Memoryless Near-Collisions via Coding Theory

1, 2

Mario Lamberger!, Florian Mendel®, Vincent Rijmen®?, and Koen Simoens

! Institute for Applied Information Processing and Communications
Graz University of Technology, Inffeldgasse 16a, A—8010 Graz, Austria.
2 Dept. of Electrical Engineering ESAT/COSIC, K.U.Leuven,
and Interdisciplinary Institute for BroadBand Technology (IBBT),
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

Abstract. We investigate generic methods to find near-collisions in
cryptographic hash functions. We introduce a new generic approach
based on methods to find cycles in the space of codewords of a code with
low covering radius. We give an analysis of our approach and demon-
strate it on the SHA-3 candidate TIB3.

Keywords: Hash functions, near-collisions, cycle finding algorithms,
covering codes

1 Introduction

After the publication of the attacks on MD5, SHA-1 and several other modern
cryptographic hash functions by Wang et al. [29130], there has been a renewed
interest in the design and cryptanalysis of these important cryptographic prim-
itives.

Cryptographic hash functions have to satisfy many requirements, among
which the properties of preimage resistance, second preimage resistance and
collision resistance are cited most often. While designers of practical proposals
usually try to make their design satisfy some additional properties, most the-
oretical constructions and their accompanying proofs of security consider these
three properties only.

In this paper, we are concerned with a somewhat less popular property,
namely near-collision resistance. We want to investigate ways how to efficiently
find such near-collisions and compare them with the generic approaches used to
find collisions.

2 Background and Motivation

2.1 Hash and Compression Function Collisions

In general, a cryptographic hash function maps a message m of arbitrary length
to a hash value of fixed length, H : {0,1}* — {0,1}". In this paper, we consider
iterative hash functions H that split up the message into blocks of equal size.
Designs, Codes and Cryptography, 62(1), pp.1-18, 2012

The original publication is available at http://www.springerlink.com/content/h3t8181044112217/
(© Springer Science+Business Media, LLC 2012

http://www.springerlink.com/content/h3t8181044112217/

2 Lamberger et al.

So upon input a message m, we apply an injective padding such that the result
consists of [blocks m;,i =0,1,...,l—1 of g bits each, and then process one block
m; at a time to update the n-bit internal state z;. The compression function is
the same function in every iteration, and is denoted by h:

Tit+1 :h(xiami)a Z‘:Oala"'alfl (1)

Here xg is a pre-defined initial state value. The output of the hash function is
defined as the final state value:

H(m) = x.

The strengthened Merkle-Damgard construction (further abbreviated to MD-
construction) of eryptographic hash functions [6I16], which is basically where
the message padding also includes the bitlength of m, is very popular in practical
designs like MD5, SHA-1 and the SHA-2 family [20024]. This is mostly because
of its property of preserving the collision resistance of the compression function:

Theorem 1. Let H be a hash function based on the MD-construction and let
m # m* be two messages. Then

H(m)=H(m") = 3i: h(z;,m;) = h(z],m]) (2)

A solution {(z;, m;), (xf, mf)} to h(z;,m;) = h(x}, m}) where (z;,m;) # (xF, m})
is called a collision for the compression function h.

One early result in the field of hash function cryptanalysis was found by den
Boer and Bosselaers, namely, that collisions for the compression function of the
widely used MD5 hash function can be found easily [7]. Although the methods
of [7] can’t be used to construct collisions for MD5, this early result implied
already that Theorem [T] can’t be used to prove the security of MD5.

2.2 Near-Collisions

In all of the following we will work with binary values, where we identify {0, 1}"
with Z3. We denote the standard basis vectors of Z3 by e;, j = 1,...,n. Let
“+” denote the n-bit exclusive-or operation. The Hamming weight of a vector
v € ZY is denoted by w(v) = #{j|v; = 1} and the Hamming distance of two
vectors by d(u,v) = w(u + v). The Handbook of Applied Cryptography defines
near-collision resistance as follows:

Definition 1 (Near-Collision Resistance [15], page 331]). It should be hard
to find any two inputs m, m* with m # m* such that H(m) and H(m*) differ
in only a small number of bits:

d(H(m), H(m")) <e. (3)

For ease of later use we also give the following definition:

Memoryless Near-Collisions via Coding Theory 3

Definition 2. A message pair m, m* with m # m™ is called an e-near-collision

for H if holds.

Intuitively speaking, a hash function for which an efficient algorithm is known
to construct near-collisions, can no longer be considered to be ideal. A practi-
cally more relevant consequence is that for several designs, near-collisions for
the compression function can be converted to collisions for the hash function,
see Sect.

Let 6 denote an n-bit vector, possibly of low Hamming weight. In the strict
near-collision problem, we want to find two messages m,m* such that

H(m*)+ H(m) = .

If 0 is fixed on beforehand, the strict near-collision problem is not necessarily
significantly easier than finding collisions.

2.3 Combining a Near-Collision and a Collision for h to a Collision
for H

As a motivation why we should certainly bother about near-collisions we give
the following example. Although collisions for the compression function of MD5
can be constructed easily [7], these collisions require a special difference in the
state input. To date, there is no algorithm known that can produce collisions
for the compression function of MD5 without having a difference in the state
input. Since there is no algorithm known to construct message blocks resulting
in states with this difference, the collisions for the compression function can’t be
converted into collisions for MD5.

A significant contribution of [29] was the description of an efficient algorithm
to find collisions for MD5, see Algorithm [1| for a simplified description. The
first phase of the algorithm consists of the construction of a near-collision for h,
where the output difference is such that in the second phase of the algorithm, it
is feasible to construct a collision for A with this difference in the state input.

Algorithm 1 Wang et al.’s algorithm to create collisions for H (simplified).

