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1. INTRODUCTION

Resonant magnetic field perturbations (RMPs) are
presently used for mitigation of edge localised modes
(ELMs) in tokamak H-regimes. This method is fore-
seen to be used in ITER. However, the basic question
how well do RMPs penetrate into the plasma has not
obtained a final answer yet. Linear theory [1,2] pre-
dicts that RMPs are strongly shielded at the pertinent
resonant magnetic surfaces. It is known from MHD
theory, there is a RMP generated torque acting on the
plasma. This torque tends to slow down the electron
fluid motion across the magnetic field lines and, for a
certain threshold value of the RMP amplitude, causes
RMPs to penetrate. In this report RMP penetration
is studied within quasilinear theory in kinetic approx-
imation. The linear problem for the RMP electro-
magnetic fields is solved by the code KiLCA (Kinetic
Linear Cylindrical Approximation) [2,3] and this solu-
tion is selfconsistently used for the computation of the
evolution of the background plasma parameters using
a 1-D balance code. For this purpose, in the linear
as well as in the quasilinear model a particle and en-
ergy conserving collision operator is used. Unlike the
linear model, the quasilinear model is very sensitive
to the details of the collision operator and full con-
sistency with the conductivity model of the Maxwell
solver has to be ensured.

2. BASIC EQUATIONS
Both, the linear plasma conductivity and the quasi-
linear transport coefficients are determined by the so-
lution of the kinetic equation, L̂V f = L̂cpf where L̂V
is the Vlasov operator, L̂cp = L̂c + L̂cI,
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are the Ornstein-Uhlenbeck collision operator Lc with
an integral part L̂cI to ensure energy conservation. In
cylindrical geometry this equation can be solved an-
alytically by a Green’s function and the gyroaverage

of the perturbed distribution function needed in the
quasilinear problem is
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Here, fm and vrm are the amplitudes of the Fourier se-
ries over toroidal and poloidal angles of the perturbed
distribution function and of the radial guiding center
velocity, respectively. Gmp is Green’s function for L̂cp

discussed below. The thermodynamic potentials are
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These potentials determine particle and energy fluxes

Γ
(EM)
(e,i) = −ne,i (D11A1 +D12A2) , (5)

Q
(EM)
(e,i) = −ne,iTe,i (D21A1 +D22A2) , (6)

through quasilinear diffusion coefficients. Retaining
in vrm only parallel motion along the perturbed mag-
netic field and the E×B-drift (these are the dominant
processes for electrons), these coefficients are
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The Fourier amplitude of parallel current density re-
sponsible for RMP shielding can be expressed in terms
of the radial component of the magnetic perturbation
field Brm and the the electrostatic field component
cEm⊥ tangential to the unperturbed flux surface and
perpendicular to the magnetic field,
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Fig. 1. Left: Radial profiles of |Brm| before and after quasilinear relaxation. Right: Toroidal torque and |Brm|
at the resonant surface as functions of the toroidal velocity scaling factor. Starting scaling factor values used
for the computations shown on the left (see legend) and the value corresponding to zero electron fluid velocity
at the resonant surface are indicated by the black lines and the red line respectively on the right.

The mismatch between perturbed magnetic flux sur-
faces and perturbed equipotential surfaces leads to
quasilinear transport. Lowest order Larmor radius
approximation used in (7) and in (9) is sufficient for
the electrons. Moments Imn of Gm (without L̂cI) and
moments Imnp of Gmp (with L̂cI)
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are related by
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Using the representation for Imn by parameter dif-
ferentiation discussed in [3], the following recursion
formula is obtained
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With this recursion it is straightforward to show that
Onsager symmetry is valid, in particular
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3. APPLICATION
Using (5)-(6), balance equations for plasma density
ne, toroidal ion rotation velocity V ϕi , and electron and
ion temperatures Te,i presented in [4] were solved for
JET like parameters in experiments with ELM miti-
gation by C-coil. Only the 3/1 mode of the coil spec-
trum has been retained. Modelled are two variants of
starting equilibria obtained by scaling the toroidal ro-
tation velocity V φ by factors 0.8 and 1.0 as shown in
Fig. 1 for two values of the anomalous diffusion coef-
ficient, 104 and 5 · 103 indicated in Fig. 2. It is found
that thresholds of RMP bifurcation obtained in the
modelling are in the range of RMP amplitudes used
in current experiments. The results also show that
quasilinear effects do not necessarily lead to a signif-
icant increase in field penetration but may lead to
even stronger shielding despite the fact that the par-
allel electron current in the resonant zone is reduced,
see Fig. 2. In contrast to earlier MHD theories [3],
the main quantity changed by RMPs is the electron
temperature and not so much the toroidal rotation
velocity. The change is such that the perpendicular
electron fluid velocity becomes zero around the reso-
nant surface and RMP shielding is modified but not
removed. The electron diamagnetic velocity as the
most affected quantity agrees with a feature observed
in recent quasilinear modelling based on Drift-MHD
theory [5]. In all cases, the perpendicular electron
fluid velocity is evolving to zero in the resonant zone.
In MHD theory, this would lead to field penetration.
In kinetic theory, the radii of maximum radial mag-
netic field and zero toroidal torque are not the same
(see Fig. 1) and, as a consequence, shielding is not
necessarily reduced. The results presented are not
sensitive to the chosen value of the anomalous diffu-
sion coefficient.
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Fig. 2. Quasilinear heat conductivity coefficient (top), parallel electron current (middle), and perpendicular
components of electron fluid velocity (bottom). Dashed lines for the currents and rotation velocity components
show initial values. Thin lines correspond to the evolution with the anomalous diffusion coefficient reduced.
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