedure, with
respect to area usage, is the projective Montgomery-Point-Ladder. For this
combination, the purely recursive Square-and-Multiply algorithm is best suited,
because in total, no extra temporary variable is necessary.

Chapter 8
Implementation

This chapter discusses the implementation details of the ECCon processor. A
comprehensive discussion of this subject would go beyond the scope of this work,
therefore only the most prominent implementation decisions are highlighted
herein.

The chapter starts by introducing the two power-saving methodologies par-
amount to the design process in §8.2. After that a discussion of the components
of the RFID front-end (§8.3) and the constraints for clocking in an RFID envi-
ronment (§8.3.2) is in order. The RFID section concludes with a deliberation of
the realization details of the communication protocol implementation in §8.3.3.
Next a comprehensive overview on the components related to the datapath of
the ECC processor is given in §8.4 (ALU) and §8.5 (Memory), whereas §8.6 is
concerned with the control unit.

Then the design for test strategies applied to the ASIC designed as part of
this thesis and an analysis of their efficiency are discussed in §8.7. Side-channel
attack resilience was one of the directives for this work and the measures taken
to protect the circuit from such an attack are described in section §8.8. Finally,
this chapter concludes with a concise presentation of the results of this thesis
and a comparison with related work in §8.10.

The subjects discussed herein require fundamental knowledge of digital hard-
ware design. It is assumed that the reader is familiar with the basic hardware
building blocks, synchronous design, Complementary Metal-Oxide Semiconduc-
tor (CMOS), Very Large Scale Integration (VLSI) and related topics. For fur-
ther information on these topics please confer to a textbook like [Kae08].

8.1 Conventions

The illustrations in this chapter use a fixed color scheme to distinguish different
types of signals and logic blocks. The schemes are depicted in figure 8.1.

If space allows, plots might be supplemented with a partial reprint of the
color scheme. All logic blocks of type sequential, combination and FSM require
a clock, reset and clock enable signal. These are often omitted from the plots
for reasons of clarity.

8.2 POWER SAVING TECHNIQUES 72

Figure 8.1: Color scheme for signal and logic block types

8.2 Power saving techniques

Power consumption in CMOS circuits is categorized into static power consump-
tion and dynamic power consumption. Recall that CMOS technology mainly
dissipates power when a state change occurs. Power usage due to this switching
activity is called dynamic power consumption. The main sources for this are
the charging and discharging of capacities and crossover currents during a state
change.

CMOS technology does not only dissipates power when a state change oc-
curs. Static power consumption, which is primarily caused by different variants
of leakage currents, is a constant drain on the power budget, which is not due
to switching activity. The simulated static power consumption of the ECCon
processor does not exceed the nano-Watt range and is therefore deemed negli-
gible.

8.2.1 Dynamic power consumption

The major part of dynamic power consumption stems from charging and dis-
charging the input capacities of the logic gates and the wires of the digital
circuit. Thus, the power dissipated can be estimated with this equation

Pdyn = α · f · U2 · C,

where α is the switching probability, f the frequency, U the supply voltage and
C the switched capacitance of the circuit in question. Thus, the designer can
reduce dynamic power dissipation by decreasing the switching probability and
the frequency. The supply voltage and the gate capacities are VLSI technology
specific. The total capacitance is dependent on the circuit.

8.2.2 Clock gating

Many registers in a digital circuit are not required to change their respective
values at every clock cycle. To enable a register to retain its current value, a
feedback loop with a multiplexer to select between the input signal and the fed
back signal, is employed. This adheres to the rules of synchronous design but is
wasteful.

8.3 RFID FRONT-END 73

A clock gate is a module, that controls the clock signal to a register. If the
clock signal is deactivated, the register retains its value without necessitating an
additional multiplexer. Furthermore, the number of clock tree nodes that are
charged and discharged is reduced to one, instead of the number of flip-flops in
the register. Figure 8.2 depicts a register that is clock gated with a clock gating
unit composed of a latch and an AND gate.

Clock gating reduces the dynamic power consumption of the circuit by a
factor of 7.4. For more details confer to §8.9.

8.2.3 Operand isolation

Operand isolation tackles the problem of unnecessary signal propagation. A
combinatoric block computes a new result as soon as any of its inputs changes.
If the result is not required, the block wastes energy on calculating it.

To prevent this, the inputs of a combinatoric function, the operands, need to
be isolated from the combinatoric core. This is usually achieved by adding an
AND gate for every input signal. Figure 8.3 illustrates this process using a poly-
nomial adder as combinatoric block. Operand isolation is also known as sleep
logic. Operand isolation is primarily employed by the memory implementation.
For further details refer to §8.5.

8.3 RFID front-end

The RFID-front end consists of the RART and the RFID control unit. The
RART is a third party module but it has been slightly modified to fit the
prerequisites of the ECCon circuit. For an illustration of the structure of the
RFID front-end refer to figure 6.1.

8.3.1 RFID Asynchronous Receiver Transmitter (RART)

This module has an RFID air interface compatible set of ports on one side and
a synchronous, fully registered byte interface on the client component side.

The RFID air interface must provide a clock, a reset, a binary data-in and
likewise a binary data-out port. The RART performs a binary-to-byte con-
version in the receiver circuit and a byte-to-binary conversion in the sending
part. Both operations adhere to the physical layer section of the ISO-18000-3-1
standard.

On the client side it supplies a byte-register that stores the last received
byte. In transmitting mode, it saves the data value that should be sent next.
In addition, it also provides a set of signals that notify a client component of
important events. A mode select signal decides if the component is in receiver
or transmitter mode.

8.3.2 Clock gate enable operation frequencies

The ISO-18000-3-1 standard [ISO04] defines a carrier frequency fc of 13.56 MHz.
It is easy to derive integer fractions of fc for use as clock gate enable signals
with a frequency: fcge = fc

i
, i ∈ N\{0}. The RART module operates at a clock

8.3 RFID FRONT-END 74

Figure 8.2: Clock gated register

Figure 8.3: Operand isolation

8.3 RFID FRONT-END 75

frequency of fc/2 = 6.78 MHz. The circuit is designed for single-edge-triggered
one-phase clocking, where the low-to-high edge is the active one.

The ECCon circuit in general relies heavily on clock gating. The primary
clock gate enable signals for the different components of the ASIC are created
in the RART. These signals are then used by the RCU and the ECC processor
to generate the clock gate signals for their registers. The primary clock enable
signal for the RCU has a frequency of fc/128 = 105.9375 kHz. The primary
clock enable signal for the ECC processor has a frequency of fc/16 = 847.5 kHz.

The RART already defines a clock gating unit that creates a clock gate enable
signal a frequency of 106 kHz. This module was augmented with the capability
to create the fc/16 = 847.5 kHz clock gate signal for the ECC processor. This
allows the calculation of one point multiplication in 0.4 seconds.

Figure 8.4: Displaced clock gate enable signal creation

The primary clock gate enable signals are created in a way, such that no
two active edges for the RCU and the ECC processor overlap (refer to figure
8.4). Thus, the RCU and the ECC processor are never active at the same time.
This limits the maximum amount of dynamic power required by the ECCon
processor to the power dissipated in the RART and the ECC processor unit.
The reason for this is that the consumption of the RART and the RCU combined
is negligible in comparison.

8.3.3 RFID Control Unit (RCU) implementation

The RFID control unit implements the communication protocol outlined by the
ISO-18000-3-1 standard. It does so in a straight-forward way with a complex
FSM, a 5-bit counter and an 8-bit comparator. It is capable to execute the
commands described in chapter §5, including the simpler version of the anti-
collision protocol.

The FSM knows 67 distinct states. Implementation and verification required
a month of work. Despite the number of states the implementation itself is rather
plain. Because of this, the number of states and the greater relative importance
of the ECC processor, no description of the FSM is given herein.

