
Andreas Fitzek, BSc.

Development of an ARM TrustZone aware
operating system ANDIX OS

Master’s Thesis

Graz University of Technology

Institute for Applied Information Processing and Communications
Head: Univ.-Prof.Dipl-Ing.Dr.techn. Reinhard Posch

Supervisor: Dipl-Ing. Daniel Hein
Evaluator: Prof. Roderick Bloem

Graz, April 2014





Abstract

On modern devices all different kind of applications are executed. These in-
clude games, browsers, or on-line banking applications. Some of these applica-
tions we trust, some we do not. The problem is that both trusted and untrusted
applications are executed on the same device and we need to trust our device
to protect sensitive informations, like for example our banking credentials. We
want to isolate trusted and untrusted applications from one another. Therefore
we use domain isolation that separates trusted and untrusted execution envi-
ronments for applications. We want to enforce domain isolation that not even
if it the operating system kernel is compromised, untrusted applications can
access sensitive information inside the trusted execution environment.

The ARM TrustZone is a security mechanisms available in many ARM proces-
sors. It introduces two states into the processor, a secure and a normal state.
This can be used to provide hardware backed domain isolation.

This thesis describes the development of ANDIX OS, an ARM TrustZone aware
operating system. It operates in the secure state of the processor. ANDIX OS
protects its own memory resources and peripheral devices from access of the
normal state. In the normal state an other operating system is running paral-
lel to ANDIX OS. ANDIX OS supports the execution of Linux and Android
in the normal state. Linux and Android perform normal system operations,
while ANDIX OS provides a trusted execution environment, which is strongly
isolated from the normal world operating system.

ANDIX OS allows the development of Trusted Applications, which are exe-
cuted in the trusted execution environment. ANDIX OS protects the resources
of the Trusted Applications against attacks from the normal world. The se-
cure and the normal world communicate via a Remote Procedure Call mecha-
nism.

ANDIX OS is a free and open source ARM TrustZone aware operating system.
It can be used for all kinds of TrustZone aware development projects, either
academic or commercial. ANDIX OS runs on a software emulator and on a
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low cost hardware platform, because we want it to be as easy as possible to
start development with ANDIX OS for other parties. We hope that ANDIX OS
drives the research in the field of ARM TrustZone aware systems.
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Kurzfassung

Moderne Geräte werden für diverse Anwendungen verwendet. Dies können
sein, Spiele, Web-browser oder Online Banking Anwendungen. Manchen die-
ser Anwendungen vertrauen wir, und manchen nicht. Das Problem ist, dass
sowohl vertraute als auch nicht vertraute Anwendungen auf derselben Platt-
form ausgeführt werden. Dabei möchten wir auf unsere Plattform vertrauen
können, dass diese sensitive Information, wie beispielsweise Zugangsdaten für
Bankanwendungen vor unberechtigtem Zugriff schützt. Wir möchten die An-
wendungen von einander isolieren. Dazu möchten wir Domänenisolation ver-
wenden und den Anwendungen unterschiedliche Ausführungsumgebungen
anbieten. Diese sollen geschützt sein, selbst, wenn eine Anwendung die volle
Kontrolle über den Kernel des Betriebssystems gewinnt.

Die ARM TrustZone ist ein Sicherheitskonzept, welches in vielen ARM Prozes-
soren verfügbar ist. Dabei wird der Prozessor in zwei Zustände geteilt, einen
sicheren und einen normal Zustand. Dies kann dazu verwendet werden, um
eine hardwaregestützte Isolation zu gewährleisten.

In dieser Arbeit wird die Entwicklung von ANDIX OS, einem ARM TrustZone
Betriebssystem, beschrieben. Das Betriebssystem arbeitet im sicheren Zustand
des Prozessors. Mit ANDIX OS können Resourcen wie z.B. Speicher und Pe-
ripherigerärte vor Zugriffen aus dem normalen Zustand geschützt werden.
Parallel zu ANDIX OS läuft ein weiters Betriebssystem in der normalen Welt.
In der normalen Welt unterstützt ANDIX OS Linux und Android als Betriebs-
system.

Für ANDIX OS können sogennante Trusted Applications enwickelt werden,
welche in der sicheren Welt ausgeführt werden. Die Resourcen dieser Trus-
ted Application werden dabei vor Zugriffen aus der normalen Welt geschützt.
Die normale Welt und die sichere Welt kommunizieren mittels eines Remote
Procedure Call Mechanismus.

ANDIX OS ist ein freies und quellen offenes ARM TrustZone Betriebssystem.
Es kann für diverse ARM TrustZone Projekte, sowohl akademische als auch
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kommerzielle, verwendet werden. ANDIX OS läuft auf einem Emulator und
einem günstigen Entwicklungsboard. Damit wollen wir den Einstieg in die
Entwicklung mit ANDIX OS so einfach wie möglich gestalten. Wir hoffen, dass
ANDIX OS die Forschung im Bereich der ARM TrustZone vorantreibt.

vi



Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the used
sources.

Graz,

Date Signature

Eidesstattliche Erklärung1
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1. Introduction

1.1. Motivation

Modern devices are used for many activities. Surfing the web, reading emails,
playing games, consuming multimedia, office applications, or on-line bank-
ing and so on. These different use cases have different needs for security
requirements. We want to be able to trust our platform to protect sensitive
information, but also use it for untrusted rich applications, like playing games
or consuming multimedia. For example your banking application should be
protected from corruption by untrusted applications, such as malware.

Modern operating systems use mechanisms to isolate processes from each
other. The concept of virtual memory is used to isolate memory of two pro-
cesses. Virtual memory isolation gives every process its own virtual memory.
To access other processes memory, the operating system provides system calls,
which perform access control checks. Figure 1.1 shows a simple illustration of
the concept.

Figure 1.1.: Operating system process isolation
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1. Introduction

In all modern operating systems security vulnerabilities exist. Malware can
use these vulnerabilities to increase their privileges, in order to circumvent ac-
cess control mechanisms of the operating systems. When sensitive applications
hold their sensitive information inside their memory, malware may be able to
access these sensitive information, when the access control mechanisms has
been circumvented. These vulnerabilities can exist directly in the operating
system or in other processes with higher privileges than the untrusted appli-
cation. How can the sensitive application protect its sensitive information? In
the worst case scenario, not at all. If the malware has superuser level access
to the system, the sensitive application cannot protect its sensitive information
only with software. The sensitive information can be stolen by a malware. Fig-
ure 1.2 shows the circumvention of the process isolation of modern operating
system via a security vulnerability.

Figure 1.2.: Operating system process isolation circumvented

A system capable of protecting the sensitive information of the sensitive appli-
cation while allowing the user to still use potential untrusted applications has
to have security attributes. We use the attributes of a trusted computer defined
by David Grawrock in [Gra09] . These attributes are:

• Isolation of programs,
• Separation of user processes from supervisor processes,
• Long-term protected storage,
• Identification of current configuration,
• A verifiable report of the platform identity and current configuration, and
• Provide a hardware basis for the protections.
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1.1. Motivation

Building blocks are associated with attributes. If a system implements a build-
ing block associated with an attribute, the system has this attribute. Off-the-
shelf operating systems for the ARM platform contain building blocks that
implement some of these attributes. Figure 1.3 shows these building blocks
with their associated security attributes.

Figure 1.3.: Security Attributes and building blocks for off the shelf operating systems

In this thesis we build a TrustZone aware operating system called ANDIX OS.
During normal operation, an off-the-shelf operating system, like Linux, is exe-
cuted as rich operating system next to the ANDIX OS. This off-the-shelf oper-
ating system is the main operating system seen by the user. ANDIX OS runs in
parallel to the off-the-shelf operating system and isolates itself from this oper-
ating system. We introduce more building blocks to provide security attributes
for the ANDIX OS. We introduce a new layer of isolation, and provide more
hardware based building blocks by utilizing the ARM TrustZone (TZ). ANDIX
OS provides a hardware isolated execution environment. Therefore this envi-
ronment is also protected from superuser access in the off the shelf operating
system. This gives the user the possibility to execute a variety of low security
applications, like multimedia applications or games, and high security appli-
cations, like on-line banking or business applications, on the same device. The
high security application can utilize the execution environment provided by
ANDIX OS to protect their sensitive informations.
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1. Introduction

1.2. ARM TrustZone

The ARM TrustZone (TZ) is a security concept, that divides the system into
two partitions, isolated by hardware mechanisms.

In order to prevent an attack as shown in Figure 1.2, the concept of ARM
TZ was developed. When the operating system is TZ aware, it can use the
isolation provided by the TZ and the sensitive application is able to hide the
sensitive information inside the TZ. Therefore it has to split the application
into a Trusted Application and a front end application. The front end applica-
tion is the similar to the application without TZ support, but a small sensitive
part is moved into the Trusted Application. The part that is moved into the
Trusted Application should be the only part using the sensitive information.
The Trusted Application part of the application should be kept as small as pos-
sible to reduce the risk of introducing security vulnerabilities into the Trusted
Application code. The concept of the Trusted Computing Base (TCB) applies
to the Trusted Application code. The TCB consists of all components that have
to be trusted, to trust a system. For our definition of TCB see section 2.1.
Via the Remote Procedure Call (RPC) interface, the front end application and
the Trusted Application can communicate with each other. The RPC inter-
face should be designed to never hand out the sensitive information itself. It
only provides functions to use the information. For example if the sensitive
information is a secret cryptographic key, the interface should allow to use the
key, but not to extract the key. With this method the application can protect
its sensitive information from being extracted by malware. Even if malware
has full superuser access to the normal world operating system, the sensitive
information cannot be accessed. Figure 1.4 shows this scenario.