Input: Initial value x¢ and hash function H with compression function h
Find mo, mg such that z1 + 27 = h(zo,mo) + h(zo,m5) = A

Find m1, m] such that h(z1,m1) = h(z],mi)

Output: mo, mg, m1, mji

For many hash functions using a Davies-Meyer mode iteration function [I3],
like SHA-1, HAVAL, and reduced variants of SHA-256, it turns out that it is
relatively easy to find collisions for the compression function (with differences
in the state input). Hence, if we can also find good methods to construct near-
collisions of the right form, then we can use Algorithm [I| to construct collisions.
This will also be illustrated for the SHA-3 candidate TIB3 in Sect. [l

4 Lamberger et al.

3 Efficiently Finding Near-Collisions

Although collision resistance and (second) preimage resistance are the properties
of a hash function that have attracted the most attention in cryptanalysis, the
question of near-collision resistance is also of significant importance. Examples
for this are applications that truncate the hash value at the end in which case
a near-collision might be sufficient to thwart a security goal. In Sect. [4] we will
also show an example where near-collisions for the compression function can be
used to construct collisions for the full hash function.

In this section, we present a new generic method to find near-collisions. First
we give a short discussion of generic methods to find collisions. Since hash func-
tions were our main motivation for the underlying research, we will mainly use
them to formulate the results that follow. Note that hash functions could as well
be replaced with compression functions or arbitrary random functions.

3.1 Generic Collision Finding

The generic method for finding collisions for a given hash function is based on
the birthday paradox. The basic principle of this attack is that when randomly
drawing elements from a set of size 2", with high probability a repeated element
will be encountered after about /2" drawings [I5]. Due to their complexity,
these generic birthday attacks are also often called square-root attacks. When
implementing such a square-root attack there usually are different possibilities.
The simplest approach is to randomly select messages y;, compute H(y;) and
store the results in a table until a collision is detected. This approach, which
is usually attributed to Yuval [31], requires approximately 2"/2 hash function
computations, and a table of the same size.

If a birthday attack is implemented and run, usually the memory require-
ments form the bottleneck. Therefore, collision attacks are often implemented
by means of cycle finding algorithms. Consider the process where we start with
an arbitrary n-bit value yy and repeatedly apply H:

H H H H
Yo — Y1 ——= Y2 —> Yz — ... (4)

This can be seen as a walk on a graph with 2™ nodes, induced by a (pseudo-)
random map, namely the hash function. Since the output space is finite we
eventually arrive at the situation that y;11 = H(y;) = H(y;) = y,+1. But then
due to the definition of our walk, also y;4¢ = yj4¢ for £ > 1, ie., the walk
runs into a cycle. Put differently, we can consider yg, y1, ¥, ... as an eventually
periodic sequence. For this sequence there exist two unique smallest integers p
and A such that y; = y;4x for all @ > p. Here, A is the cycle length and g is
the tail length. Under the assumption, that H behaves like a random mapping,
Harris [11] could show that the expected values for A and p are about vw2n—3.

There are two well known techniques based on the above ideas to identify
collisions for (pseudo)-random mappings which are due to Floyd [12, p. 7] and
Brent [2]. Floyd’s cycle finding algorithm is widely known and cited. It is based on

Memoryless Near-Collisions via Coding Theory 5

the observation that for an eventually periodic sequence yg, y1, ..., there exists
an index i such that y; = yo; and the smallest such ¢ satisfies p < i < p+ A.
Floyd’s algorithm only needs a small constant amount of memory and again
under the assumption that H behaves like a random mapping, it can be shown
that the expected number of iterations is about 0.94 - 2"/,

Brent [2] improved on Floyd’s algorithm by introducing an auxiliary variable
z which stores the value y;(;)—1 where i is the index of the random walk and £(i)
is the largest power of 2 less or equal to i. In other words, £(i) = 2U1°82()) Brent’s
method is described in Algorithm[2] On average, Brent found that his algorithm
needs twice as much iterations as Floyd’s algorithm, that is 1.9828 - 2/2. The
actual improvement of Brent is that in each iteration only one hash evaluation
is necessary instead of 3 in the case of Floyd.

Algorithm 2 Brent’s cycle finding algorithm

Input: Starting point yo and hash function H
Z 4 Yo, W 4 Yo,1 < 0, + 1
while true do
w+ H(w),i+i+1
if w =z then
break
end if
if i > (2¢—1) then
z 4w, b+ 20
end if
end while
j—L—-1
Output: (m,m*) with m = H* ! (yo) and m* = H " (yo)

Apart from these classical examples of cycle finding algorithms, there are
various parallelization techniques available, but all result in higher memory re-
quirements [26/27]. Furthermore, we also want to mention a more recent tech-
nique due to Nivasch [19] which can be seen as the best technique on average
in terms of (hash) function evaluations. A lot of impulses in the development of
cycle finding techniques have come from the computation of discrete logarithms
in finite groups (e. g. Pollard’s rho-method [22]). For a nice treatise we refer to
[5l Sect. 19.5.1].

3.2 Generic Near-Collision Attacks

Obviously, Definition [2] includes collisions as well, so the task of finding near-
collisions is easier than finding collisions. The goal is now to find a generic
method to construct near-collisions more efficiently than the generic methods to
find collisions.

6 Lamberger et al.

In all of the following, let B, (z) = {y € Z% | d(z,y) < r} denote the Hamming
sphere around z of radius r. Furthermore, we denote by

Vinr) =180 =3 (7))

=0

the cardinality of any m-dimensional Hamming sphere of radius r. With this
notation, B(0) would be the set of all vectors having Hamming weight < e.