The control component is driven by events generated by the RART. Exam-
ples are the Start Of Frame (SOF) event, which signals that a new frame of data
is about to arrive, the byte received event, which indicates that enough binary
data arrived to be made available as byte sized chunk, and the byte sent event

8.4 ALU 76

which indicates that the next byte that should be transmitted, can be written
to the send buffer.

The primary difficulty in designing a protocol unit for this standard, is to
minimize power consumption while at the same time adhere to the stringent
timing constraints imposed. The RART converts the bit stream the air interface
provides into byte sized blocks. To minimize necessary storage the received byte
must be evaluated before the next arrives. The same holds true in reverse for
the case of the tag sending information to the reader.

Therefore, it is of great importance to implement the protocol with the
minimal possible virtual clock frequency and the smallest, most power-efficient
datapath. A minimum clock frequency is important to reduce dynamic power
consumption (confer to §8.2.1). A small datapath reduces the required die area,
and less components generally means less capacitance to charge and discharge.

The fcge = fc/128 = 106 kHz clock gate enable frequency already mentioned
suffices to perform 32 operations between two byte received events. This is
enough to implement the complex anti-collision scheme, the most time consum-
ing mandatory operation of the ISO-18000-3-1 communication protocol, with
a basic datapath such as the one outlined above. All the other commands,
including the simpler anti-collision scheme, fit easily into one such slot.

8.4 ALU

The ALU of the ECC processor component of the ECCon ASIC is one of the
three most crucial components of the circuit. The other two being the memory
and the control logic of the ECC core. In §7, two different ISAs were introduced.
Prospective implementations for both were developed and compared.

8.4.1 The Simplex ALU

The Simplex ISA design provides only a very limited set of instructions, hence
the name. Likewise, the implementation is quite plain. Its detailed Register
Transfer Level (RTL) structure is depicted in figure 8.5.

In its 16-bit incarnation, the circuit consists of:

1. Two 16-bit registers B and ACCL.

2. One 15-bit register ACCH.

3. One 16× 16 F2-polynomial multiplier ⊗.

4. One 16-bit F2-polynomial adder ⊕, which is composed of 16 XOR gates.

5. A pair of 2-to-1 multiplexers to implement the adder input selection func-
tions.

6. A shift unit capable to right-shift the accumulator by zero, eight or 16
bits.

7. 16 two-input AND gates.

8.4 ALU 77

Figure 8.5: Simplex-ISA - ALU implementation

8.4 ALU 78

8.4.2 The Complex ALU

The ALU implementation of the Complex -ISA must support a greater variety
of instructions in comparison with the Simplex architecture. Therefore, it is not
very surprising that the concrete hardware realization is more complicated.

Figure 8.6 illustrates the interaction between the major components of the
unit, whereas figure 8.7 depicts the select-and-add unit (SAA) in more detail.
The select-and-add is not the most area consuming component, but it contains
the most complicated datapath of all submodules of the ALU.

Storage elements. The module contains two 16-bit registers (B and ACCL),
two 15-bit registers (MC and ACCH) and one 13-bit register (RC).
ACCH and ACCL together compose the accumulator of the component.
The accumulator contains a shift unit that is capable of a shift right by
eight bits operation. All registers are clock gated if they are not active.

The 16× 16 F2-polynomial-multiplier (⊗). This component is implemented
as an array multiplier. The addition part of the multiplication is handled
by a tree-adder composed of XOR gates. It is the single most area inten-
sive component of the ALU. The result of the multiplication is only 31
bits wide. This is due to

(a15z
15 + . . . + a0)× (b15z

15 + . . . + b0) = c30z
30 + . . . + c0.

The select-and-add unit. The two 16-bit F2-polynomial adders (⊕) are im-
plemented by two times 16 2-input XOR gates. The module actually has
two distinct outputs. It uses a set of multiplexer arrays to select the inputs
of the addition units and optionally mask them with arrays of AND gates.

This composition as it is depicted in figure 8.7 describes the unit on a
functional level. The actual hardware implementation differs, as the syn-
thesizer replaces the multiplexers and AND gates with an and-or-invert
gate based structure. A one-bit slice for the right hand side path is de-
picted in figure 8.8.

Any variable XORed with zero retains its value, thus the select-and-add
unit can perform the select operation by masking one of the inputs to
one of the two polynomial-adders, which will then perform the identity
operation on its other input.

An example will clarify this further. See figure 8.7 and assume that both
of the control signals for the AND gate arrays in the high path (MskH0

and MskH1) are set to zero. The output of the corresponding polynomial
adder will therefore be zero. The multiplexer control signal Sel selects
ACCH as input for multiplexer M0, while MskH1 = 0 masks the other
input. Thus, a shift-accumulator-right-16 operation is achieved.

8.4.3 Comparison

Both architectures were implemented in the hardware description language
VHDL and subsequently synthesized with Synopsys Design Compiler. The re-
sults as given by the Design Compiler area and power reports are compared
in table 8.1. The two ALUs were synthesized with the compile ultra command
using the constraints given in listing 8.1.

8.4 ALU 79

Figure 8.6: Complex-ISA - ALU implementation

8.4 ALU 80

Figure 8.7: Complex-ALU select-and-add (SAA) unit

Figure 8.8: Complex-ALU SAA slice

8.5 MEMORY 81

Simplex -ALU Complex -ALU [%]
ALU cell area [µm2] 13,351 19,341 145

Memory cell area [µm2] 103,767 91,347 88
Mem+ALU cell area [µm2] 117,118 109,878 94

Power at 10 MHz [µW] 161 176 109
Scalar multiplication [cycles] 325,245 306,587 94

Table 8.1: Comparison of the Simplex and Complex ALUs

The Simplex ALU requires significantly less area and marginally less power,
while at the same time being approximately 6% slower than its Complex coun-
terpart. The Simplex ALU necessitates one more 163-bit memory element.
Taking this into account, the Complex ALU and its 7 × 163 bits memory are
significantly smaller, than the Simplex ALU and the corresponding 8× 163 bits
memory.

The Complex -ALU has one additional advantages that is not apparent in
the comparison made in table 8.1. It solves the CH -selection problem. The
CH -selection problem stems from the repeated multiplication modular reduc-
tion algorithm introduced in §7.6.3, which is the best solution for the modular
reduction operation in conjunction with the Simplex -ALU.

This algorithm requires continuous read and write access to the 325-bit result
of a multiplication or squaring operation C = c324z

324 + . . .+ c0. It is necessary
to read from and write to C in 16-bit words C[t], where t ∈ [0, 21]. At the
same time it necessitates access to CH = c324z

324 + . . . + c163z
163 and CL =

c162z
162 + . . . + c0. The word indices t for CH [t] and CL[t] are zero to 11.

The memory of this circuit is composed of 163-bit elements. This structure
complicates a contiguous read and write access to a virtual 325-bit element.

Different solutions for this particular challenge are conceivable, but none of
them are especially attractive. They either disrupt the regular structure of the
memory by adding a second read or write bus to the designated multiplication-
and squaring-result memory elements, or they require additional registers and
multiplexers in the datapath of the ALU. Another option would be to chose a
congruent number representation as was done by Großschädl et al. in [GK03b],
but that would require 176-bit memory elements.

No concrete numbers for comparison exists but it can be safely assumed that
the structure applied to solve this problem would further diminish the power
consumption advantage of the Simplex -ALU, while, at the same time, increasing
the area benefit of a Complex -ALU based ECC processor.

For the reasons outline above the Complex -ALU was selected for implemen-
tation.

8.5 Memory

The memory consists of a 7 × 163 bits storage unit, a Lookup Table (LUT)
implemented as a combinatoric function and a BIST. The LUT is negligible
in both area usage and power consumption (> 1% of the memory component).
The BIST unit will be explained in section §8.7.1.