1.3. TrustZone-aware Systems

A TrustZone-aware system consists of the TrustZone hardware mechanisms
(see Chapter 2.5) and of course software, using these mechanisms. In such a
system, two operating systems (OSs) are actually running. One OS is executed
in the secure world and the other OS is executed in the normal world. The idea
is to keep the secure OS very small and only capable of performing security
relevant tasks. The more complex the secure OS is, the more likely it becomes
that it contains software security flaws that can be utilize to compromise the
system. The secure OS is part of the TCB of the system. The user will only
work with the normal world OS, which is not part of the TCB.
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1.3. TrustZone-aware Systems

Figure 1.4.: Operating system process isolation with TrustZone backed security

The normal world OS is also called the rich OS, because it implements all kinds
of features the user needs to work on the system. This includes a Graphical
User Interface (GUI), maybe with 3D accelerations for games, a network stack,
multimedia applications and so on. The normal OS is essentially an off-the-
shelf OS like Windows, Linux, OS X or Android.

The secure operating system is responsible for security critical operations.
Mostly cryptographic material is stored in the TZ and protected by its secu-
rity mechanisms. The secure OS is part of the TCB of the whole system and
therefore should be kept as small as possible. The secure OS also has to host
the normal OS. In the boot process of a TrustZone aware system the secure OS
boots up first and then the secure OS boots up the normal world operating
system. Therefore acting as a boot loader for the normal world.

Both worlds need to communicate with each other, to implement a RPC mech-
anisms. The world communication is designed to work similar to an operating
system call. A special operation mode exists in the TZ, which allows the cur-
rent Central processing unit (CPU) to switch its state. This mode is called
monitor mode and is implemented by the ANDIX OS. In this mode the sys-
tem can switch between the two worlds. Both worlds can access this monitor
mode by calling a trapdoor instruction called secure Monitor Call (SMC). This
instruction works like to a software interrupt, which traps the user space into
the kernel space, the SMC traps the kernel mode into the monitor mode. Infor-
mation can be transferred to the monitor mode, by setting up the CPU registers
before executing the SMC instruction. These registers can then be read in the
monitor mode.
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1. Introduction

1.4. ANDIX Operating System

The secure operating system developed in this thesis is called ANDIX OS. It
is a multitasking, non pre-emptive operating system and currently supports
the iMX 53 Quick Start Board (iMX53QSB)1 as a hardware platform and the
Qemu TrustZone23 implementation of Johannes Winter as an emulated hard-
ware platform. ANDIX OS supports Linux and Android on both supported
platforms as normal world operating systems. Android is still very unstable
on the iMX53QSB and has very poor performance on the Qemu TrustZone.
This means that development of TZ applications for Android based on ANDIX
OS requires a some patients.

GlobalPlatform4 is an organisation that provides standardized Application Pro-
gramming Interfaces (APIs) for Trusted Execution Environment (TEE) runtime
environments and APIss for TEE communications. Their mission statement
according to their website on 1st of April 2014 is:

GlobalPlatform works across industries to identify, develop and
publish specifications which facilitate the secure and interoperable
deployment and management of multiple embedded applications
on secure chip technology. GlobalPlatform Specifications enable
trusted end-to-end solutions which serve multiple actors and sup-
port several business models. [5]

We discovered their specifications during the development of ANDIX OS and
decided to implement these APIss to provide source code compatibility with
other TEEs.

The ANDIX OS consists of many components, which have to play together to
provide a stable and secure TrustZone aware operating system.

The heart of every operating system is the kernel. The ANDIX kernel operates
in the secure world in kernel mode. It is responsible for providing a secure exe-
cution environment to the Trusted Applications running in the secure world in
user mode. The kernel has to set up the TrustZone Address Space Controller
(TZASC) to protect the secure world memory region and to detect unautho-
rized access to these regions. If an attempt to access a secured memory region

1http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=
IMX53QSB

2http://www.qemu.org
3https://github.com/jowinter/qemu-trustzone
4http://www.globalplatform.org/
5http://www.globalplatform.org/aboutusmission.asp.
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1.4. ANDIX Operating System

is detected, ANDIX OS will take control of the system and stop it. The ANDIX
OS kernel also has to be capable to secure certain interrupts and therefore take
control over certain peripherals. It also provides process isolation via virtual
memory to the Trusted Applications operating in user mode. ANDIX OS also
implements a generic RPC mechanism to provide communication between the
secure user space and the normal world.

An operating system is not just the kernel. It also consists of user space li-
braries, providing standard functions and system calls. In ANDIX OS the user
space libraries include an adapted version of the newlib standard C library
and the TropicSSL library providing cryptographic functionality. Upon these
user space functions we implemented GlobalPlatforms API to provide interop-
erability to an other TEE [Glo11] . To be interoperable with other TEE Trusted
Applications should only use functions defined in the standardized API. The
TEE defines functions for trusted long term storage, cryptography, timing and
arithmetic. These are the building blocks needed to implement a Trusted Ap-
plication.

With these components a normal operating system is complete, but a TZ aware
system is more complex. It also has to provide a way to allow normal world
applications to talk to a Trusted Application. ANDIX OS implements this com-
munication channel as a kernel module for Linux. The communication is based
on SMCs. A SMC can only be executed in kernel mode. Since the interface is
similar to a system call interface, the kernel module is similar to a user space
system call implementation. The commands are issued from the normal world
user space, will be forwarded by the kernel module to the ANDIX OS. The ker-
nel module exposes an interface via a pseudo character device. Via this pseudo
character device a user space library was developed, which abstracts the com-
munication interface to a standardized API from GlobalPlatform [Glo10a] .
This library can be used by front end applications, to communicate with their
Trusted Application. The Trusted Application component runs in the secure
world in user mode, protected by ANDIX OS.

ANDIX OS currently supports the Freescales iMX53 Quick Start Board and the
QEMU Trustzone implementation developed by Johannes Winter (6). As rich
operating systems, ANDIX OS supports Linux and Android.

6https://github.com/jowinter/qemu-trustzone
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2. Preliminaries

This chapter provides basic knowledge about the ARM system and about the
ARM TrustZone (TZ). It also contains definitions of terms used later in the
thesis and introduces the Domain Isolation Concept. We presume the reader
has basic knowledge of common operating system (OS) concepts as in [Tan07]
.

2.1. Definitions

Now following are terms and their definition in the context of this thesis:

user/kernel space In modern operating systems the kernel and user applica-
tions are executed in different operating modes of the Central processing
unit (CPU). This isolates the kernel and user application from one another
and protects the system from faulty and malicious applications.

system call A system call is a mechanism for applications running in the user
space to utilize functions that are only available in the kernel space. The
kernel exposes a system call interface and allows application to use these
functions.

interrupt Interrupts the processor in its current execution and notifies the pro-
cessor about the occurred event, by jumping to the handler address.

System-on-a-Chip A System on Chip (SoC) is a system where its components
are integrated into one circuit. Modern smart phones are also SoCs.

secure world The ARM TrustZone partitions the SoC into two partitions. The
partition of the SoC which is protected by the ARM TrustZone is called
secure world

normal world The ARM TrustZone partitions the SoC into two partitions. The
partition of the SoC which is not the secure world is called normal world

rich operating system A rich operating system is an operating system capable
of providing a rich user interface. In this thesis we will refer to a rich
operating system as the operating system running in the normal world
and providing the normal user interface.

9
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secure In this thesis we define secure, when the confidentiality and integrity of
data is ensured and cannot be circumvented only by software. For exam-
ple a secure environment is secure if the environment protects the data
inside the environment against the outside of the environment and that
the data inside the environment cannot be altered from outside the envi-
ronment without detection, under the premise, that no hardware changes
where made.

Trusted Execution Environment A Trusted Execution Environment (TEE) is
an execution environment for software, that protects the memory of the
running software and the Input/Output (IO) functionality of the soft-
ware.

Trusted Application A Trusted Application is a piece of software, that can be
executed inside TEE. It utilizes the runtime environment inside the TEE.
Often a Trusted Application is a small piece of software which performs
only security critical parts of a bigger application. The bigger application
out sources the security critical parts into a Trusted Application to protect
sensitive information.

Trusted Computing Base The Trusted Computing Base (TCB) consists of all
components, hardware, firmware and software that have to be trusted to
trust the system. The TCB should be kept as small as possible, because
this reduces the risk of security flaws, which may evolve into vulnerabil-
ities.

2.2. Domain Isolation

Modern computer systems have to provide multiple functions. These include
multimedia playback, video gaming, office applications and on-line banking.
These different functions need different security levels. One way to provide
different security levels for the applications is to isolated them from one an-
other. We will call this domain isolation.