A first approach to find e-near-collisions is a simple extension of the table-
based birthday attack which leads to Algorithm

Algorithm 3 Birthday-like e-near-collision search
Input: Hash function H

T={}
while true do
Randomly select a message m and compute H(m)
if (H(m)+9d,m") € T for some § € Bc(0) and arbitrary m* then
return (m,m");
else
Add (H(m),m) to T
end if
end while
Output: m,m" such that d(H(m), H(m")) <e

Lemma 1 If we assume that H acts like a random mapping, the average number
of messages that we need to hash and store in Algorithm [3 before we find an -

near-collisions is
2n/2

S e

Proof. Consider a set C = {yo,...,yr—1} of L independent, uniformly dis-
tributed random variables with values in Zy. We now consider the random
variables d(y;,y;) and let furthermore x be the characteristic function of the
event d(y;,y;) < e, that is,

(6)

1 ifd(y,y;) <e
0 otherwise.

*(d(ys,) < ©) = {

Now, for i # j we consider the number N¢(€) of pairs (y;,y;) from C which have
d(ys,y,) < € (that is, the number of e-near-collisions):

L—-11:—-1

Ne(e) =Y x(d(yi y;) < e)

i=0 j=0

Memoryless Near-Collisions via Coding Theory 7

The expected value of this sum of pairwise-independent random variables can
be computed as

B(Ve(0) = (5) V(.2

Therefore, if we choose L such that L(L — 1) > 2""1/V(n ¢), the expected
number of e-near-collisions is at least 1. []

Remark 1. The proof of the previous lemma stems in part from the proof of [T
Th. 2. 1] where similar arguments apply in the context of random codes.

We see that, depending on ¢, finding e-near-collisions is clearly easier than finding
collisions. The question that now arises is whether or not we can find a mem-
oryless algorithm for the search for e-near-collisions. Unfortunately, we cannot
use cycle finding methods like Algorithm [2] directly, because a cycle only occurs
when there is a full collision. There is no such thing as a “near-cycle”.

A first approach to find near-collisions in a memoryless way is as follows. Let
I={j1,...,je} €{1,...,n} be a set of mutually distinct indices. Let p; denote
the linear projection map on the space Zj5, which sets the bits of its argument
to zero at the positions in I, that is, p; : Z§ — Z5 with

x; jé&l
pl(x)j:{oj jel

It follows that if p;(H(m)) = pr(H(m*)), then H(m) and H(m*) can differ only
in the bits determined by I, hence they are e-near-collisions.

Now we are again in the position to apply a cycle finding algorithm. Since we
know that dim(Im(pr)) = n—e, the expected number of iterations in Algorithm
is reduced to about 2("~9/2_ This is a performance improvement factor of 2¢/2
compared to the search for full collisions. On the negative side, this approach
can only find a fraction of all possible e-near-collisions, namely

26
V(n,e)

(7)

We can generalize this approach by replacing the projection p; by a more general
map g. Ideally, we would like to have a one-to-one correspondence between e-
near-collisions (e > 1) for H and collisions for g o H:

d(H(m), H(m")) < € & g(H(m)) = g(H(m")). (8)
However, we can show a negative result in this direction.

Lemma 2 Let e > 1, let H be a hash function and let g be a function such that
holds. Then, g is a constant map and d(H(m), H(m*)) < e for all m,m*.

Proof. For an arbitrary message m, we have

d(H(m), H(m) +¢;) = w(ej) =1 <e

8 Lamberger et al.

and thus
g(H(m)) = g(H(m) + ¢;)

for all 7 € {1,...,n}. It is easy to see that g is constant on the span of the
ej, which is all of Z3. But this implies d(H(m), H(m*)) < €,Vm,m*, which is
clearly not the case for the interesting hash functions H. [|

3.3 An Approach Using Coding Theory

The memoryless method to find near-collisions based on the projection map
pr introduced in the previous section suffers from the fact that only a small
fraction of near-collisions can be detected. Our solution to improve upon
this approach is to make use of the theory of covering codes. Let C be a binary
code with length n and with K codewords. Note that in the rest of the paper, the
length of a code and the output length of a hash function will both be denoted
by n, because they coincide in all our applications.

Definition 3 ([21]). The covering radius p of a binary code C is the smallest
integer p such that every vector in Zy is at a distance of at most p from a
codeword of C, i.e.,
p(C) = mamin d(z,c). (9)

In general, if the minimum distance of a code is the parameter of interest, we
speak of error-correcting codes, whereas if the emphasis is on the covering radius,
we speak of covering codes. For a thorough introduction to covering codes we
refer to the monograph [4].

Let H be a hash function of output size n. Let C be a code of the same
length n, size K and covering radius p(C) and assume there exists an efficiently
computable map g satisfying

g:Zy —C
x+— ¢ with (10)
d(z,) < p(C).

In other words, g maps every vector of Z% to a codeword at distance p(C) or

less. For example, the map g can be the decoding map of C, if decoding can be

done efficiently. Note however that it is not necessary that g maps every vector

to the closest codeword; any function satisfying would serve our purpose.

This weaker requirement may allow to replace the decoding map by a faster

alternative. The approach outlined above is now summarized in Algorithm
We are now in the position to state our main result:

Theorem 2. If we assume that go H acts like a random mapping, in the sense
that the expected cycle and tail lengths are the same as for the iteration of a
truly random mapping on a space of size K, then, Algorithm |4 finds 2p(C)-
near-collisions for H with a complezity of (’)(\/E) and with virtually no memory
requirements.

Memoryless Near-Collisions via Coding Theory 9

Algorithm 4 Main algorithm to find memoryless near-collisions for H.

Input: Starting point yo and hash function H of length n, a code C of length n, size
K, covering radius p and decoding function g satisfying .