The storage unit is composed of flip-flops (figure 8.9) grouped into 16-bit

8.5 MEMORY 82

Listing 8.1: Constraints

###
Se t t i n g con s t r a in t s f o r ALU comparison
###

Set con s t r a in t s
s e t o p e r a t i n g c o nd i t i o n s TYPICAL
c r e a t e c l o c k ClkxCI −period 100

s e t i n pu t d e l a y 1 −clock ClkxCI\
[r emove f r om co l l e c t i o n [a l l i n p u t s] ClkxCI]

s e t ou tpu t d e l a y 1 −clock ClkxCI [a l l o u t pu t s]
s e t d r i v i n g c e l l − l ibrary umcl18g212t3 tc 180V 25C\

− l i b c e l l HDDFERPQ1\
[r emove f r om co l l e c t i o n [a l l i n p u t s] ClkxCI]\
> r epo r t s / a l u . r p t

a l l Outputs have the e qu i v a l en t load o f 2 medium
s t r en g t h b u f f e r s
s e t l o a d [expr 2 ∗\

[l o a d o f umcl18g212t3 tc 180V 25C/HDBUFD2/A]] \
[a l l o u t pu t s]

Optimize f o r minimal area
se t max area 0

Checks and r epo r t s
check de s i gn > r epo r t s / a l u . r p t
r epo r t d e s i g n >> r epo r t s / a l u . r p t

Figure 8.9: Memory flip-flop wx

8.5 MEMORY 83

Figure 8.10: Memory clock gating logic

Figure 8.11: Memory word

8.5 MEMORY 84

words as depicted in figure 8.11 using the clock gate latches illustrated in figure
8.10. The flip-flop block allows concurrent read and write operations.

Figure 8.12: Operand isolated multiplexer

Words are grouped into a structure called a memory unit (figure 8.13). Mem-
ory units differ in the number of words and the bit-width of the contained words.
The four different configurations of a memory unit are described in table 8.2.

Type # Words # Bits
A 4 16
B 3 16
C 4 4
D 3 4

Table 8.2: Definition of storage unit types

Each memory unit uses operand isolated 4-to-1 multiplexers as depicted in
figure 8.12, to select one word. The outputs of the operand isolated multiplexers
are guaranteed to be zero, if the operand isolation is active. This is controlled
by the selection signal Sel. This in turn is generated from the read address
using a decoder with an enable input, which was omitted from the illustration.
If the decoder enable input is zero, then so are all of its outputs. Thus, the
operand multiplexer is isolated from the inputs.

Apart from minimizing glitch propagation, this also has the advantage that
the output signals DO of the memory units can be ORed together. This is due
to the fact, that always only one memory unit will be active, while all others
output zero. Figure 8.14 depicts the memory core component. This implements
the 7 × 163 bits storage unit. The memory core uses OR gates to generate
memory read output.

8.5 MEMORY 85

Figure 8.13: Memory unit

Figure 8.14: Memory core

8.6 CONTROL 86

Writing to a memory word uses decoders with an enable input as described
above, to activate the clock gate of the target memory word. The control signals
for the decoders are generated from the write address in a way that always only
one word will be selected.

Due to timing constraints on this master thesis, this architecture was only
compared to a single competitor. The competing architecture was a trivial
VHDL behavioral model memory description. Both storage units were synthe-
sized using the same constraints already applied for ALU comparison, using the
compile ultra command.

The results reported by the Synopsys Design Compiler were a cell area of
84303 µm2 and an estimated power consumption of 4.99 mW for the trivial
approach. The architecture outlined in this section requires an area of 103876
µm2 and has an estimated power consumption of 0.71 mW . No clock gating
was applied for this comparison.

8.6 Control

An ECC point multiplication is a tedious and time consuming task. It requires
performing mathematical operations on the EC and in the underlying finite
field.

The multitude of functions necessary to perform such an operation require
some form of control logic that enables them on the datapath, which consists of
the Complex -ALU and the memory structure introduced above. As was decided
in §6.4.3 all control tasks are realized as a hierarchy of FSMs.

All FSMs are either direct one-to-one implementations of the algorithms
given in chapter §7, or so simple in nature that they are best described by their
VHDL source code. Therefore, no additional description of the implementation
of the FSMs is given herein. This section concentrates on the relationship of
the FSMs to each other.

8.6.1 The basic operations control unit

The operations in the binary field F2163 form the lowermost layer in the hierarchy
of operations that is essential to perform the scalar multiplication. These arith-
metic functions include the addition, the multiplication, a squaring operation
as a special case of the multiplication and the inversion.

The addition, multiplication, squaring and copying functions necessitate di-
rect control of the Complex -ALU, whereas the inversion only requires multipli-
cation, squaring and copying. Therefore, the first four were grouped into the
single hierarchical level depicted by figure 8.15.

Of the four FSMs on this level, always only one is active at the same time.
For this reason, it is possible to share certain resources amongst the four distinct
control units. All of them need a way to implement at least one FOR loop.
For this a counter and a subtractor component are required by the hardware
realization.

The counter module actually contains two autonomous 4-bit incrementing
counters, which allows to realize the two nested loops. These are a prerequisite
to the square and multiplication algorithms.

8.6 CONTROL 87

Figure 8.15: The binary extension field operations control module

Figure 8.16: Interaction between one FSM and the shared components

8.6 CONTROL 88

The four bit subtractor is required to help computing the loop indices for the
multiplication and squaring operations. It is specified by a table, because not
all possible subtrahends actually occur. Because of the self contained nature of
each of the four basic functions and their mutual exclusive execution, these two
components can be shared.

Figure 8.16 illustrates the relationship between one of the four basic FSMs
and the shared components. The FSM is activated using an enable signal, which
has to be kept at a logic one, until the FSM signals that it is finished through
the done signal. The control signals from the other three FSMs can be ORed
with the control signals of the depicted FSM because the control outputs of a
deactivated FSM are always zero.

Function Algorithm
Copy N/A

Square Algorithm 7.10
Multiplication Algorithm 7.9

Add Modified algorithm 7.2

Table 8.3: Mapping of operations in F2163 to the chosen algorithms

Table 8.3 maps the control blocks to the algorithms they realize. The algo-
rithm employed to perform the addition is a direct adaption of the one given
for the Simplex ISA to the Complex ISA. The procedure to copy a memory
element is simple enough, therefore it is not explicitly printed herein.

8.6.2 The ECC operation control unit

The other tasks realized by the ECC processor control unit are outlined in table
8.4 and their relationship to each other is illustrated by figure 8.17

Function Algorithm
Load N/A
Read N/A

Inversion Algorithm 7.14
Point addition Algorithm 4.5
Point doubling Algorithm 4.6

Reset A portion of algorithm 4.4
Point multiplication The remainder of Algorithm 4.4

ECDSA signature generation A portion of algorithm 4.1

Table 8.4: Mapping of high level components to the chosen algorithms

The load, read, reset, point multiplication and the pseudo ECDSA signa-
ture generation functions can be invoked by the external command interface of
the ECC processor. The interface to the other hardware components is fully
registered and employs a two-phase full handshaking protocol. It is depicted in
figure 6.2.

The load and read commands serve to transfer data to and from the memory
core of the ECC processor. As the hardware interface is designed to accommo-
date an 8-bit bus while the internal datapath is 16 bits wide, the load and read

8.6 CONTROL 89

Figure 8.17: The high level operations control module

8.6 CONTROL 90

operations convert the values as required. Both are reasonable simple, but they
necessitate a shift right by eight bits operation, which must be supported by
the ALU.