The following overview on domain isolation techniques in this section is based
on the survey of Arun Viswanathan and B.C. Neuman [Aru] . Domain isola-
tion can be achieved by multiple techniques. These techniques can be catego-
rized into five main categories:

Language-based Language-based isolation utilizes programming language se-
mantics like type systems and certifying compilers, to ensure the applica-
tion does not leave its domain. For more information on Language-based
isolation see [SMH01]
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Sandbox-based A sandbox provides an execution environment that tries to
limit the possibilities of the application inside this environment. A sand-
boxed application should not be able to exit this sandbox and only use
functions authorized by the sandbox. For more information on Sandbox-
based isolation see [Wah+93]

Virtual Machine-based Virtual Machine-based isolation provides a full run-
time environment to the domain to be isolated. This environment is man-
aged to provide access control to system resources. For more information
on Virtual Machine-based isolation see [SN05]

Kernel-based Kernel-based isolation trusts the operating system kernel to pro-
vide isolation between domains. Commonly these domains are processes.
In this concept the operating system kernel is part of the TCB. The smaller
the TCB the better, because there is less code that has to be trusted, and
a smaller code base is less likely to contain security vulnerabilities. One
form of Kernel-based isolation is called Microkernel [Acc+86] . In a Mi-
crokernel only the most important systems are implement in the kernel.
Only a virtual memory system, basic Inter-Process-Communication (IPC)
mechanisms and scheduling are implemented in the kernel code. System
drivers, file systems and network stacks are implemented as user space
processes in the system. This reduces the kernel code base and therefore
provides a smaller TCB. An even more reduced kernel system is called
Exokernel [Kaa+97] . An Exokernel manages the access to hardware re-
sources to prevent simultaneous access to hardware components, or to
prevent unauthorized access to hardware components. The processes ex-
ecuting on top of an Exokernel will have to know how to access and use
the hardware components. This reduces the kernel code base basically
to an access control layer for the hardware components. This reduces
the kernel code size and therefore the TCB. The XEN Hypervisor1 is one
example of an Exokernel.

Hardware-based Hardware-based isolation utilizes hardware functionality of
the system to provide domain isolation.
One example of Hardware-based isolation is the Memory Management
Unit (MMU). The MMU allows the system to provide virtual address
spaces to the different domains and therefore can be utilized for memory
isolation.
Another example of Hardware-based isolation is the Input Output Mem-
ory Management Unit (IOMMU). An IOMMU can be used to isolate de-
vices for certain domains.
Both the MMU and the IOMMU are used by operating system kernels

1http://www.xenproject.org/
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to provide domain isolation for their processes. This implies that the
operating system kernel is part of the TCB, because if the kernel cannot be
trusted, neither the MMU isolation nor the IOMMU can be trusted, since
the kernel is responsible for utilizing these hardware devices. Muli Ben-
yehuda et al. provide a good introduction into the concept of IOMMU in
[Ben+06] .
ARMs TrustZone also provides Hardware-based isolation on ARM sys-
tems. It divides the system into two parts one secure and one non-secure
part. In this thesis we develop an operating system to be executed in
the secure part of the ARM TrustZone. It should only contain the most
important systems, to keep the TCB as small as possible. To provide
Hardware-based isolation, the system developed in this thesis provides
a trusted execution environment, and allows application developers to
divide their applications into two domains, with a communication inter-
face.

We will give a more detailed description of the relevant domain isolation tech-
niques for ANDIX OS later in this chapter.

2.3. GlobalPlatform Trusted Execution Environment

ANDIX OS implements the GlobalPlatform Application Programming Inter-
faces (APIs) to provide source code compatibility with other TEEs. In this
chapter we want to give an overview about the GlobalPlatform APIs.

2.3.1. Introduction

The GlobalPlatform TEE specifications define a Client Application and a Trusted
Application. The Client Application is not executed inside the TEE and the
Trusted Application is executed inside the TEE. The Client Application can use
the Trusted Execution Environment Client (TEEC) API to communicate with
the Trusted Application inside the TEE. The Trusted Application should only
use the TEE API functions. If the Trusted Application only uses these func-
tions, the Trusted Applications are source code compatible with other TEEs
that implement the GlobalPlatform specifications [Glo10b] . Figure 2.1 shows
how the GlobalPlatform API specifications are used. By implementing the
specifications, Client Applications and Trusted Applications only have to be
developed once and can be build for different TEEs.
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Figure 2.1.: GlobalPlatform API Specification Concept
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2.3.2. Trusted Execution Environment Client

The TEEC is a standardized API defined by GlobalPlatform to allow com-
munication between the Client Application and the Trusted Application. The
first step for a Client Application is to connect to a TEE. This allows a plat-
form to support multiple TEEs. To connect to a TEE the Client Application
calls the TEEC InitializeContext function. This function initializes a TEEC -
Context. The TEEC Context is a handle to a specific TEE. In a TEE there can
be multiple Trusted Applications. When connected to a TEE a Client Appli-
cation can connect to a Trusted Application. To do this the Client Application
calls the TEEC OpenSession. This opens a session to the Trusted Applica-
tion. The session is identified in the Client Application with a TEEC Session.
When the Client Application is connected to a Trusted Application, the Client
Application can invoke commands in the Trusted Application, by calling the
TEEC InvokeCommand. The TEEC InvokeCommand functions allows to send
and receive memory reference to and from the Trusted Application. Listing A.1
shows a sample TEEC application code. It initializes a TEEC Context, connects
to TEEC Session and issues a command to the Trusted Application [Glo10a]
.

2.3.3. Trusted Execution Environment Internal API

The Trusted Execution Environment Internal API is a standardized set of func-
tions and data types. A Trusted Application should only use the functions
and data types defined in the API. If the Trusted Application only uses these
functions and data type it will be source code compatible with other TEEs that
implement GlobalPlatforms TEE specifications.

A Trusted Application has a different life cycle than a normal application. A
normal application has one main entry point usually the main function. A
Trusted Application has to implement five functions that get called by the run-
time environment depending on the current state of the Trusted Application.
The first function to be called is the TA CreateEntryPoint. This function is
called exactly one time when the Trusted Application is first started. A clean
up function the TA DestroyEntryPoint of the Trusted Application is called ex-
actly one time when the Trusted Application is closed again. In terms of object
orientation the Trusted Application can be seen as one class instance where TA-
CreateEntryPoint is the constructor and TA DestroyEntryPoint the destructor.

When a Client Application opens or closes a session to a Trusted Application
the TA OpenSessionEntryPoint or TA CloseSessionEntryPoint of the Trusted
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Application is called by the runtime environment. The Trusted Application
receives a session object for each session, which can be used to store arbitrary
data in a session context. The TA InvokeCommandEntryPoint of a Trusted
Application is called for each command invocation from a Client Application.
Instead of one main entry point like a normal application a Trusted Applica-
tion contain five entry points. Listing A.2 shows a sample Trusted Application,
that is compatible with the Client Application code in listing A.1 [Glo11] .

2.4. ARM Architecture Basics

This section gives an introduction into the ARM (ARM) v7 architecture. For a
more detailed explanation, please see [ARM12] .

An ARM processor can operate in different modes. The current mode deter-
mines the privilege level of the current operation. In the ARM architecture up
to three privilege levels are available. Table 2.1 show which ARM mode has
which privilege level.

Table 2.1.: ARM Modes and privilege levels

privilege level ARM Mode
PL0 User
PL1 System
PL1 Supervisor
PL1 FIQ
PL1 IRQ
PL1 Abort
PL1 Monitor
PL2 Hyp

The monitor mode only exists in SoCs with security extensions. Every mode
has it own fixed registers in the ARM CPU. These registers are used to hold the
current stack pointer and the link register. The link register holds the current
return address of a function.

The privilege levels determine the current access rights to some features of the
system. PL0 is the privilege level for unprivileged executions. PL1 gives access
to all features of the system except virtualization features. PL2 gives access to
all features of the system including the virtualization features. PL0 usually is
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used for user applications. PL1 usually is used by operating system kernels
and PL2 is used for hypervisors like Xen2.

An exception in ARM is an interruption of the current execution, which gives
the operating system the chance to react on an event. Such an exception can be
an invalid memory access, also call a data abort, an interrupt etc. Depending
on the type of the exception, the processor enters a different mode. When an
exception occurs, the processor changes to a mode responsible for handling
the event and transfers the control to a predefined entry point. These entry
points are structured as a vector. The base address of the vector is registered
at the processor and the entry points are defined as offsets to the registered
vector. The first operation done by a handler in the vector is to save the current
context. The current context consists of the common CPU registers. These
registers are shared between the different modes and have to be restored to the
values they had before the exception occurred, so the interrupted application
can resume the normal execution after the system handled the exception.

An interrupt in ARM is modelled as an exception. If an interrupt occurs, the
current execution is stopped, the mode is set the IRQ and the control is handed
over the interrupt handler entry point in the vector. ARM also supports Fast
Interrupt Request (FIQ)s. These exceptions are basically the same as an inter-
rupt, but in the FIQ mode there are more dedicated registers. These dedicated
registers are only available in the FIQ mode. Because the FIQ mode has more
dedicated registers, a context switch to this mode is faster. In a normal context
switch all common registers have to be saved, but since the FIQ mode only
uses less common registers only these have to be saved.