Apply Algorithm [2to (g o H) and yo

Output: Pair (m, m") such that m # m* and d(H(m), H(m")) < 2p

Proof. Assume that we have two inputs m,m* to the hash function H with
m #= m*. If g(H(m)) = g(H(m™")) is satisfied, we can deduce that

d(H (m), H(m")) < 2p(C),

that is, every collision for g o H corresponds to an e-near-collision for H with
e=2p(C).

In order to find these messages m,m* we can apply Algorithm [2] to the
function g o H to find indices i # j such that (g o H)*(yo) = (g o H)?(yo) for
some starting point yg, or in other words, we get m,m* with m # m* such
that g(H(m)) = g(H(m")). Since g has an output space of size K, the expected
complexity of the described method will be O(vK) and there are virtually no
memory requirements. u

Remark 2. We see that in our setting, the length of the code is determined by
the size of the hash digest and the covering radius p is determined by the maxi-
mum weight that the near-collisions may have. The efficiency of our approach is
therefore determined by the size of the code. The task is thus to find a code C
with K as small as possible. However, also the computability of the function g
defined in plays a crucial role. An evaluation of g should be efficient when
compared to a hash function call. The actual task is thus to find a code C with
given length n and covering radius p, such that the size of C is as small as possible
and decoding can be done efficiently.

The task pointed out in the previous remark is a central problem in the field
of covering codes. In all of the following we denote by K (n, p) the minimum size
of a binary code of length n and covering radius p and by k(n, p) the smallest
dimension of a binary linear code of length n and covering radius p (that is, for
binary linear codes we have K (n, p) = 2F(™)),

A well known bound with respect to the size problem is the Sphere Covering
Bound, which states that K (n, p) satisfies

27L
V(n,p)’

where V(n,p) is as in (5). Another general bound is due to van Wee (see [
Theorem 6.4.4]) which states that for n > p

K(n,p) >

(11)

(n—p+p)2"
(n—p)V(n,p) +puV(n,p—1)’

K(n,p) > (12)

10 Lamberger et al.

with

= (p+ D] = (n+1).

Whenever p # 0, improves over . An extensive amount of work in
the theory of covering codes is devoted to the improvement of upper and lower
bounds on the size of covering codes and to ways to construct codes meeting
these bounds (see [2528], [4, Chapter 6] or [§]). We will discuss some possible
constructions in the next section. Finally, we also want to note that covering
codes have been mentioned before in the context of (keyed) hash functions in
[3]. Furthermore, during the preparation of this manuscript we learned about the
interesting paper [9] which treats the connection of covering codes and locality
sensitive hashing.

3.4 Hamming Codes and e-Near-Collisions with € = 2 and ¢ = 4

An important class of codes are the Hamming codes H,. Hamming codes are
linear codes of length n = 2" — 1, dimension k = 2" — 1 — 7 = n — r, minimum
distance d = 3 and covering radius p = 1. They correct every 1-bit error, decod-
ing can be done very efficiently and they are perfect codes. Note that for perfect
codes, we have equality in , that is, they are optimal covering codes for
their respective lengths. There is only one other non-trivial binary perfect code
known, namely the Golay code which has length 23, dimension 12 and covering
radius 3. In the following, we will write [n, k] code for a linear code of length n
and dimension k, i.e., a binary code having 2* codewords.

Decoding a Hamming code is done via syndrome decoding. In general, syn-
drome decoding of a binary linear code makes use of a table of size 2"~ * which
stores to every syndrome s the corresponding coset leader cg, i.e., the vector in
the coset of all vectors having syndrome s of smallest Hamming weight. A vector
y € Z is then decoded to y + cs. For Hamming codes, the table of size 2" ~* can
be omitted since the coset leaders are unique and known for a given syndrome
s.

Thus, using a Hamming code in Theorem [2] we get a memoryless algorithm
to find near-collisions of weight at most 2 in words of size n = 2" — 1. The
performance improvement factor is

2r/2 _ 210g2(n71)/2 ~ \/ﬁv

compared to a generic collision search algorithm.

In practice, most common hash functions have an output size of n = 2.
Unfortunately, for such lengths, no perfect codes are known. In view of , we
therefore have to search for codes leading to the smallest possible bounds for
K(n,p). In [28] it is shown that

K(2",1) =2 "forallr > 1. (13)

The following lemma will be used frequently throughout the remainder of this
section [10]:

Memoryless Near-Collisions via Coding Theory 11

Lemma 3 For linear codes Cy = [n1, k1] with p(C1) = p1 and Cy = [na, ka] with
p(C2) = pa, the direct sum of C1 and Co is defined as

CidCy = {(01,02) | c1 € C1,CQ S CQ}
Then, C1 & Cy is a linear code satisfying
[n1 +na, k1 + ko] and p = p1 + po.

To construct a code meeting the bound , one can start with a Hamming
code H, and extend it. In terms of direct sums of codes, this can be realized
by H, © Uy, where Uy = Z5 is the trivial code of length £. In Uy, every word is
a codeword, and therefore p(Uy) = 0. By Lemma [3| we end up with a code of
length 2", dimension 2" — r and covering radius 1. By we know, that no
smaller code with this property exists.

Furthermore, the code C = H, ® U; from above is as easy to decode as
‘H, since decoding can be done for each component of the direct sum. We can
summarize:

Proposition 1 Let H be a hash function of output length n = 2" for r > 1.
Then, for the approach outlined in Theorem[d, i.e., a generic method capable of
finding 2-near-collisions for H, the choice of the code C = H, ® Uy is optimal.

We can also aim for near-collisions of weight < 4, i.e. we take p = 2. The
sphere covering bound in the case n = 2" then implies
2741 o
K(2",2)> ————— > 2% 7",
@22 oo 2

We do not have a strict formula like but we can use a result from [I0] about
linear codes with covering radius 2.