ECDSA signature generation

The remaining three commands together allow to perform a partially standard
compliant ECDSA signature generation. Full standard compliance is not pos-
sible, because it would require a Pseudo Random Number Generator (PRNG)
and a hash function. Both pseudo random number generation and hash func-
tions are extensively researched topics. For this reason, they were exluded from
this project. The partial ECDSA signature generation will also be called pseudo
ECDSA throughout the remainder of this document.

The reset command realizes line 3 of algorithm 4.4, which initializes the
memory with start data for the scalar multiplication. It does so, by copying some
values from the LUT-ROM to the memory. Other start values are generated
directly from data in the ROM. In addition, a default value for the ephemeral
key k is copied into the flip-flop block. Under normal circumstances, it would
have to be generated by a random number generator.

At this point an interspersed load command could be utilized to write an
arbitrary k to the memory, before the point multiplication is executed. This is
cryptographically dangerous, but it allows better evaluation of the circuit.

The next step in the pseudo ECDSA signature generation is the scalar mul-
tiplication k · P . This is the only ECC operation required by the algorithm.
The point multiplication depends on the point comparison, addition, doubling
and inversion functions.

After the scalar multiplication, a challenge value must be written to the
memory core of the ECC processor. In a fully standard compliant ECDSA
signature generation, the message would have to consist of several elements.
Each part of it would have to be processed by a hash function. As this is not
possible, the following operations are executed on a single element sized message
m.

To finalize the signature creation process, a sequence of prime field operations
is performed: s = k−1(m+dr)modn, r = x1. As no prime field arithmetic unit
is available, the function is executed using the binary extension field arithmetic
datapath. Needless to say, that the signature generated by this pseudo ECDSA
implementation is not cryptographically secure.

Recall that the primary task of this thesis was to find an efficient imple-
mentation of the scalar multiplication. The signature generation was added to
illustrate a possible application. It provides a framework, which could be aug-
mented with the omitted functional units. This would complete the framework
and allow full standard compliance.

Component reuse

It is again possible to share a component amongst the different FSMs on this
level. In this case an 8-bit counter is reusable by several of the control units,
including the point multiplication and the inversion. The counter can function
as one coherent 8-bit counter or two independent 4-bit units. The 4-bit units are
utilized by the load and read commands, whereas the 8-bit mode is employed

8.7 DESIGN FOR TEST 91

by the point multiplication to index the key bit and the inversion to count the
number of square operations performed.

8.7 Design For Test

The Design For Test (DFT) strategy of the ECCon ASIC consists of an auto-
matically inserted scan chain and a Built-In Self-Test (BIST). For details on
scan chains in general and scannable registers please confer to [Fel07].

The scan chain covers all parts of the circuit except the memory and the reset
synchronization flip-flop. The memory is not included because it would require
scannable flip-flops. These have a higher area usage and power consumption.

Figure 8.18: Observable clock gate

A second problem arises in conjunction with clock gating. A clock gated
register is not observable. In order for the insertion of a flip-flop into a scan chain
to be beneficial, the clock gate must be disabled. This is handled automatically
by the synthesis tool, by inserting an additional OR gate (figure 8.18). Sadly,
this puts an additional strain on the area usage and power consumption. For
these two reasons including the memory into the scan chain is not an acceptable
solution.

Utilizing an Automated Test Pattern Generator (ATPG) tool the scan chain
was evaluated. The results are given in table 8.5. The low test coverage of only
61.06% is primarily due to the omission of the storage unit from the scan chain.
Another reason is that the reset synchronization register is not controllable.
A negligible fraction of the undetectable faults is caused by the fact that a
minuscule set of logic component inputs and outputs is tied to a certain logic
value. Under normal circumstances, these should be eliminated by the boundary
optimization of the hardware synthesizer tool.

8.7.1 The Built-In Self-Test (BIST)

The memory core is equipped with a BIST unit. This component implements the
Modified Algorithmic Test Sequence (MATS++) algorithm, which according to

8.8 SIDE-CHANNEL ATTACK RESILIENCE 92

#Faults #Detect #Posdet #Undet #Redund Testcov Instance name
48,980 29,440 14 18,775 751 61.06% Chip
48,852 29,323 14 18,764 751 60.98% ECCon
3,358 3,287 0 69 2 97.94% RART
4,032 3,886 0 41 105 98.96% RFID control unit

41,342 22,032 14 18,652 644 54.15% ECC core
8,136 8,032 5 93 6 98.82% ALU

23,400 4,725 5 18,055 615 20.75% Memory

Table 8.5: Fault coverage

Riedl et al. [RRR95] is guaranteed to detect all unlinked stuck-at and transition
faults in the memory.

This remedies the deficiencies created by not adding the RAM to the scan
chain. The better part of the 18055 undetectable faults in the memory compo-
nent should be covered by the BIST. A conservative estimation is that 18000
of the 18055 faults are detectable. This would lead to a total test coverage of
96.86%, without considering the other two fault classes detailed above. Includ-
ing the undetectable faults caused by the reset, the fault coverage increases to
97.33%.

8.8 Side-channel attack resilience

Side channel attacks do not attack the cryptographic primitive but its imple-
mentation. A side channel is an additional channel of information, which unin-
tentionally leaks information about the secret key of a cryptosystem. Examples
for points of attack are the time an implementation requires to perform a cryp-
tographic operation, its power consumption during the computation or even the
error messages it might generate in case of a problem.

Three of the more prominent side channel attacks are the timing attack,
the Simple Power Analysis (SPA) and the Differential Power Analysis (DPA).
For a comprehensive introduction to side-channel attacks confer to [Wol04]. For
detailed information on power consumption based side channel attacks [MOP07]
can be recommended.

The timing analysis attack tries to derive information about the secret key
from the runtime of a cryptographic algorithm. It is applicable if the
execution time dependents upon the key.

This is very often the case in software implementations, which tend to
contain conditional statements, which execute a set of additional opera-
tions if a single bit key has a certain value. Expressed colloquially if the
code contains an if statement without an else block that requires the exact
same amount of clock cycles to complete, than a timing attack is possible.

The SPA measures the power consumption of a circuit and attempts to esti-
mate the secret key of the cryptosystem by analyzing the so called power
trace. It distinguishes itself from the DPA because it requires only very few
power traces for a successful attack, even a single one might be sufficient.

8.9 SYNTHESIS 93

The vulnerabilities are similar to those outlined for the timing attack. The
problem stems again from key dependent operations. If the value of a key
bit decides if an assumed datapath performs an AND function in contrast
to an XOR one, the difference in the power trace might be distinguishable.
That could suffice for an attack.

The DPA is similar in nature to the SPA, but is capable of distinguishing
minuscule differences in the power consumption profile of a circuit. It uti-
lizes statistical methods to evaluate a set of power traces over the same
cryptographic operation computed with the same secret key. This tech-
nique often requires 10.000-100.000 power traces to successfully attack an
implementation.

Point of attacks for DPA are very difficult to spot in the design phase,
because diminutive differences in the power profile, which are not apparent
to the designer, are sufficient. The best defense against DPA is to rely on
a protocol that changes the secret key once in a while.

The circuit designed in this master thesis should be resilient against all three
types of attack methodologies. All operations of the Montgomery point ladder
scalar multiplication algorithm introduced in §4.4.3 are key independent. The
same functions are performed in every step of the algorithm only the input
variables change. Thus, the runtime is the same for every ephemeral key k,
which thwarts timing based attacks. It is SPA immune for very much the same
reasons.

The DPA resilience of the circuit stems from the fact that the ECDSA signa-
ture generation algorithm was selected as cryptographic primitive for an authen-
tication protocol. This algorithm requires a random ephemeral key for every
execution run. In fact the ECDSA standard requires a different k for every
signature creation with the same private key d, otherwise it is possible to attack
the cryptographic principle directly. A DPA would require thousands of power
traces with the same k for a successful attack.