When an invalid access to memory happens, an exception occurs and the CPU
changes to the Abort mode. In the Abort mode, the system can investigate the
system and determine which error occurred. It is often possible for the system
to recover from such an exception.

2.5. ARM TrustZone

2.5.1. Introduction

ARM’s TrustZone is a set of hardware backed security mechanisms. It is inte-
grated deep into the SoC infrastructure and the processor core and provides

2http://www.xenproject.org/
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security mechanisms in the ARM processor, the bus system and the system
peripherals. This deep integration allows a wide range of security systems.
[ARM09]

The ARM TrustZone introduces two states into the processor. These states are
the secure state and the normal state. In the normal state consists of all modes
and privilege levels from table 2.1 expect the Monitor mode, are available. In
the secure state all modes and privilege levels from table 2.1 expect the Hyp
mode and PL2, are available. The idea is to have two partitions in the system.
The partition in the secure state can utilize the TZ mechanisms to isolate itself
from the partition in the normal state. We use the ARM TZ to run two OSs. One
OS is used as a secure environment, the other is the normal operating system,
which enables the system specific tasks. For example on a smart phone, the
normal OS could be Android or IOS. In the secure world a specialized OS will
run as the secure OS.

The secure world is a privileged state of operation of the processor. It gives
access to additional control registers of the ARM processor. The secure and
the normal state contain different modes similar, but orthogonal to the ring
architecture (see section 2.4). So that in each state a kernel and a user space
are be implemented. Figure 2.2 illustrates the different system partitions. One
special mode is the Monitor mode. In the Monitor mode is shared between
the two states and the processor can switch between the two states when in
Monitor mode. The monitor mode is used to communicate between the two
states. Software in both states can issue secure Monitor Call (SMC). This is a
software interrupt that traps into the Monitor mode. The software running in
monitor mode decides how to handle the SMC.

The Secure Configuration Register (SCR) is one of these protected registers.
It allows the secure world to control the behaviour of some normal world
operations. Through the SCR the secure world is able to control the abort
and interrupt behaviour of the system. The secure world can use the SCR to
intercept all Interrupt Request (IRQ)s and FIQs and redirect external aborts to
the secure world. [ARM07]

2.5.2. Memory Isolation

Dividing the processor into two states is not enough to provide hardware se-
curity. The secure world also needs a way to protect its system memory. To
achieve this, there is a physical line on the system bus signalling the current
state of the processor to all peripheral devices. The memory controller has to
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Figure 2.2.: ARM TrustZone paritions
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be aware of the TrustZone nature of the system. These memory controllers
are commonly called TrustZone Address Space Controller (TZASC). When the
processor is in the secure state, the memory controller is used to allocate pro-
tected memory regions. If such a region is allocated and the processor tries
to access a memory address in the region while the bus signals normal state,
the memory controller will issue an external data abort to the processor. The
value of the SCR determines if this abort will be handled by the secure world.
With this mechanism, the secure world is able to protect its memory and secret
values during computations [ARM09] .

2.5.3. Input/Output Isolation

The ARM TZ is integrated deeply in the whole SoC. This allows the TrustZone
secure usage of peripheral devices. This is accomplished in a similar way to
the TrustZone memory protection mechanisms. The current security state is
signalled through the system bus to all peripheral components. The same way
a TZASC is aware of the security state, a TrustZone aware interrupt controller
can be used to protect only certain interrupts from peripheral devices. Fur-
thermore, the bus controller implements an access control for master and slave
peripherals on the system bus. This controller can be reprogrammed in the
secure state. With this controller master components can be defined as secure
or non-secure on the bus. For slave components the controller assigns the ac-
cess control rights, for secure and non-secure states. By securing a peripheral
device with the bus controller, normal world components cannot access the
peripheral any more. This allows the TrustZone aware system to secure certain
peripherals in order to provide real end to end security. One example would
be to secure the image processor and the touch screen input of a smart phone
to provide a secure PIN entry to the user [ARM09] .

2.5.4. Processor

When the processor is in the secure state, it can lock down certain functions
to protect the integrity of the system. The core can be configured to trap
all external data aborts to the monitor mode. Unauthorized access to secured
memory regions or secured devices are signalled as external data aborts. When
an external data abort occurs the system state is examined to find the exact
source and target of the abort. With this information counter measures against
a potential security breach can be performed. ARM suggests to use FIQs in
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the secure state. When FIQs are used in the secure state, FIQs are not available
in the normal state. The ARM core can be configured to disable the FIQ bit in
the Current Program Status Register (CPSR) for the normal state. This means
that if the normal state tries to activate FIQs, by setting the FIQ bit to one in
the CPSR, it has no effect on the system. There also exists a special register
which can be read by software, which indicates the current state of the system,
meaning if it is secure or in the normal state.

2.6. High Assurance Boot

We can only provide a secure environment if the SoC can ensure that the cor-
rect software is loaded. This is called load-time integrity and can be enforced
with a High Assurance Boot (HAB).

To establish a secure environment, the SoC starts in the secure state and the
secure software is executed. This software can use the TrustZone infrastructure
to build a secure environment. When the secure software is booted and secured
the resources it needs, it will prepare the normal OS, switch the processor to
the normal state and transfer the execution to the normal OS [ARM09] .

Figure 2.3 shows the boot process of an ARM TZ aware system. After the de-
vice is powered on, a first stage boot loader is loaded from read only memory.
This first stage boot loader is the ROM SoC Bootloader in figure 2.3. This boot
loader tries to load the secure world OS from a known location. This could be
a memory card, on board flash memory or a network device. The secure world
OS is digitally signed by the device manufacturer. This signature is verified by
the first stage boot loader. It uses a public key for the signature verification,
stored in a read only memory on the SoC. It is essential for the security in
terms of origin integrity that this key can not be modified. The mechanisms
for keeping this key secure depend on the SoC. We can only trust that this key
is not modified. When the signature can be verified successfully, the secure
world OS is executed. The secure world OS boots up and than verifies and ex-
ecutes the normal world boot loader in the normal world. This again loads and
executes the normal world OS. These process description is an abstraction of a
real world secure boot process. The process details may differ from platform
to platform.

In ANDIX OS we did not use a HAB, because we only had a limited number of
development platforms available and we could not afford to brick one of these
platforms. To do a HAB a public key has to be stored into a read only memory
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Figure 2.3.: ARM TrustZone boot sequence
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on the SoC. This operation is not reversible and if performed wrong may brick
the board. In [Fre] the secure boot process of our development platform is
described.
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3.1. Isolation for Security

This section gives an introduction into relevant domain isolation techniques
for targeted on improving security.

3.1.1. Sandbox-based Isolation

Sandbox-based isolation separates the domains, by keeping the application
inside the sandbox domain. This can be enforced by access control lists, by
manipulating the executing code to ensure it cannot jump out of its own code
segment, or by limiting the access to the systems Application Programming
Interface (API).

Sandboxes keep applications inside itself and keeps them from accessing other
system resources. In ANDIX OS we use a different approach for isolation.
We do not keep potential malicious applications inside a sandbox, but protect
sensitive parts of applications from access from outside.

One example of the sandbox-based isolation would be the Dune sandbox use
case.

3.1.1.1. Dune

Dune enables user space applications to access privileged Central processing
unit (CPU) features. Dune is currently implemented as a 64-bit x86 Linux
kernel module. It utilizes virtualization extensions of the x86 platform to build
a virtual execution environment for user space applications. This is the same
way a hypervisor would act for a virtual guest machine. This virtual execution
environment allows the application to operate in kernel execution mode on
the CPU, but keeps the host kernel protected by the virtualization extensions.
System calls to the real kernel can be issued via a VMCALL instruction. The
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VMCALL instruction acts like a system call instruction and trap the execution
back to the hypervisor. In the case of Dune the real kernel. [Bel+12]

One use case of Dune is to execute untrusted code with sandbox isolation. The
sandbox runtime is executed via Dune in a virtual execution environment. This
means the sandbox runtime runs in the kernel execution mode. The untrusted
application is executed from the sandbox runtime in the user execution mode.
This way the sandbox can utilize a hardware based isolation to isolate the
untrusted application, the same way a kernel isolates itself from the user space
[Bel+12] .

In contrast to Dune, ANDIX OS provides a Trusted Execution Environment
(TEE) for sensitive applications and not sandboxed environment for untrusted
applications. This gives an advantage, because an application can take active
action and utilize the TEE from ANDIX OS. It does not have to rely on the user,
to sandbox all untrusted applications.

3.1.2. Virtual Machine-based Isolation

Virtual Machine-based isolation provides a managed execution environment
for the application. This execution environment can perform checks on access
of system resources to keep the domain isolated. There exists different types
of Virtual Machine-based isolation.

The execution environment may define its own instruction set. The execution
environment then translates its own instruction set to the instruction set un-
derstood by the hardware. During this translation the environment can ensure
that the application does not leave the domain boundaries. Example for this
isolation technique is the Java virtual machine and the Common Language
Runtime.