Lemma 4 Let k(n,2) be the smallest dimension k such that a binary linear
[n, k] code with p =2 exists. Then for n > 28,

1. if 27l —4<n<3.2 —4,
k(n,2) € {n—2j—2,n—2j —1,n—2j};
2. 0f3-2 —4<n<2t? 4
k(n,2)e{n—2j—2,n—25—1}.
When applying Lemma [4] to the special case n = 2", we end up with
k(2",2) € {27 — 2r,2" — 2r + 1,27 — 2r 4+ 2}.

In order to come as close as possible to the above bounds for p = 2, we again
use the direct sum construction to build the following code:

C=Hr 1D Hr1 DUz, (14)

12 Lamberger et al.

that is, the direct sum of two Hamming codes of length 2"~! — 1 and the trivial
code of length 2. From Lemma |3| we get that this code has covering radius 2,
length n = 2" and dimension k& = 2" — 2r + 2. We have no construction reaching
one of the two lower possible dimensions k = 2" — 2r + 1 or k = 2" — 2r (for
n > 128).

Remark 8. Note that for special cases, better constructions than the direct sum
might be available. One example is the amalgamated direct sum construction,
also introduced in [10].

3.5 Near-Collisions for General n and Higher Weight

The last construction can be further generalized. One way to go is to consider
a larger covering radius p and another is to consider output lengths n that are
not a power of 2. The construction principle we propose does not claim to be
optimal, our objective is to use only simple, well understood codes with nice
properties. We can safely assume p < | 4] when talking about “near”-collisions.

Let p be a given covering radius and we consider a hash function H with
arbitrary output length n. The idea is now to construct a code of length n by
using the direct sum construction with p suitable Hamming codes and filling
the remaining space with U, codes. This renders a code, which can be decoded
efficiently and we will now prove a result on the size of codes based on the above
construction.

For this, we define for i = 1,2, ... the numbers N; = 2! —1 to be the possible
lengths of the Hamming codes H;. Let D = {0,1,..., p} be the set of digits. We
are interested in digital expansions z = > ,., d;N; with d; € D and d; # 0 for
finitely many 4. For ease of notation, we will denote by d - H; the direct sum of
d copies of H;. Now we can prove the following:

Construction 1 Let n be given and let p < |]. We now consider digital ex-

pansions Y, d;N; with d; € D which are smaller or equal to n. For a given

expansion (d;)i>1, let s((d;)i>1) denote the difference n—73 .-, d; N;. We assume
that additionally the following holds: B

ZiZI d; = Py

E d; - 1 is mazimal .
i>1

Then, the code
C= @di - H; @Z/[s((di)izl) (16)

i>1
has length n, covering radius p and the dimension of the code is

k=n—> di-i.

i>1

Memoryless Near-Collisions via Coding Theory 13

Properties of Construction

Since the construction is based on Hamming codes and the trivial codes U, =
75, we certainly need p Hamming codes in the direct sum construction since
the covering radius p(Uy) = 0. Also multiple #;’s are allowed, so we choose
a combination where the lengths N; = 2° — 1 of the Hamming codes satisfy
> i>1 diN; < n. In general, we cannot reach n exactly because of the requirement
> i1 di = p, that is, the sum of the digits must be exactly p. Let s((d;);>1) be
the error we make when approximating n. From Lemma [3] we know that a code
that is constructed as in has length

Zdz‘Ni + s((di)i>1) = n,

i>1

and that the covering radius is exactly p. For the dimension of the code we get
k= Zizl dz(Nz — Z) + 8((di)i21)
- 2121 dz(Nl B Z) +n- Zizl diNi =n — ZiZI d; - 2

which is smallest possible if ., d; - 7 is maximal.

Table 1. For given p = 1,...,5, the table compares the base-2 logarithms of the
complexity of the standard table-based approach (with € = 2p) @, the complex-
ity induced by the van Wee bound and the complexity of our construction
for n = 128,160 and 512.

n =128 n = 160 n =512
@©) (@[] © [@ [[@2)] [s)
57.5|60.5(60.5(|73.2]76.3|76.5||247.5|251.5|251.5
52.3|57.5|58.0(|67.7(73.2|74.0(/240.3|247.5|248.0
47.8|54.8|56.0((62.8(70.3|71.5(|233.8]243.8|245.0
43.8152.3154.0(|58.5(67.7|69.5|/227.7|240.3|242.0
40.1150.0(52.5((54.4|65.2|67.5(|221.9|237.0|239.5

T W N D

Remark 4. Since the direct sum of perfect codes is no longer perfect, we obvi-
ously get further away from the sphere covering bound . Nevertheless, since
our construction also has the requirement of being easy to decode, we see no
better construction that is more efficient when subject to the same restrictions.
When restricting Theorem [2] to codes constructed as direct sums of Hamming
codes H, and Z5, then, Construction provides the optimal solution. Of course,
we also have to note the drawback that our construction so far only allows to
search for e-near-collisions with even € (since € = 2p). This issue will be addressed
in the following section.

14 Lamberger et al.

3.6 Additional Thoughts and Probabilistic Considerations

We want to conclude this section with two observations. First, we want to note
that the projection based approach described in Sect. can also be seen in the
context of our coding based solution. To be more precise, in the projection case,
we cover Z4 with 2"~ ¢ sets which all have size 2¢. The representative of each
set is the vector having zeros in the € positions of the predefined set I and py
then maps a given vector to its representative. Basically, we have a “code” that
does not take into account its parity bits. On the other hand, when we look at
Hamming spheres around these representatives of radius €, we clearly observe
significant overlap.