8.9 Synthesis

The circuit was synthesized using the Synopsys Design Compiler. The con-
straints and syntheses scripts were incrementally refined to find the optimal
solution for the ECCon circuit.

The following optimization steps were performed:

Step 1 This is the starting point for further optimizations and the baseline for
comparison. The design is constrained for typical operating conditions,
a 10 MHz clock and the inputs and outputs are set to the values of the
respective I/O pads.

Step 2 The circuit is synthesized with different area and power constraints
until the optimal A× P solution is found. The compile command is used
to perform the synthesis.

Step 3 The synthesis command is changed to compile ultra. The area con-
straint loses its effect, as long as a low-power constraint is in place.

8.10 RESULTS 94

Figure 8.19: A × P diagram over different optimization steps

Step 4 The hierarchy is selectively ungrouped until the optimal structure is
found.

Step 5 Scan chain insertion with default clock gate injection.

Step 6 Two different clock gate types are injected into the circuit. The memory
requires a simpler clock gate logic style than the rest of the circuit.

Figure 8.19 plots the results of the six synthesis steps. The “ECCon AP”
curve represents the A × P product over the optimization steps one to four.
The “Clock gated” curve depicts the results of optimization step two and four
with clock gate injection. The “Scan Chain” point shows the A × P product
after scan chain insertion. Because of the control-point-OR-gates in the clock
gates, the Synopsys power report looses its applicability. From this point on,
SAIF back-annotation is required to gain a valid power report. The “SC/2
ClkGte” point represents the result of step six. The use of clock gates without
a control point for the memory virtually reduces the A × P product. Finally,
the “Backend Simulation” point shows the result of a power simulation of the
circuit.

8.10 Results

The circuit outlined in this master thesis was developed as a Very high speed
integrated circuit Hardware Description Language (VHDL) model, which in

8.10 RESULTS 95

turn was synthesized and then laid out into a fabrication ready netlist. This
was then analyzed with respect to area usage, power consumption and timing,
the results of which are detailed in this section.

8.10.1 Area

The required die area including pads, but not the bonding lands and the seal ring
is 2, 227µm× 540µm = 1, 202, 580µm2. The core area of the ECCon processor
is given by 1, 808.96µm× 121.56µm = 219, 897µm2. This is the area for a core
utilization of 70%. The low utilization was chosen to compensate for the high
parasitics as a consequence of the suboptimal routing due to the drawn out
rectangular shape.

Figure 8.20: Area comparison of the ECCon components

It is important to note that the following area comparisons employ the es-
timations made by the synthesis tool. They are astoundingly astute. The
synthesis report predicted an area usage of 151, 125.7µm2 ≈ 219, 897 · 0.7 =
153, 928µm2.

Figure 8.20 presents the distribution of the area with respect to the three
primary components of the ECCon ASIC. It is easily discernible that the lion’s
share of the area is taken up by the ECC processor. The area usage of the two
modules that form the RFID front-end is negligible in comparison.

A further analysis of the ECC processor breaks down the area requirements
of its subcomponents in figure 8.21. The values for the ALU and the memory are
taken from the synthesis report, whereas the control logic is an estimation based
on the total area of the ECC processor and the two known subcomponents.

8.10 RESULTS 96

Area [µm2] Area [%] Area [GE]
Total 151,125.70 100.00 15,628.30

ECC processor 132,333.59 87.6 13,684.96
RFID control unit 9,028.41 6.0 933.65

RART 9,402.61 6.2 972.35

Table 8.6: ECConarea distribution

Figure 8.21: Area comparison of the ECC processor components

Area [µm2] Area [%] Area [GE]
ECC processor (total) 132,333.59 100.00 13,684.96

Memory 91,346.45 69.03 9,446.37
ALU 18,531.01 14.00 1,916.34

Control 22,456.14 16.97 2,322.25

Table 8.7: ECC processor area distribution

8.10 RESULTS 97

The control unit of the ECC processor being larger than the ALU, is a
surprising result, that must be put down to the complexity and sheer number
of different operations required for the scalar point multiplication.

8.10.2 Power

Next to area, the power consumption is the second most important factor of
the ECCon circuit. The power analysis was performed with the synthesis tool
using parasitics and switching activity back-annotation.

The ECCon processor supports two different modes of operation. The first is
the RFID mode, where the ASIC functions as the digital part of an ISO-18000-
3-1 compatible RFID tag. In this mode of operation the ECCon processor
requires a clock frequency of 6.78 MHz and all components are active.

Figure 8.22: Power consumption comparison of the ECCon components

In the second mode, only the ECC processor is active, while the RFID front-
end is deactivated using clock gating. The clock frequency for the ECC processor
can be chosen freely within the operation limits of the ASIC. Two frequencies
847.5 kHz and 105.938 kHz were selected as representatives for a power sim-
ulation. The first is the nominal clock frequency of the ECC processor, when
in RFID mode. The second was selected because it is qualified for comparison
with different implementations of ECC primitives.

Note the difference between the power consumption of the ECC processor
in RFID mode (6.78 MHz) and in ECC mode (847.5 kHz). In both cases the
ECC unit is operated at the same clock frequency of 847.5 kHz, only in the first
case this is a virtual clock frequency created using clock gating. This implies a
power wastage of 89 µW in the clock tree. This is a strong argument for using

8.10 RESULTS 98

Figure 8.23: Power consumption comparison of the ECC components

two different clock domains in a real life application.
Figure 8.22 and figure 8.23 illustrate the power distribution amongst the

ECCon and the ECC processor components respectively. The exact values are
detailed in table 8.8 and table 8.9.

Power consumption [µW]
6.78 MHz 847.5 kHz 105.94 kHz

ECCon (total) 176.00 87.00 11.40
ECC processor 146.00 83.20 10.80

RFID control unit 20.00 2.53 0.35
RART 9.79 1.24 0.19

Table 8.8: ECCon ASIC power distribution over different frequencies

The power dissipation values for the memory and the ALU proof that the
16-bit datapath was an adequate selection.

Note that the synthesis tool predicted a power consumption of approximately
100 µW for the complete ECCon processor at a clock frequency of 6.78 MHz,
before the scan-chain insertion. It has to be assumed that the difference between
the synthesis estimation and the result of the layout program is either due to
the scan chain, which is highly unlikely or that additional routing capacities
caused by the unusually rectangular shape of the processor are responsible.

8.10 RESULTS 99

Power consumption [µW]
6.78 MHz 847.5 kHz 105.94 kHz

ECC processor (total) 146.0 83.2 10.80
Memory 55.5 32.1 4.29

ALU 44.0 40.0 5.07
Control (est.) 46.5 11.1 1.44

Table 8.9: ECC processor power distribution over different frequencies

8.10.3 Comparison with related work

Results for ECC implementations are especially difficult to compare. The prob-
lem arises in part because of the multitude of ECC realization options. Field
and cryptographic primitive selection are the keywords here. A second class
of difficulties is due to the level of implementation. Sometimes only the point
multiplication is realized, in other cases the results of a complete cryptographic
protocol implementation are published.

The next challenge derives from the fact that when it comes to comparing
power consumption results, often only the required energy is published. As
was already deliberated, this is interesting for battery driven environments, but
for an RFID application it is of considerable less interest. Even if the power
consumption is given, it is of course dependent on the clock frequency and it is
hard to relate results for different VLSI technologies.

The same is true when comparing the area usage. To alleviate that, the area
usage is converted from m2 into Gate Equivalents (GEs). A GE is the size of
a NAND-2 gate in the target technology. To compute the number of GEs the
total area is divided by the area of such a gate. For the technology utilized to
implement the ECCon circuit (umcL180) a 2-input NAND gate of lowest drive
strength requires 9.67µm2.