We are also currently working on providing a Mono runtime1 for the ANDIX
OS user space. The Mono runtime is an open source implementation of a
Common Language Runtime. This would improve the isolation between two
running Trusted Applications and the isolation between the ANDIX OS user
space and the ANDIX OS kernel space.

The execution environment may also simulate a full hardware platform, for
executing a complete operating system inside the domain. Access to simulated
memory or simulated devices is translated to the physical memory and real

1http://www.mono-project.com/Main_Page
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devices. During this translation the execution environment can enforce do-
main boundaries. Examples of this isolation technique are XEN2 and KVM3.
These execution environments may even simulate a different instruction set.
Furthermore these execution environments may utilize hardware virtualiza-
tion functions to increase performance of the simulated environments.

3.1.3. Next-Generation Secure Computing Base

The Next-Generation Secure Computing Base (NGSCB) is a platform architec-
ture developed by Microsoft. It proposes a split in the operating system into an
untrusted mode and a trusted mode. In the untrusted mode the general pur-
pose applications and kernel will operate. In the trusted mode a special kernel
part of the operating system called Nexus, will operate. The Nexus operating
system depends on curtain memory feature of CPUs. This memory feature is
CPU vendor specific, but provides memory protection even against the operat-
ing system. Intel implements this feature in its Trusted Execution Technology
(TXT). Security sensitive applications can operate on top of the Nexus part and
therefore in a isolated environment. [Mic03]

The concept of NGSCB is very similar to ARMs TrustZone (TZ) concept. In
Microsofts NGSCB concept the Nexus part is the equivalent to ANDIX OS.

3.1.4. Trusted Platform Module based Isolation

We take a look at three operating systems, which achieve domain isolation.
These operating systems are Terra, acTvSM and Nexus. Terra was the first con-
cept of verifying itself and using virtualization for domain isolation. All three
operating systems base their security on ensuring their own integrity using
a Trusted Platform Module (TPM). If their implementation is correct, domain
isolation is achieved. ANDIX OS runs next to the rich operating system, and
isolates itself from the rich operating system, via hardware backed mechanisms
provided by the TZ. Nexus and acTvSM both do not explicitly isolate them self
from the rich operating system by hardware backed mechanisms. acTvSM has
to trust the used virtualization mechanisms, to isolate itself. Nexus acts as rich
operating system itself.

2Xen Hypervisor (http://www.xen.org/)
3Kernel-based Virtual Machine (http://www.linux-kvm.org/)
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3.1.4.1. Terra

Terra is a platform that provides isolated execution environments for sensi-
tive applications. It achieves this using a Trusted Virtual Machine Monitor
(TVMM). This TVMM partitions the system into isolated virtual machines.
Terra knows two types of virtual machines, open-box machines and closed-
box machines. Open-box machines are common general purpose machines.
Closed-box machines are isolated environments. Closed-box machines provide
hardware protection for memory and cryptographic protection of the long time
storage. Terra uses a TPM to protect its own integrity as well as the integrity
of closed-box machines. Only if the integrity of the TVMM and the integrity
of the closed-box machine are ensured by the TPM, the TPM allows access to
the protected resources [Gar+03] .

In contrast to Terra, ANDIX OS does not allow multiple isolated execution en-
vironments. Terra uses virtualization mechanisms to provide domain isolation
between the different execution environments.

3.1.4.2. acTvSM

acTvSM is a Linux based platform, that provides security-oriented virtualiza-
tion. It implements the same concept as presented by Terra. acTvSM uses a
TPM to ensure the integrity of its code and configuration. It uses the seal-
ing mechanisms of a TPM to enforce an exact state of its trusted kernel code
and its main disk partition. When the base system is booted up, it provides
a virtualization platform with Quick EMUlator (QEMU) and the Kernel-based
Virtual Machine (KVM) to run different isolated environments. These environ-
ments are isolated by the platforms virtualization architecture. Each of these
environments consists of a full virtual machine. [TPG11]

In contrast to ANDIX OS, acTvSM is based on the x86 architecture and not
on the ARM (ARM) architecture. Also acTvSM can provide multiple isolated
environments for different applications. ANDIX OS has the advantage, that it
makes no assumption about the normal world operating system and operates
independent from it. AcTvSM has to confirm the integrity of all of its environ-
ments and their configuration. Whenever the configuration changes, the whole
system has to be resealed, this operation takes some time. This renders acTvSM
interesting for server environments, where the configuration does not change
frequently, but not practical for every day multi purpose devices. ANDIX OS
can provide a trusted execution environment, without the need to verify the
full system state of the normal world operating system.
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3.1.4.3. Logical Attestation with Nexus

The Nexus operating system provides an access control policy called logical
attestation. It lifts the TPMs hash-based attestation to a logically based attesta-
tion. The kernel of Nexus implements access control facilities based on logical
formulas. The kernel itself uses a TPM to ensure it own integrity and there-
fore the integrity of its access control facilities. In the Nexus operating system
each process has multiple labels. These labels are logical statements, and called
credentials. In the Nexus operating system resources are protected by goal for-
mulas. These goal formulas are logical formulas and can be set by the owner
of the resource. When a process or a user wants to access a resource it has
to construct a logical proof with the labels and logical statements associated
with him, to deduct the goal formulas for the resource. The access control in
the Nexus kernel will just check if the proof is correct and grants or prohibits
access to the resource. [Sir+11]

In contrast to ANDIX OS Nexus is based on the x86 architecture and not on the
ARM architecture. Nexus provides a logic based access control system for plat-
form resources, like memory, network, or Inter-Process-Communication (IPC).
This enables Nexus to provide a fine grained access control mechanism.

3.2. Isolation for Stability

A new isolation method is implemented in VirtuOS (see [NB13] ). VirtuOS is
based on XEN4 and utilizes hardware based isolations like Input Output Mem-
ory Management Unit (IOMMU) and Memory Management Unit (MMU). Vir-
tuOS is not designed to isolate domains from on another for security reasons,
but for stability reasons. It splits the kernel into service domains. Each of
these service domains runs in a different virtual environment. This reduces
the impact of kernel faults. In classical operating systems kernel faults often
crash to whole system. In VirtuOS, if there is a faulty device driver or a other
faulty implementation in one of the service domains, the system can recover,
by restarting the service domain [NB13] .

The service domain isolation of VirtuOS also increase the security of the sys-
tem. Security flaws in device drivers inside a service domain does not neces-
sary compromise the integrity of the whole system, because the attacker may
be able to execute code as kernel, but just inside a special service domain.

4Xen Hypervisor (http://www.xen.org/)
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ANDIX OS utilizes hardware based isolation not for stability, but to provide a
TEE, so to increase the security of the system.

3.3. Information Flow Control

3.3.1. Introduction

Information flow control allows tracks data through systems, by attaching la-
bels to data objects. With this labels the information flow control can categorize
the data objects. The access decisions are based on the label of the information.
This can be used to isolate sensitive information stored in sensitive applications
on the platform. Information flow control enables complex control policies to
be enforced.

3.3.2. HiStar and LoStar

Zeldovich et al. developed HiStar5 in [Zel+06] . HiStar is an operating system
that performs information flow control on data communications. In the case of
HiStar, the kernel takes care of enforcing the information flow control. HiStar
enforces information flow through long term storage, by labeling data stored
to the hard disk. It also enforces information flow to network interfaces. If HiS-
tars kernel is compromised, the information flow control can be circumvented.
To overcome this limitation, Zeldovich et al. propose in [Zel+08] a new hard-
ware architecture called Loki, that allows tagging of physical memory pages.
Loki is based on the Sparc architecture. The Loki architecture contains a secu-
rity monitor. The security monitor is a more privileged processor mode and
is used to handle illegal access to tagged physical memory and to set up the
information flow control policies for the tag values. On top of the Loki archi-
tecture, Zeldovich et al. developed a operating system called LoStar, which is
a port of the operating system HiStar to the Loki architecture. LoStar consists
of the LoStar kernel and the LoStar security monitor. LoStar uses the hardware
memory tagging feature of Loki, to move the enforcement of information flow
control to hardware. The labels of data objects in LoStar are implemented by
hardware tagging physical memory. The LoStar security monitor is a software,
that operates in the Loki security monitor and handles illegal access and sets
up information flow control policies. The LoStar kernel handles the common

5http://www.scs.stanford.edu/histar/
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operating system functionalities. If the LoStar kernel is compromised, the abil-
ity to enforce information flow control is not lost, as long as the LoStar security
monitor is not compromised.

LoStar supports hardware backed information flow control, which can be seen
as domain isolation. It supports complex information flow policy, but cannot
currently isolation specific devices for isolated Input/Output (IO) like ANDIX
OS.

3.4. ARM TrustZone Aware Operating Systems

3.4.1. Trustonic

The company Trustonic developed a TEE called <t
TM

-base. <t
TM

-base is closed
source and we have no knowledge about the implemented APIs or the avail-
able hardware platforms. <t

TM
-base seems to be a professional solution for

productive TZ based applications. 6

3.4.2. Open Virtualization

Open Virtualization is the first free and open source operating system that im-
plemented TZ. It comes in two licenses one open source, under the GNU Gen-
eral Public License (GPL), and one commercial license. The commercial prod-
uct is called SierraTEE. In the open source implementation many important
features are missing, like user space task isolation, kernel and user space sep-
aration, multitasking, dynamic application loading, secure boot and a POSIX
compliant libc.