There is however a simple idea to improve the projection based approach,
namely, by just enlarging the set of indices I that are then set to zero. Assume
we want to find e-near-collisions. It is not forbidden to take a set of indices I with
|[I| > e. A cycle finding method applied to py o H has an expected complexity of
2(n=11D/2 and clearly finds two messages m, m* such that d(H(m), H(m*)) < |I|.
The probability that these two messages m, m* satisty d(H(m), H(m*)) < € can

be computed to be
€ I‘
o115~ (MY 17
> (] an)

If we set for example |I| = 2e + 1, implies that a collision for p; o H is an
e-near-collision with probability 1/2.

For a truly memoryless approach, we can treat multiple runs of the cycle-
finding algorithm as independent events. Then, the expected complexity to find
an e-near-collision is obtained by multiplying the expected complexity to find
a cycle by the expected number of times that we have to run the cycle-finding
algorithm, i. e. one over the probability that a single run finds an e-near-collision.
In other words, we end up with an expected complexity of

(5) "

Finding the best trade-off for this probabilistic approach corresponds to finding
the minimum value of with respect to |I| and given e. In Table [2[we give
some optimal combinations of € and |I].

Table 2. Optimal values of || to minimize for small values of e.

€|[1/12|3]4(5|6|7|8|9|10
[11]]2]5|8[11|15|18(21|25|28(32

A similar approach can also be taken for the coding based method to find
near-collisions. Assume that Algorithm [] produces two messages m,m* such

Memoryless Near-Collisions via Coding Theory 15

that g(y) = g(y') with y = H(m) and y' = H(m*). Now we know for sure that
d(y,y") < 2p(C) but what do we know about the distribution of d(y,y’)?

For general codes, this question is difficult to answer, but for a Hamming code
H, of length n = 2" —1 it is fairly easy. Since p(H,) = 1, and g(y) = g(v') implies
that both y and ¢’ lie in the same Hamming sphere of radius 1 around some code
word, the distance d(y,y’) must be either 0,1 or 2 by the triangle inequality. For
an ideal hash function, we consider y, 3’ to be uniformly distributed in Z%. The
Hamming sphere Bj(c) contains n + 1 elements, namely the codeword ¢ and
c+eiforie{l,... ,n}

Proposition 2 Let y,y’ be taken independently and uniformly from Bi(c) for
some codeword c € H, of length n =2" — 1, then

0 with prob. 2t

(n+1)2
dly,y") =1 with prob. ¥ (19)
2 with prob. T(Lér_fl)lg

Proof. There are (n + 1)? possibilities to choose a pair (y,y’) in By(c). Inn+1
cases y = y’ and thus d(y,y’) = 0. In order to have d(y,y’) = 1 we need to have
either y = ¢ and 3’ # c or vice versa. This explains the second probability. The
probability for d(y,y’) = 2 results from y # ¢,y’ # c and y # ¢/'.]

These probabilities can also be used for the codes coming from Construc-
tion (1} The distribution of d(y,y’) can then be described as the convolution of
p distribution functions of the form .

For example, the probability that a 2p(C)-near-collision found by a code C as
in is in fact a (2p(C) — 1)-near-collision, can now be computed as follows.
The probability that d(y,y’) = 2p(C) is the product of the probabilities that
the restriction of y,3’ to every independent Hamming code contributing to the
direct sum C, has distance 2. Hence, the probability that d(y,y") < 2p(C) —1 is:

() @

i>1

More generally, we can play the same game as with the projection approach
and fix the near-collision parameter €. Afterwards, we successively increase the
covering radius p, follow Construction and compute again the product of
the complexity of the cycle finding algorithm in the constructed code and the
reciprocal value of the probability, that a resulting 2p(C)-near-collison is in fact
an e-near-collision.

Determining a closed expression for the complexity like in the projection
case seems out of reach, since the dependence on the tuneable covering radius
is too involved. Numerical experiments for relevant values of n and € indicate
however, that increasing the covering radius does rarely bring an advantage. We
refer to Sect. [4] for a concrete example (Table [3).

16 Lamberger et al.
4 Illustration: The SHA-3 Candidate TIB3

In this section, we want to demonstrate our novel approach introduced above on
a practical example, in this case, a recently proposed hash function. In Sect. [2]
we have discussed Theorem [Il about the MD-construction which stated that
collisions for the hash function H imply collisions for the compression function
h. Sometimes we are also able to convert collisions for A into collisions for H.

4.1 Overview on the SHA-3 Candidate TIB3

TIB3 [I7] is an iterated hash function based on the Merkle-Damgéard design
principle and was proposed as a candidate for the NIST SHA-3 competition [I§].
TIB3 comes in two flavors: TIB3-256 and TIB3-512. TIB3-256 processes message
blocks of 512 bits and a 256-bit state in order to produce 224 or 256 bits of hash
output, whereas TIB3-512 operates on message blocks of 1024 bits, a state of size
512 bits and produces hash values of 384 or 512 bits. Let m = M ||Ma|| - - - || M be
a t-block message (after padding). Then, the hash value h = H(m) is computed
as follows:

Hy=1Vy, My =1V,
H; = hy(H;—q1, M;||M;—y) for 1 <i<t
Hiyy = hr(Hy, O||Hel|M;) = h

where IV and I'V); are predefined initial values. Note that each message block
is used in two compression function calls. The compression function At is used
in Davies-Meyer mode [13] and consists of 2 parts: the key schedule and the
state update transformation. The state update of the compression function has
16 rounds, consisting of additions modulo 254, bitwise exclusive-ORs, bitwise
parallel nonlinear functions and fixed rotations. We refer to [I7] for a complete
description of the hash function.