Area Cycles Power @ Avg. Cur. ECC- VLSI
[GE] [kCycles] 106 kHz [µW] [µA] Curve tech.

ECCon 13,685 306 10.80 6.00 B-163 UMC L180
[FW07b] 23,656 500 141.01 42.73 P-192 AMS C35

[KP06] 15,094 430 ?.? ?.? B-163 AMI C35
[FW07a] 23,600 502 62.21 18.85 P-192 AMS C35

AES [FW07a] 3,400 1 9.9 3.0 128 AMS C35

Table 8.10: Comparison with other implementations

Table 8.10 tries to compare the ECCon processor introduced herein with
other recent implementations of area and power constrained ECC scalar multi-
plication units. It relates the area usage, the runtime in cycles and the average
current at a frequency of 106 kHz. The candidates either implement the point
multiplication over a binary extension field of order 163 (B-163) or a prime
field of order 192 (P-192). The abbreviation AMS C35 represents the 0.35 µm
process of Austria Microsystems. AMI C35 is the AMI Semiconductor 0.35 µm
CMOS technology and UMC L180 stands for the UMC logic 0.18 µm process.
All results presented in table 8.10 are based on simulations.

The processor discussed in [FW07b] is the closest match with respect to the

8.11 LAYOUT 100

chosen application. It implements all ECDSA operations except hashing and
pseudo random number generation and works with an EC defined over a 192-bit
prime field. The component introduced by Kumar and Paar in [KP06] is a point
multiplier for variable field orders specifically for RFID tags. Quite inexplicably,
no power or energy consumption results are given. Finally Feldhofer et al.
compare different cryptographic primitives in [FW07a] including a low power,
small area ECC device by Wolkerstorfer ([Wol05]), which works with a 192-bit
prime curve. The AES is a symmetric-key cipher and serves as a baseline for
comparison.

8.11 Layout

Figure 8.24: The layout of the ECCon processor

Chapter 9
Conclusion and outlook

The ambition of this thesis was to develop an ECC hardware module that could
serve as foundation for cryptographically sound RFID based product authen-
tication. The projected RFID application determined fierce constraints on the
available die area and the power budget.

After a comprehensive discussion of the theoretic background, the funda-
mental decision to use a small word level architecture to implement the basic
operations in the binary extension field F2163 was introduced.

This decisions distinguishes this work from all preceding implementations of
ECC for low power, small area applications, which utilize full precision datap-
aths. Full precision datapaths create great power fluctuations which can cause
erroneous data transmissions and require a comparatively higher mean current,
but allow for relatively simple algorithms to realize the field operations.

A thorough design-space exploration of word level algorithms and arithmetic
units that could implement them was conducted. It yielded a new algorithm
for multiplication with interleaved reduction that is both faster and more area
efficient than other more obvious approaches.

An ALU was specifically designed to realize the operations required by this
procedure. This module also implements all other binary field operations most
efficiently. In combination with a highly optimized memory structure the power
consumption and area requirements to implement the ECC point multiplication
were reduced to hitherto unreachable values.

The ECC processor module was complemented with the digital part of an
ISO-18000-3-1 compliant RFID front-end. The communication protocol was
extended to allow for cryptographic operations like the scalar multiplication or
a limited realization of the ECDSA signature generation procedure. The fully
functional RFID front-end is supplemented with an interface that enables direct
access to the ECC processor.

The entire architecture was synthesized and a back-end design was per-
formed. The ECCon processor was then taped out and fabricated in an 180
nm CMOS process.

That ECC is a viable choice of cryptographic primitive for an RFID appli-
cation was already ascertained by Wolkerstorfer in 2005 [Wol05]. The primary
observation made by this work is that the word-level approach is definitely the

9.0 102

way to go. It requires less area, less power and is substantially faster. A second
important reflection is that concentrating all efforts on one specifically selected
EC gives an additional degree of freedom to the algorithm design step, which
provides an additional benefit.

Other observations include

• Word level algorithms for operations in finite fields were already thor-
oughly researched for instruction set extensions for smart card processors,
but they lack curve specific optimizations and an adapted memory struc-
ture.

• In a real world application at least two different clock domains should be
implemented. One for the RFID front-end and another one for the ECC
processor due to the relatively high power losses in the clock tree.

• Clock gating and operand isolation are indispensable in low power design,
but operand isolation is tedious to realize due to synthesizer optimizations.

• Once a scan chain is in place quick synthesis tool based power estimations
becomes impossible due to the OR gate overriding the observable clock
gating latch.

The logically next step is to perform a design with the same preconditions as
this one for prime field arithmetic on a similar fixed elliptic curve. If results are
promising a dual field unit might be the next step towards ECC on RFID tags.
Unless a simpler ECC based authentication schemes than an ECDSA based one
can be found, a fully ECDSA compliant ECC processor would provide further
valuable insights.

Appendix A
Datasheet

A.1 Key Features

• Low power, small area ECC point multiplication device

• ISO-18000-3-1 compatible digital RFID front-end

• Technology: UMC L180 GII 1P/6M 1.8V/3.3V CMOS

• Core Size: 219897 µm2

• Clock Frequency: 46 MHz

• Total power consumption at 106 kHz: 11.4 µW

• ECC processor power consumption at 106 kHz: 10.8 µW

• Built-in memory self-test

• Full scan using one scan chain

A.2 Circuit Configuration

A.2.1 Operation Modes

The ECCon processor provides two main functionalities. On the one hand, it
implements the digital part of an ISO-18000-3-1[ISO04] compatible RFID tag.
On the other, it is an Elliptic Curve Cryptography ASIC that implements the
point multiplication operation on an Elliptic Curve. These modes of operation
are called the RFID mode and the ECC mode.

RFID mode

In this mode of operation the ECCon processor functions as an ISO-18000-3-
1 [ISO04] standard compliant RFID device. The clock input must be set to
a frequency of 6.78 MHz. Table A.1 lists the commands supported by this
implementation and their respective command codes. For a description of the

CIRCUIT CONFIGURATION 104

Code [hex] Name
01 Inventory
02 Stay quiet
20 Read single block
21 Write single block
25 Select
26 Reset to ready
E0 ECC Reset
E1 ECC k × P
E2 ECC Sign

Table A.1: RFID command table

Code [binary] Name Function
“00010000” Read element Read a 7× 163 bits element.
“00001000” Write element Write a 7× 163 bits element.
“00000100” ECC Reset Perform the ECC reset operation.
“00000010” ECC k × P Perform the point multiplication.
“00000001” ECC Sign Perform the pseudo ECDSA signature generation.

Table A.2: ECC interface commands

commands, refer to §5. For a definition of the expected input and output signals,
refer to [ISO04].

ECC mode

This mode of operation circumvents the RFID front-end and allows direct access
to the ECC processor. The ECC processor uses a two-phase full handshake
protocol [Kae08]. For an illustration of the command interface, confer to figure
6.2. The clock can be set to any value in the operational range of the ECCon
processor (106 kHz to 46 MHz).

The interface allows the invocation of the cryptographic commands, and
reading and writing data to the memory core of the ECC processor. To perform
a command, it is necessary to load it into the command register of the interface.
Once a command is loaded, it is automatically executed. The read and write
command require an element address, which must be loaded into the address
register beforehand.

The EccIntCtrlxSI input controls which interface register is loaded.

Code [binary] Action
“00” No operation
“01” Load command
“10” Load address

Table A.2 lists the commands the interface supports. The command code
identifier must be applied to the EccIfcexDI input port.

The following steps illustrate how to load a command. It is assumed that this
is the first communication with the ECCon processor and that the handshake
request signal was tied to zero, before the reset was released. The acknowledge

CIRCUIT CONFIGURATION 105

signal should output zero after the release of the reset. This signals that the
handshake interface is ready for operation.