Open Virtualization only supports the Versatile Express board and Emulation
Baseboard. The Versatile Express is very hard to order and also very expensive.
The Emulation Baseboard involves also high costs and high effort to retrieve
the real view emulation software. 7

The functionality on the open source implementation is very limited. We
wanted to have a TrustZone aware operating system available for a real hard-
ware platform, which is much easier affordable.

6http://www.trustonic.com/
7http://www.openvirtualization.org/
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4. ANDIX Architecture

This chapter will give a overview about the architecture of the ANDIX oper-
ating system and its components. The role and the responsibilities of each
component will be discussed.

ANDIX OS was developed as a multitasking, non-preemptive operating sys-
tem.

Figure 4.1 provides an overview of the ANDIX operating system and its com-
ponents. The components are grouped by the system mode they operate in.
In the secure world userspace we split the components into two groups, be-
cause the Trusted Execution Environment (TEE) runtime library is provide the
standardized runtime library. A list of the component groups follow:

• Secure World Kernel: The secure world kernel of ANDIX. (4.1)
• Secure World userspace libraries: A collection of userspace runtime li-

braries for ANDIX. These include Secure libc syscalls, newlib and trop-
icSSL. This component is the base for implementing the TEE runtime
library. (4.2)

• Secure World TEE library: The TEE runtime library for Trusted Applica-
tions. This component provides the standardized runtime functions for
the TEE, as defined in GlobalPlatforms Internal Application Program-
ming Interface (API). (4.4)

• Normal World Kernel module: A Kernel module for the normal world
operating system, responsible for communicating with the secure world.
(4.6)

• Normal World Trusted Execution Environment Client (TEEC) library:
The Trusted Execution Environment Client (TEEC) runtime library for
userspace applications. It abstracts the specifics of ANDIX OS to stan-
dardized library functions [Glo10a] . (4.3)

ANDIX and its supporting infrastructure consists of many components. These
components are designed to provide a trusted execution environment for the
so-called Trusted Applications. Trusted Applications should be implemented
using the TEE Internal API Specification [Glo11] . Every Trusted Application
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Figure 4.1.: Infrastructure components overview

implements five predefined functions, which act as the Trusted Application
Interface (see 2.3.2). This interface implements the Trusted Application Lifecy-
cle. The infrastructure will call these functions according to the specifications
[Glo11] . The Trusted Applications can access a set of functions also defined
by [Glo11] . These Trusted Applications are protected pieces of code and
can be compared to smartcard applications. The Trusted Application interface
exposes a remote procedure call based design. Trusted Applications usually of-
fer small functions which can be used by other Trusted Applications or normal
world applications. These functions are application specific and encapsulate
sensitive informations. There is a defined API for normal world applications
for calling Trusted Application functions [Glo10a] . By instrumenting this API
normal world applications with corresponding Trusted Applications can hide
security critical functions inside the Trusted Application, and therefore in a
secured environment. The functions exposed by a Trusted Application should
be called via the TEEC API.
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4.1. Secure World Kernel

The secure world kernel is the most fundamental part of ANDIX with respect
to security. The whole infrastructure is build around the secure world kernel.
It has to manage the security functions provided by the ARM TrustZone to
achieve isolation. This includes protection of the secure world memory and
protection of secure devices. The normal world is not authorized to access
the physical memory that is used by the secure world. The isolation of the
two worlds is fully controlled by the secure world kernel. The kernel not only
has to isolate itself from the normal world, it also has to manage the secure
world Trusted Applications. This includes isolation between the Trusted Ap-
plications, initialization of Trusted Applications and providing the system call
interface for the Trusted Applications. This system call interface abstracts com-
mon requests for memory management, file based input and output, hardware
abstraction and special requests to implement the trusted execution environ-
ment. The secure world kernel also has to prepare the system for the normal
world kernels boot process. Therefore, the secure world kernel becomes the
bootloader for the normal world and can verify the integrity of the normal
world system before its boot process. Another important task of the secure
world kernel is to detect possible attacks on the system security and to per-
form countermeasures against these attacks. When the secure world kernel
detects a possible attack, for example an unauthorized access to secured mem-
ory, it receives an data abort exception. The secure world kernel will handle
the exception by taking full control of the system and stopping. The kernel is
explained in more detail in chapter 5.

4.2. Secure World Userspace Libraries

This section describes the userspace programming libraries to enable standard-
ized C programs. The most important library is the C Standard library also
called libc.

The libc is a library for C that provides the basic runtime functionality for C
programming. The secure world userspace libc implementation is an adapted
version of the newlib1 library. To provide certain basic functions, libc needs to
use functionality only the kernel can provide. One example would be Input
and Output functionality. The userspace application therefore has to delegate

1https://sourceware.org/newlib/

33



4. ANDIX Architecture

certain tasks to the kernel. This delegation is accomplished by performing a
Software Interrupt. How this mechanism works differs from operating system
to operating system. These delegations are called system calls. The newlib
library defines method stubs for system calls, which have to be implemented
to port the newlib to a new operating system. The secure world system call
library implements these system call stubs using ANDIX kernel system call
interface. Therefore, it acts like glue between the secure world libc (newlib
port) and the secure world kernel system call interface. We chose newlib to
implement the userspace c runtime, because newlib is simple to port to new
operating systems.

Another important part of userspace library collection is the C runtime initial-
ization also called crt0. The crt0 depends on the operating system (OS) and
this small code is executed first when a new userspace application is loaded.
It defines the standard bootstrap code for userspace applications. Usually it
is used to call the main function in the userspace application and store the
result as the exit value of the application. In the ANDIX OS it is used to instru-
ment the TEE Interface functions, which are the special entrypoints for Trusted
Applications.

4.3. Normal World Trusted Execution Environment
Client Library

The normal world Trusted Execution Environment Client (TEEC) library im-
plements the API defined in the TEEC API specification [Glo10a] . This enables
source code compatibility to other TEEs. The TEEC library uses the pseudo
character device exposed by the kernel module to abstract the ANDIX OS spe-
cific world communication up to the API from GlobalPlatform [Glo10a] (see
2.3.2). Normal world applications should use the functions provided by this
library to communicate with Trusted Applications.

4.4. Secure World Trusted Execution Environment
Library

The TEE library implements parts of the standardized TEE Internal API Spec-
ification [Glo11] . This API provides functions usable by Trusted Applica-
tions. The API itself is implemented on top of the libc implementation and the
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tropicSSL library. The tropicSSL library is needed to provide cryptographic
functions. Trusted Applications must only use functions from the TEE library.
This ensures source compatibility to other TEEs. The TEE library provides the
following functions. We only implemented parts of the API, because the im-
plementation of the full API was out of scope of this thesis. We focused more
on building the underlying OS and the supporting libraries. With ANDIX OS
we reached a point, where the full GlobalPlatform TEE Internal API can be im-
plemented in the secure userspace. We cannot describe the full GlobalPlatform
API in this thesis, for detailed information on the GlobalPlatform TEE Internal
API please see [Glo11] . Here is a list of the GlobalPlatform TEE Internal API
parts with a short description:

memory management Memory management provides functions to allocate and
to free memory. The ANDIX OS TEE runtime library implements the
memory management part of the GlobalPlatform TEE Internal API.

trusted storage Trusted storage provides functions to store data persistently
or temporarily in a well structured form. The ANDIX OS TEE runtime
library does not implement the trusted storage part of the GlobalPlatform
TEE Internal API.

timing Timing provide function for timing. The ANDIX OS TEE runtime li-
brary does not implement timing operations of the GlobalPlatform TEE
Internal API.

arithmetic and logic operations on big integers Arithmetic and logic opera-
tions on big integers provide functionality for big integer operations. The
ANDIX OS TEE runtime library does not implement arithmetic and logic
operations on big integers as defined in the GlobalPlatform TEE Internal
API.

cryptographic operations Cryptographic operations provide functionality for
symmetric and asymmetric cryptography. Also cryptographic hash func-
tions are provided. This contains also data types to store cryptographic
primitives in the trusted storage. The ANDIX OS TEE runtime library
does not implement the cryptographic operations as defined in the Glob-
alPlatform TEE Internal API, but we provide cryptographic operations
via the TropicSSL library. To support the GlobalPlatform TEE Internal
API, we would need to implement wrapper functions around the Tropic-
SSL library.

inter process-communication Inter process-communication provides functions
communicate with other Trusted Applications. The ANDIX OS TEE run-
time library does not implement inter process-communication as defined
in the GlobalPlatform TEE Internal API.
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4.5. World Communication

The goal of the thesis is to provide a TEE. But normal world applications have
to be able to communicate with the Trusted Applications running inside the
TEE. Figure 4.2 shows the logical communication channel, where a normal
world application communicates with a Trusted Application and the real com-
munication channel.