In the following, we want to focus on TIB3-512 in order to demonstrate our
ideas. Basically, our illustration will rely on the attacks presented by Mendel
and Schléffer in [T4]. We note that the 512 bit and the 256 bit version of TIB3
are closely related since TIB3-512 is more or less a parallel invocation of two
TIB3-256 instances. In all of the following, the 512-bit state and hash value are
considered as values in (Z328)%.

In [14] it was shown that the compression function of TIB3-512 exhibits a
similar weakness as the MD5 compression function, see Sect. Namely, it is
relatively easy to find internal state values and message blocks such that

hr (s, mi) = hr(z; + A,my), (21)
where A is one of a set of special difference vectors of the form

A=(0,6,6,0) € (Z5*®)*. (22)

Memoryless Near-Collisions via Coding Theory 17

Take one application of the compression function as unit operation. Then, ac-
cording to [I4], the complexity @ to find a solution m, for is

0= 224 if § = e; and j € {64,128},
2% ifd=ejand e {1,...,63,65,...,127}

and we have that Q < 2240 if § = e;, +€j, + €5, +€j, + €5, and ji, j2, j3, ja, Js €
{1,...,128}. For § vectors with a higher Hamming weight, the complexity be-
comes larger than 22°¢) hence worse than the generic complexity of finding
a collision in a 512-bit hash function. Note that by this construction we get
Z?:o ('%%) ~ 228 different A vectors. In [I4], near-collisions having a difference
vector A from this set are constructed by means of a classical birthday attack,
hence with a complexity of

512;28

2 2242

compression function evaluations. The memory requirements were reduced to
about 21%0 using the method of distinguished points [23].

4.2 Memoryless Near-Collisions for hr

We will now show how we can construct near-collisions for At with suitable out-
put difference A in a memoryless way. The combination of these near-collisions
with the collisions for At will then result in full collisions.

We first observe that the difference vectors A in are of a special form:
the nonzero bits occur three times in the same positions. The probability that a
randomly found near-collision with weight 15 shows this structure, is negligible.

Therefore, we introduce an additional linear output transformation. We de-
fine

0010
1100
hee (23, mi) = hee(zima) < g7
0011
It can easily be verified that
hT(xivmi) ‘*‘hT(%,mf) = (Ovéa 6a 6) (23)
if and only if
hgr(zi,m;) + hrr(zi,m;) = (4,0,0,0). (24)

Now we want to show how to use the approach of Sect. to efficiently find
near-collisions of the form for the function hgr.

Since w(d) = 5, and we have found an almost optimal code of length 2" with
covering radius 2, we will choose the code from

C=He®Hs DU,

18 Lamberger et al.

with length n = 128 and k = 116. Let g be the decoding function of C satisfying
, i.e., g efficiently maps a 128-bit vector to a codeword at distance at most
4. With g, we define the function

fo (2% = (27

(A4,B,C, D)+ (9(A), B,C, D), (25)

and finally, we can apply a cycle finding method to the function f o Arp. The-
orem [2] together with the generic collision complexity in the last three 128-bit
words lead to a complexity of about

11643128
- 3 = 225() (26)
but with virtually no memory requirements. Compared to the attack of [14],
at the cost of a higher complexity by a factor 28, we can eliminate the memory
requirements of 21%°. Although an attack with a complexity of 2250 is not feasible,

NIST stated explicitly in its requirements that a result like this should not exist
for SHA-3 [18].

Remark 5. Obviously, by taking p = 2 we cannot find near-collisions with Ham-
ming weight equal to 5. We can now make use of the discussion in Sect.
When using p = 3, we can choose the code C = Hs @ Hs ® He U3 having length
128, dimension k£ = 112 and p = 3. Then, following from the probability of
finding a near-collision of weight < 5 is

p=1-— <(25)il 2)> (2 - -2) 0.2134.

210 212

Replacing £ = 116 in with k = 112 leads to a complexity of 2248, however
due to the probability p, we have to repeat the attack p~! times and thus end
up again with ~ 22°0 compression function computations. However, now we can
also find near-collisions of weight 5.

As suggested in Sect. [3.6] increasing the covering radius further while still
looking for 5-near-collisions would have the effect, that the dimension of the code,
and thus, the complexity of the cycle-finding part, decreases. The probability
that the found 2p-near-collision has weight < 5 however decreases even faster
and therefore, the overall complexity increases. Table [3| displays the numerical
values of the complexities when using a code of length n = 128 and covering
radius p € {2,3,...,9} in the same manner as above:

Table 3. Base-2 logarithm of the complexity of finding 5-near-collisions with
codes of length n = 128 with increasing covering radii p.

o 2] 3 1 5 6 7 8 9
Compl.|[250[250.23(251.24]252.20|253.24[254.34[255.46|256.48

Memoryless Near-Collisions via Coding Theory 19
5 Conclusion

In this paper, we have proposed a new memoryless method to search for near-
collisions. Our approach is based on the decoding operation of covering codes.
The efficiency of our algorithm depends on the size of the underlying code and we
gave constructions to find near-collisions of small weight which are optimal, or
close to optimal. One merit of our approach is that we do not have to impose any
conditions on how the near-collisions look like. We demonstrated our approach
on the SHA-3 candidate TIB3, where we showed how to completely eliminate
the memory requirements of 2'%° by a small loss in efficiency. Our method marks
the first general approach which makes cycle finding algorithms applicable to the
search for near-collisions.

Acknowledgements

The authors wish to thank the anonymous referees, Gaétan Leurent and Kazu-
maro Aoki for valuable comments and discussions. The work in this paper has
been supported in part by the Research Fund K. U. Leuven, project OT/08/027,
in part by the European Commission under contract ICT-2007-216646 (ECRYPT
IT), in part by the Austrian Science Fund (FWF), project P21936 and in part
by the TAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science
Policy).