1. Set EccIntCtrlxSI=“01” and EccIfcexDI=“Command code”. Toggle the
EccReqxSI.

2. Wait for the acknowledge signal to follow the value of the request signal.
The command is now loaded into the command register.

3. Set EccIntCtrlxSI=“00”, EccIfcexDI=“00000000” and again toggle the
request signal. This will start the execution of the command.

4. Wait for the acknowledge signal to follow the request signal. The command
is now executed.

The read and write command work differently. The following steps illustrate
how to perform a write command.

1. Set EccIntCtrlxSI=“10” and EccIfcexDI=“Element address”. Toggle the
EccReqxSI signal.

2. Wait for EccAckxSO. The address is now loaded into the address register.

Set EccIntCtrlxSI=“01”, EccIfcexDI= “00001000” and again toggle the
request signal. This will load the write command.

3. Wait for the acknowledge signal. Apply the lowest order byte of the 163-
bit element to the data input port EccIfcexDO. Set EccIntCtrlxSI=“00”
and toggle the request value.

4. Wait for the acknowledge signal. The first byte has now been written to
the memory. Apply the next byte and toggle the request input. Repeat
this 20 times for a total of 21 bytes.

The following steps detail the use of the read command.

1. Set EccIntCtrlxSI=“10” and EccIfcexDI=“Element address”. Toggle the
EccReqxSI signal.

2. Wait for EccAckxSO. The address is now loaded into the address register.

Set EccIntCtrlxSI=“01”, EccIfcexDI=“00010000” and again toggle the
request signal. This will load the read command.

3. Wait for the acknowledge signal and toggle the request signal once more.

4. Wait for EccAckxSO. The first byte is now ready to be read from the
EccIfcexDO output port. Repeat this step 20 times to read the 21 bytes
of the 163-bit element from memory.

Four addresses are significant for the pseudo ECDSA signature generation
operation. For details on how to perform this function see §8.6.2.

Element address Stored value
1 The ephemeral key k.
2 The result of the scalar multiplication r.
3 The challenge message m to sign.
4 The second part of the digital signature s.

PORT DESCRIPTION AND PINOUT 106

A.2.2 Design for Testability (DFT)

Scan chain

The ECCon processor has a single scan chain to test all registers with the
exception of the memory flip-flops. To perform a scan, the ScanEnxTI input
port must be set to one, before the reset is released. The scan chain uses the
same clock as the rest of the circuit.

Built-in Memory Self Test (BIST)

To activate the BIST set the BistEnxTI=1. This BIST uses the same clock port
as the rest of the circuit. BistEnxTI must be kept at one for the whole time
the BIST is performed (308 cycles). The BistResxTO port should switch from
a logic zero to a logic one, 78 cycles after the BIST was activated. The BIST
was successful if this signal retains a logic one for an additional 230 cycles.

Note: Assert these signals during active reset, then release the reset signal.
The BIST should start and keep running for as long as BistEnxTI=1. The test
starts anew every 308 cycles.

A.3 Port Description and Pinout

All ports of the ASIC are listed in table A.3.

PORT DESCRIPTION AND PINOUT 107

Signal Name Type Description

ClkxCI in Clock (single-edge one-phase triggered).
RstxRBI in Asynchronous reset (active low).
Configuration Interface
ModeSelxSI in This port selects the mode of operation for

the ECCon processor. If this signal is tied to
high, the core is in ECC mode. Otherwise the
processor is in RFID mode.

ECC Data Interface
EccReqxSI in The handshake request signal.
EccAckxSO out The handshake acknowledge signal.
EccIntCtrlxSI in The interface control port.
EccIfcexDI in Byte input data.
EccIfcexDO out Byte output data.
RFID Data Interface
AirInxDI in RFID receiver data.
AirOutxDI out RFID transmitter data.
Status Signals
SimTrnsOutxTO out RFID transmitter control output.
DFT Interface (scan test)
ScanEnxTI in This port enables DFT scan and overrides

clock gating.
ScanInxTI in The scan chain input.
ScanOutxTO out The scan chain output.
BIST Interface (RAM self-test)
BistEnxTI in Built-in self test enable.
BistResxTO out Built-in self test status output.

Table A.3: Port description of the ASIC.

PORT DESCRIPTION AND PINOUT 108

53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

75 76 77 78 79 80 81 82 83 84 1 2 3 4 5 6 7 8 9 10 11

74
73

72
71

70
69

68
67

66
65

64
63

62
61

60
59

58
57

56
55

54
32

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

V
S

S
 P

ad
fr

am
e

N
O

 C
O

N
N

E
C

T
IO

N

S
ca

nI
nx

T
I

S
ca

nE
nx

T
I

B
is

tE
nx

T
I

S
im

T
rn

sO
ut

xT
O

B
is

tR
es

xT
O

S
ca

nO
ut

xT
O

E
cc

A
ck

xS
O

V
D

D
 C

or
e

A
irO

ut
xD

O

V
S

S
 C

or
e

E
cc

Ifc
ex

D
O

(0
)

E
cc

Ifc
ex

D
O

(1
)

E
cc

Ifc
ex

D
O

(2
)

E
cc

Ifc
ex

D
O

(3
)

E
cc

Ifc
ex

D
O

(4
)

E
cc

Ifc
ex

D
O

(5
)

E
cc

Ifc
ex

D
O

(6
)

E
cc

Ifc
ex

D
O

(7
)

V
D

D
 P

ad
fr

am
e

V
D

D
 P

ad
fr

am
e

E
cc

Ifc
ex

D
I(

0)

E
cc

Ifc
ex

D
I(

1)

E
cc

Ifc
ex

D
I(

2)

E
cc

Ifc
ex

D
I(

3)

E
cc

Ifc
ex

D
I(

4)

E
cc

Ifc
ex

D
I(

5)

E
cc

Ifc
ex

D
I(

6)

E
cc

Ifc
ex

D
I(

7)

V
S

S
 C

or
e

C
lk

xC
I

V
D

D
 C

or
e

R
st

xR
B

I

M
od

eS
el

xS
I

A
irI

nx
D

I

E
cc

R
eq

xS
I

E
cc

In
tC

tr
lx

S
I(

0)

E
cc

In
tC

tr
lx

S
I(

1)

N
O

 C
O

N
N

E
C

T
IO

N

N
O

 C
O

N
N

E
C

T
IO

N

V
S

S
 P

ad
fr

am
e

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

NO CONNECTION

Figure A.1: Pinout of ASIC.

Bibliography

[ABHW04] H. Aigner, H. Bock, M. Hütter, and J. Wolkerstorfer. A low-cost
ECC coprocessor for smartcards. In Marc Joye and Jean-Jacques
Quisquater, editors, CHES, volume 3156 of Lecture Notes in Com-
puter Science, pages 107–118. Springer, 2004.

[BL06] M. Benaissa and Wei Ming Lim. Design of flexible GF(2m) elliptic
curve cryptography processors. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 14(6):659–662, 2006.

[DF96] W. Drescher and G. Fettweis. VLSI architectures for multiplication
in GF(2m) for application tailored digital signal processors. In Proc.
[Workshop on] VLSI Signal Processing, IX, pages 55–64, 1996.

[DvOW92] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Au-
thentication and authenticated key exchanges. Designs, Codes and
Cryptography, 2(2):107–125, 1992.

[EPC05] EPC. EPC
TM

radio-frequency identity protocols class-1 generation-
2 UHF RFID protocol for communications at 860 mhz - 960 mhz.
Published Standard 1.10, EPCglobal Inc., December 2005.

[EWG+05] H. Eberle, A. Wander, N. Gura, Sheueling Chang-Shantz, and
V. Gupta. Architectural extensions for elliptic curve cryptography
over GF(2m) on 8-bit microprocessors. In Proc. 16th IEEE Inter-
national Conference on Application-Specific Systems, Architecture
Processors ASAP 2005, pages 343–349, 2005.