Figure 4.2.: World communications

The real communication channel is realized by world switches. The two worlds
communicate via a system call like interface. Both worlds use the monitor
mode to switch between modes of operations. To do this the normal and the
secure world can issue a secure Monitor Call (SMC) instruction. This SMC
instruction will trap the execution flow into the monitor mode. 32 bit values
can be exchanged via the core registers, because the register values are kept
during this trap into the monitor mode. One of these 32 bit values is used as
a memory location in the physical memory. The normal world cannot access
the secure memory, but the secure world can access all memory. Therefore the
normal world will allocate a memory block containing the relevant information
for the logical communication. It will load the physical memory location of
this memory block into the core register zero. After the SMC instruction the
monitor mode will transfer the given memory location to the secure world,
which in order can access the memory block. A possible response of the secure
world also has to be written into the memory block provided by the normal
world. So the normal world application has to allocate enough memory for the
response.
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On top of the real communication channel a logical communication channel is
implemented. The logical communication channel implements the GlobalPlat-
form TEEC API in the normal world and the GlobalPlatform TEE Internal API
in the secure world.

4.6. Normal World Kernel Module

The normal world kernel module is used to abstract the communication mech-
anisms between the normal world and the secure world. It is implemented
for the Linux kernel of the rich OS and provides a pseudo character device, to
expose communication capabilities to normal world applications. The commu-
nication between the two worlds is based on a system call like interface. The
normal world kernel module implements the logical channel of the world com-
munication on top of the real communication channel. When we look at the
GlobalPlatform TEEC API, a Client Application can open sessions to Trusted
Applications. The kernel module has to keep track of these sessions. Accord-
ing to GlobalPlatforms TEEC API, a Client Application can invoke commands
in a Trusted Application. This invoke can take up to four parameters, that
can either be plain integer values or memory buffers. The kernel module has
to semantically understand the type of the parameters and prepare the secure
world request accordingly, because memory buffers have to be allocated in
the kernel space, so that they remain in the same physical memory location.
The normal world kernel module implements the real communication channel
with the secure world and provides the functional foundation to implement
the normal world TEEC library.
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5.1. Overview

The heart of the whole ANDIX OS is the secure world kernel. The kernel con-
sists of multiple subsystems. We want to provide a Trusted Execution Envi-
ronment (TEE). To achieve this we need to provide memory and Input/Output
(IO) isolation for the secure world to protect the data of the Trusted Applica-
tions. All of the kernel subsystems play a vital role in securing the TEE. Figure
5.1 shows the main subsystems of the ANDIX kernel.

Figure 5.1.: ANDIX Kernel subsystems

The following listing will give a short description of the subsystems responsi-
bilities. Every subsystem and its implementation is discussed in more detail in
the following sections 5.2 - 5.9.

• The Boot Process is used to set up the basic execution environment in-
cluding a temporary kernel stack and to initialize the main subsystems.

• Memory Management is used to control physical and virtual memory in
the secure world kernel space and user space.
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• Abstracting the hardware functions to a hardware independent Applica-
tion Programming Interface (API) is the purpose of the Hardware Ab-
straction Layer

• Monitor system provides functionality for switching between the normal
and the secure world and also for task switches inside the secure world.

• Task system provides support for multiple tasks in the kernel and user
space.

• The Cryptographic system provides basic cryptographic functions in-
cluding big number calculations.

• The Persistence system provides a file based persistent storage for the
secure world.

• The Trusted Execution Environment system provides the functional foun-
dation to implement logical world communication as proposed by the
GlobalPlatform APIs [Glo10b] .

5.2. Boot Process

The boot process of the ANDIX OS starts after the boot loader. A sequence
diagram of the basic boot procedure is shown in figure 5.2. The sequence
diagram shows the order in which the subsystems of ANDIX OS are initial-
ized. The boot loader places the ANDIX kernel in a predefined position of the
Random-Access memory (RAM). ATAGS are data structures used to pass boot
arguments to the Linux kernel. The boot loader loads ATAGS into the RAM
and puts the physical address of the ATAGS into processor register 2. Regis-
ter 1 holds the platform identification number, which identifies the hardware
platform. This boot process is one possible boot process for the Linux kernel
[Rus02] . Therefore, existing boot loaders can be used. When this basic envi-
ronment is set up, the boot loader transfers control to the initial boot code in
the ANDIX kernel. In the future we will utilize the boot loader to not only load
ANDIX, but to also load the rich operating system. This way we can reduce
the code size of ANDIX and the Trusted Computing Base (TCB) of the system,
but this change was out of scope for this thesis.

The initial boot code is implemented in the ARM assembler language and relo-
cates the kernel to a different location in the physical memory. This location is
predefined and depends on the platform. To find the correct location the initial
boot code uses the platform identification number and looks up the location
for this platform. After the relocation is done the initial boot code also sets
up the virtual memory by initializing the Translation Table (TTBL). A one to
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one mapping between the current physical memory location and the virtual
memory is created. Furthermore, physical memory is also mapped to the vir-
tual memory address starting at 0xC0000000. This virtual memory address is
the base address the kernel is linked to. Also a platform depend IO memory
location is mapped to the virtual memory. This provides basic IO functionality
until the Hardware Abstraction Layer (HAL) subsystem is initialized. When
the TTBL is initialized the initial code turns on the Memory Management Unit
(MMU). Then the platform is operating with virtual memory in the secure
world. The last responsibility of the initial boot code is to set up a stack. This
is accomplished by simply setting the current stack pointer to a preallocated
static memory region. The register values of the boot loader are restored with
the location of the boot parameters (ATAGS) and the platform identification
number. With an absolute jump instruction the initial boot code enters the
main boot code.

The main boot code is implemented in the C programming language. First of
all it stores the platform identification number and the physical location of the
ATAGS. It is furthermore responsible for initializing the most basic subsystems
in a particular order. The first system to be initialized is the memory manage-
ment system. A detailed description of the system can be found in the next
section 5.3. After the initialization of the memory management system, the dy-
namic memory, mapable memory and stack memory are available. The second
system to be initialized is the monitor subsystem (see section 5.6). When this
system is ready, secure monitor calls can be performed. The third system to
be started is the HAL. The HAL uses the mapable memory to map IO mem-
ory of devices to virtual memory and the TEE uses mapable memory to map
shared memory to the kernel space. If a TrustZone aware memory controller
is available, it will be used to secure the physical part of the memory, used by
the ANDIX OS. This memory controller is the device, which fetches memory
data from the RAM banks to the system bus. The last system to be initialized
in the main boot code is the task system (see section 5.5). After the task system
initialization, the main boot code is able to create the main kernel task. It will
use the monitor system to change to the main kernel task and consequently
complete the basic boot procedure.
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Figure 5.2.: ANDIX boot sequence

5.3. Memory Managment

5.3.1. Overview

The memory management system of the ANDIX kernel manages virtual as
well as physical memory. The memory management is providing isolation be-
tween the ANDIX OS kernel and user space application, but also inbetween
the different user space applications. This provides an important part of the
domain isolation for the security concept of ANDIX OS. This system consists
of multiple subsystems. The different subsystems will be discussed in detail
in the subsequent sections of this chapter. The virtual memory is managed
with the MMU (cf. [ARM12] ). A Translation Table (TTBL) is a data structure
that is used by the MMU to translate virtual memory addresses to physical
memory addresses. A TTBL is better known as page directory in the x86 ar-
chitecture. To split user and kernel space memory, two TTBL are used. One
maps all virtual memory from the memory address 0x80000000 to the mem-
ory address 0xFFFFFFFF. This is the whole kernel space of the virtual memory
layout. The second one maps the virtual memory from the memory address
0x00000000 to the memory address 0x7FFFFFFF. This is the whole user space
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of the virtual memory layout. We decided to use this much virtual memory
for the kernel, because two gigabyte of virtual memory will suffice for Trusted
Applications. The Trusted Applications should only be small applications and
should not need this much memory. Figure 5.3 shows the virtual memory
layout of every process in the secure world in ANDIX OS. The kernel space
memory (0x80000000 - 0xFFFFFFFF) always maps to the same physical mem-
ory for every process. Only the lower part of the virtual memory, the user
space part (0x00000000 - 0x7FFFFFFF) maps to different memory for the differ-
ent user space processes. By splitting the memory space with the two TTBL at
exactly this boundary makes user space switches faster, because only the first
TTBL, responsible for the user space has to be exchanged.

Following is a list describing the memory areas of the virtual memory layout
(see fig. 5.3):

unmapped The unmapped area in the user space from 0x00000000 - 0x00008000

is not mapped. Accessing memory in this area will lead to a data abort
exception and can be used to catch null pointer errors. ANDIX OS does
not handle null pointer errors yet, but this area is reserved for the future
use to do so.

User code/static data In this virtual memory area the user space code and
the static data segment of the user space application is located.

User heap This virtual memory area the dynamic memory is located.
User stack This virtual memory area contains the stack for the user space ap-

plication.
Mappable Memory The mappable memory area is a virtual memory area in-

side the kernel space, that is available for memory mapped IO and nor-
mal world physical memory. It is used to make physical memory, that
is not constantly available in the virtual memory layout, accessible, for
example normal world physical memory.

Kernel code/static data This virtual memory area contains all the kernel code
and the kernel static data segment.