References

1. A. Barg and G. D. Forney, Jr. Random codes: minimum distances and error
exponents. IEEE Trans. Inf. Theory, 48(9):2568-2573, 2002.

2. R. P. Brent. An improved Monte Carlo factorization algorithm. BIT, 20(2):176—
184, 1980.

3. R. Canetti, R. L. Rivest, M. Sudan, L. Trevisan, S. P. Vadhan, and H. Wee. Ampli-
fying collision resistance: A complexity-theoretic treatment. In A. Menezes, editor,
CRYPTO, volume 4622 of Lecture Notes in Comput. Sci., pages 264—283. Springer,
2007.

4. G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein. Covering codes, volume 54 of
North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam,
1997.

5. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren,
editors. Handbook of elliptic and hyperelliptic curve cryptography. Discrete Math-
ematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton,
FL, 2006.

6. I. Damgard. A Design Principle for Hash Functions. In G. Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Comput. Sci., pages 416-427. Springer,
1989.

7. B. den Boer and A. Bosselaers. Collisions for the Compression Function of MD5.
In G. Goos and J. Hartmanis, editors, FEUROCRYPT, volume 765 of Lecture Notes
in Comput. Sci. pages 293—-304. Springer, 1993.

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Lamberger et al.

G. Kéri. Tables for bounds on covering codes. http://www.sztaki.hu/~keri/
codes/. accessed 2010/05/17.

D. Gordon, V. Miller, and P. Ostapenko. Optimal hash functions for approximate
matches on the n-cube. IEEE Trans. Inform. Theory, 56(3):984 —991, 2010.

R. L. Graham and N. J. A. Sloane. On the covering radius of codes. IEEE Trans.
Inform. Theory, 31(3):385-401, 1985.

B. Harris. Probability distributions related to random mappings. Ann. Math.
Statist., 31:1045-1062, 1960.

D. E. Knuth. The art of computer programming. Vol. 2. Addison-Wesley Publishing
Co., Reading, Mass., third edition, 1997. Seminumerical algorithms, Addison-
Wesley Series in Computer Science and Information Processing.

S. M. Matyas, C. H. Meyer, and J. Oseas. Generating strong one-way functions
with crypographic algorithm. IBM Technical Disclosure Bulletin, 27(10A):5658—
5659, 1985.

F. Mendel and M. Schliffer. On Free-Start Collisions and Collisions for TIB3. In
P. Samarati, M. Yung, F. Martinelli, and C. A. Ardagna, editors, ISC, volume 5735
of Lecture Notes in Comput. Sci., pages 95—-106. Springer, 2009.

A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1996.

R. C. Merkle. One Way Hash Functions and DES. In G. Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Comput. Sci., pages 428-446. Springer,
1989.

M. Montes and D. Penazzi. The TIB3 Hash. Submission to NIST, 2008.
National Institute of Standards and Technology (NIST). Cryptographic Hash
Project, 2007. http://www.nist.gov/hash-competition.

G. Nivasch. Cycle detection using a stack. Inf. Process. Lett., 90(3):135-140, 2004.
National Institute of Standards and Technology (NIST). FIPS-180-2: Secure
Hash Standard, August 2002. Available online at http://www.itl.nist.gov/
fipspubs/.

V. Pless. Introduction to the theory of error-correcting codes. Wiley-Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New
York, third edition, 1998. A Wiley-Interscience Publication.

J. M. Pollard. Monte Carlo methods for index computation (mod p). Math. Comp.,
32(143):918-924, 1978.

J.-J. Quisquater and J.-P. Delescaille. How Easy is Collision Search. New Results
and Applications to DES. In G. Brassard, editor, CRYPTO, volume 435 of Lecture
Notes in Comput. Sci., pages 408-413. Springer, 1989.

R. Rivest. RFC1321 - The MD5 Message-Digest Algorithm, 1992.

R. Struik. An improvement of the Van Wee bound for binary linear covering codes.
IEEE Trans. Inform. Theory, 40(4):1280-1284, 1994.

P. C. van Oorschot and M. J. Wiener. Improving Implementable Meet-in-the-
Middle Attacks by Orders of Magnitude. In N. Koblitz, editor, CRYPTO, volume
1109 of Lecture Notes in Comput. Sci., pages 229-236. Springer, 1996.

P. C. van Oorschot and M. J. Wiener. Parallel Collision Search with Cryptanalytic
Applications. J. Cryptology, 12(1):1-28, 1999.

G. J. M. van Wee. Improved sphere bounds on the covering radius of codes. IEEE
Trans. Inform. Theory, 34(2):237-245, 1988.

X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In R. Cramer,
editor, FEUROCRYPT, volume 3494 of Lecture Notes in Comput. Sci., pages 19-35.
Springer, 2005.

http://www.sztaki.hu/~keri/codes/
http://www.sztaki.hu/~keri/codes/
http://www.nist.gov/hash-competition
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/

Memoryless Near-Collisions via Coding Theory 21

30. X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In Victor
Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Comput. Sci., pages
17-36. Springer, 2005.

31. G. Yuval. How to swindle Rabin? Cryptologia, 3(3):187-191, 1979.

	Introduction
	Background and Motivation
	Hash and Compression Function Collisions
	Near-Collisions
	Combining a Near-Collision and a Collision for h to a Collision for H

	Efficiently Finding Near-Collisions
	Generic Collision Finding
	Generic Near-Collision Attacks
	An Approach Using Coding Theory
	Hamming Codes and -Near-Collisions with =2 and =4
	Near-Collisions for General n and Higher Weight
	Additional Thoughts and Probabilistic Considerations

	Illustration: The SHA-3 Candidate TIB3
	Overview on the SHA-3 Candidate TIB3
	Memoryless Near-Collisions for hT

	Conclusion