[Fed00] Federal Information Processing Standards Publication (NIST). Dig-
ital Signature Standard (DSS). Federal Information Processing
Standards Publication, FIPS PUB 186-2, January 2000.

[Fel07] Norbert Felber. VLSI II: Design for Testability. Microelectronics
Design Center, ETH Zurich, Autumn Term 2007.

[FW07a] M. Feldhofer and J. Wolkerstorfer. Strong crypto for RFID tags
- a comparison of low-power hardware implementations. In Proc.
IEEE International Symposium on Circuits and Systems ISCAS
2007, pages 1839–1842, 2007.

BIBLIOGRAPHY 110

[FW07b] F. Fürbass and J. Wolkerstorfer. ECC processor with low die size
for RFID applications. In Proc. IEEE International Symposium on
Circuits and Systems ISCAS 2007, pages 1835–1838, 2007.

[GK03a] Johann Großschädl and Guy-Armand Kamendje. Instruction set ex-
tension for fast elliptic curve cryptography over binary finite fields
gf(2m). In Proc. IEEE International Conference on Application-
Specific Systems, Architectures, and Processors, pages 455–468,
2003.

[GK03b] Johann Großschädl and Guy-Armand Kamendje. Optimized RISC
architecture for multiple-precision modular arithmetic. In Dieter
Hutter, Günter Müller, Werner Stephan, and Markus Ullmann, edi-
tors, SPC, volume 2802 of Lecture Notes in Computer Science, pages
253–270. Springer, 2003.

[Gor84] John Gordon. The Alice and Bob After Dinner Speech. Zürich
Seminar, April 1984.

[Gor98] Daniel M. Gordon. A survey of fast exponentiation methods. J.
Algorithms, 27(1):129–146, 1998.

[GP97] Jorge Guajardo and Christof Paar. Efficient algorithms for elliptic
curve cryptosystems. Lecture Notes in Computer Science, 1294:342–
356, 1997.

[GSE+02] N. Gura, S. Shantz, H. Eberle, D. Finchelstein, S. Gupta, V. Gupta,
and D. Stebila. An end-to-end systems approach to elliptic curve
cryptography, 2002.

[HLRZ03] Chi Huang, Jinmei Lai, Junyan Ren, and Qianling Zhang. Scalable
elliptic curve encryption processor for portable application. In Proc.
5th International Conference on ASIC, volume 2, pages 1312–1316
Vol.2, 2003.

[HMV04] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic
Curve Cryptography. Springer-Verlag, 2004.

[ISO00a] ISO/IEC/JTC 1/SC 17. ISO/IEC 14443 Identification cards – Con-
tactless integrated circuit(s) cards – Proximity cards. Published
standard, International Organization for Standardization, Geneva,
Switzerland., 2000.

[ISO00b] ISO/IEC/JTC 1/SC 17. ISO/IEC 15693 Identification cards –
Contactless integrated circuit(s) cards – Vicinity cards. Published
standard, International Organization for Standardization, Geneva,
Switzerland., 2000.

[ISO04] ISO/IEC/JTC 1/SC 31. ISO/IEC 18000 Information technology
– Radio frequency identification for item management. Published
standard, International Organization for Standardization, Geneva,
Switzerland., 2004.

BIBLIOGRAPHY 111

[IT88] T. Itoh and S. Tsujii. Effective recursive algorithm for computing
multiplicative inverses in GF(2m). Electronics Letters, 24(6):334–
335, 1988.

[Jue06] A. Juels. RFID security and privacy: A research survey. IEEE Jour-
nal On Selected Areas In Communications, 24(2):381–394, 2006.

[Jue07] A. Juels. The vision of secure RFID. Proceedings of the IEEE,
95(8):1507–1508, 2007.

[Kae08] Hubert Kaeslin. Digital Integrated Circuit Design. Cambridge Uni-
versity Press, The Edinburgh Building, Cambridge CB2 8RU, UK,
2008.

[Ker83] Auguste Kerckhoffs. La cryptographie militaire. Journal des sci-
ences militaires, IX:5–83 Jan., 161–191 Feb., 1883.

[KO63] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers
on automata. Soviet Phys. Doklody, 7(7):595–596, January 1963.

[KP06] S. Kumar and C. Paar. Are standards compliant elliptic curve cryp-
tosystems feasible on RFID? Printed handout of Workshop on RFID
Security – RFIDSec 06, July 2006.

[Lai04] G. Lai. Analysis of modular inverse GF(p) implementations. 2004.

[LD99] Julio Lopez and Ricardo Dahab. Fast multiplication on elliptic
curves over GF(2m) without precomputation. In Cryptographic
Hardware and Embedded Systems, number Generators, pages 316–
327, 1999.

[LLM07] M. Langheinrich, M. Langheinrich, and R. Marti. Practical min-
imalist cryptography for RFID privacy. IEEE Systems Journal,
1(2):115–128, 2007.

[LLMF07] M. O. Lehtonen, M. O. Lehtonen, F. Michahelles, and E. Fleisch.
Trust and security in RFID-based product authentication systems.
IEEE Systems Journal, 1(2):129–144, 2007.

[LSMF06] Mikko Lehtonen, Thorsten Staake, Florian Michahelles, and Elgar
Fleisch. From identification to authentication - a review of RFID
product authentication techniques. Printed handout of Workshop
on RFID Security – RFIDSec 06, July 2006.

[Mid06] Midnightcomm. Blue and purple RFID tag. Wikimedia Com-
mons, http://commons.wikimedia.org/wiki/Image:Blue_and_

Purple_RFID_tag.jpg, April 2006. Picture is in the public domain.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Anal-
ysis Attacks: Revealing the Secrets of Smart Cards. Springer, Berlin,
1 edition, 2007.

[MvOV01] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 2001.

BIBLIOGRAPHY 112

[OP00] G. Orlando and C. Paar. A high-performance reconfigurable elliptic
curve processor for GF (2m). Lecture Notes in Computer Science,
1965:31–43, 2000.

[PL07] S. Peter and P. Langendorfer. An efficient polynomial multiplier
in gf(2m) and its application to ECC designs. In Proc. Design,
Automation & Test in Europe Conference & Exhibition DATE ’07,
pages 1–6, 2007.

[PLP07] S. Peter, P. Langendorfer, and K. Piotrowski. Flexible hardware re-
duction for elliptic curve cryptography in GF(2m). In Proc. Design,
Automation & Test in Europe Conference & Exhibition DATE ’07,
pages 1–6, 2007.

[RRR95] M. Riedel, M. Riedel, and J. Rajski. Fault coverage analysis of
RAM test algorithms. In J. Rajski, editor, Proc. th IEEE VLSI
Test Symposium, pages 227–234, 1995.

[SP98] Leilei Song and K. K. Parhi. Low-energy digit-serial/parallel finite
field multipliers. J. VLSI Signal Process. Syst., 19(2):149–166, 1998.

[TWA05] Wenkai Tang, Huapeng Wu, and M. Ahmadi. VLSI implementa-
tion of bit-parallel word-serial multiplier in GF(2233). In Proc. 3rd
International IEEE-NEWCAS Conference, pages 399–402, 2005.

[Wol04] J. Wolkerstorfer. Hardware Aspects of Elliptic Curve Cryptography.
PhD thesis, Graz University of Technology, Austria, 2004.

[Wol05] J. Wolkerstorfer. Is elliptic-curve cryptography suitable to secure
rfid tags? Presentation at the Workshop on RFID and Light-weight
Cryptography, Graz, Austria, August 2005.

[WT02] Lawrence C. Washington and Wade Trappe. Introduction to Cryp-
tography: With Coding Theory. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2002.