Kernel Heap The kernel heap area is a fixed size memory area, that is pre
mapped to physical memory. This area is used by the kernel to dynami-
cally allocate memory.

Kernel Stacks In this virtual memory area the stacks for the different kernel
tasks are located. The kernel space if the same for every task, so in this
area all kernel stacks are co located.

The memory system initialization starts by analysing the memory ATAGS. It
will initialize the kernel heap memory just after the end of the memory of the
static kernel data with a constant size.
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Figure 5.3.: ANDIX virtual memory layout
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5.3.2. Physical Memory Manager

The physical memory manager is responsible for keeping track of the physical
memory usage. It will detect the physical memory address range ANDIX OS
is located in. This physical memory has to be protected from normal world
access. A virtual list of memory address ranges is generated and one mem-
ory address range of a predefined size is marked as secure (see 2.5.2). The
remaining memory in the secure memory address range, after subtracting the
static size of the kernel and the size of the kernel heap, is used for the physical
memory manager.

The physical memory manager divides the secure memory address range into
pages with the size of 4096 bytes each. These pages can be in use or free.
A simple bitmap is used to track the state of each page. To allocate physical
memory pages the requested number of free pages has to be found in the
bitmap. Only one bit in the bitmap has to be set to release a physical page.
Calculating the physical memory address from the bitmap position can be
done by knowing the start address of the physical memory segment. Equation
5.1 gives the physical memory address of a memory page of any memory page.
We took the concept Memory Management with Bitmaps from [Tan07] .

pageAddress = physicalStartAddress + (position) ∗ 4096 (5.1)

5.3.3. Virtual Memory

ANDIX OS uses multiple managers for different parts of the virtual memory
layout. The virtual memory space of the kernel heap is managed by the kernel
heap manager (5.3.3.1). The kernel stacks area is managed by the stack mem-
ory manager (5.3.3.3), the mappable memory area is managed by the mappable
virtual memory manager (5.3.3.2), and the virtual memory of the user space is
managed by the user virtual memory manager (5.3.3.4). The mappable mem-
ory manager, the kernel stack manager, the user virtual memory manager and
the physical memory manager are all implemented the with the same principal
of a bitmap (see 5.3.2).

5.3.3.1. Kernel Heap Manager

The Kernel Heap Manager manages the dynamic kernel memory, also called
the kernel heap (see fig. 5.3). It is pre-mapped into virtual memory. We based
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the implementation of the kernel heap memory of ANDIX OS on Doug Lea
(cf. [Lea] ) heap concept. The heap memory is organized in blocks of memory.
Each of these blocks contains a simple header followed by the memory space
for the actual data. This header contains the size of the previous block, a simple
flags field and the size of the current block. After this header the actual data
starts. The complete heap memory consists of these blocks. Figure 5.4 depicts
this structure. The flags field of the structure, keeps the state of the heap block
up to date, whether if it is used or not used. Given this structure, it is easy to
navigate the blocks backward and forward.

Figure 5.4.: Kernel heap structure

During initialization, one heap block that spans over the whole heap memory
is generated and marked as free.

To allocate memory on the heap, a free block with enough space has to be
found. To find a free block we start looking at the first block in the heap
memory. We check if the block is free and has enough space available. If
not, we add the size of this block to our current block address to move to the
next block. Before accessing the next block we need to check the address if
we already reached the end of the kernel heap. If such a block is found, we
need to decide if the block is split into two blocks. The block is not split if the
remaining memory of the block can contain at least one heap structure with
1 byte of data. The first block must be large enough to hold the requested
amount of data. This first block is marked as used and the memory address
of the data part of the block is returned. The second block with the remaining
memory size is just marked as free, by setting the used bit in the flags field of
the header. The following memory block has to be changed as well to adopt
the previous size in this block.

To release heap memory, the used bit in the flags field of the heap block has to
be cleared. After this operation, the previous and the next block are checked
and free blocks are merged to avoid memory fragmentation. Figure 5.5 shows
a situation, where memory fragmentation is avoided during a freeing opera-
tion.
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Figure 5.5.: Kernel heap release
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5.3.3.2. Mappable Virtual Memory Manager

The mappable memory can be used to access physical memory, that is not
always available in the trusted kernel. The Mappable Virtual Memory Manager
is responsible for managing the mappable memory area of the kernel (see fig.
5.3). The mappable memory area is part of the kernel space virtual memory
layout. This virtual memory is available for dynamic memory mapping. It can
be used to map physical memory to the trusted kernel. This physical memory
can be an IO memory are for hardware peripherals or it can be a physical RAM
memory used for communication between the secure and normal world (see
4.5).

The mappable virtual memory manager also uses a bitmap to keep track of
the 4096 byte pages of the virtual memory. For a detailed explanation of the
bitmap concept please check the previous section. The virtual memory area
is located between 0x80000000 and 0xC0000000. This gives the ANDIX OS
one gigabyte of freely mappable virtual memory, that is used to access normal
world physical memory for world communication and for device drivers for
mapped IO.

5.3.3.3. Stack Memory Manager

The Stack Memory Manager is responsible for managing the kernel stacks. The
stack memory is located after the end of the kernel heap memory (see fig. 5.3).
This section of the virtual memory layout is used to store kernel stacks. This
includes stacks for different operating modes like monitor or abort mode and
also for different kernel tasks.

Also the stack memory manager uses a bitmap to manage the available mem-
ory pages in its memory. For a detailed explanation of the bitmap concept
please check section 5.3.2.

5.3.3.4. User Virtual Memory Manager

This memory manager is responsible for managing user space part of the vir-
tual memory layout. Every task in the ANDIX OS has its own TTBL (see 5.3.1)
and its own bitmap. The user memory manager uses a bitmap for every user
space task to manage virtual user space memory. It uses MMU functions to
map the needed pages to the tasks TTBL. To map the needed user space when
a task is scheduled to execute, the tasks TTBL is registered in the ARM core for
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the lower half of the virtual memory, the user space part of the virtual memory.
As soon as the TTBL is registered, the MMU will use it to translate the virtual
memory addresses to physical addresses.

5.4. Hardware Abstraction Layer

5.4.1. Overview

The Hardware Abstraction Layer (HAL) abstracts the access to hardware pe-
ripherals. The HAL controls the hardware based isolations of the system. It
therefore provides security critical functionality for the domain isolation con-
cept, for the memory isolation between the secure and normal world, but also
for the IO isolation to provide secure input.

Different systems use different peripherals to achieve the same functionality.
This layer separates the common functionality from the different implementa-
tions. It abstracts the common functionality to abstract device types. Drivers
are used to implement the functionality for concrete hardware. During the
initialization of the HAL, a device map is loaded based on the platform identi-
fication number. This device map describes the devices available on the specific
platform. For each device the device type, which driver to use and where in the
system memory the real device is located is described. Given these informa-
tions, all devices are initialized and saved in a list of platform device instances.
A platform device instance is a structure containing all vital information for
the device: the device type, the physical memory location, the mapped virtual
memory location, the driver code and a driver-specific data pointer to store
device specific information, which is necessary for the driver to work.

Figure 5.6 gives a structure diagram of the HAL system concept. Different
device types will have different high level functions, depending on their pur-
pose. For example a serial device is able to write or read a character. These
high level functions use the HAL layer methods. The HAL layer delegates the
function call to a concrete implementation of the HAL driver interface. If the
concrete implementation of the HAL driver does not implement the needed
function an error code is returned. To get hold of the correct implementation
of the HAL driver interface, the HAL layer method receives a platform de-
vice instance. This platform device instance holds a reference to the concrete
implementation. This concrete implementation is the real device driver. The
platform device instance also holds a reference to the device data structure,
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that contains driver-specific data for the real device. With this HAL architec-
ture not every driver has to implement the full HAL driver interface, because
of the HAL layer.

Figure 5.6.: ANDIX Hardware Abstraction Layer subsystems concept

5.4.2. Drivers

Every driver is organized as a structure containing functions pointers for HAL
functions. These functions are probe, release, read, write and Input/Output
control (IOCTL). The implementation of these functions are hardware spe-
cific.

The probe function is used to initialize a device instance. The driver has the
opportunity to perform hardware specific initialization. For example, set up a
clock for the hardware device.

The release function is used to free a device instance again. It is used to let
the driver perform hardware specific release codes on the device. For example,
disable a clock just used for this device.

The read function is used to read data from the device. The write function is
used to write data to the device.
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Because ANDIX OS was developed as a non-preemptive operating system in
this thesis, we do not have to take concurrent access to devices into account.

The IOCTL function is used to perform arbitrary commands on the device.
This function takes a number to encode the command and a pointer to any
data structure to provide arguments. This data structure can also be used
to return values from the function. The command codes and the arguments
data structure are not hardware specific but specific for the abstracted device
(5.4.3).

As described at the beginning of this section, the HAL has common HAL
functions (probe, release, read, write and IOCTL), which take a device instance
and simply use the function pointer of the associated driver to provide the
hardware specific functionality. These functions therefore simply abstract the
delegation process of the driver functions and ease the development of new
device types.

Drivers are implemented to fulfil the vital functions on all supported hardware
platforms (see chapter 1.4).

5.4.3. Devices

Depending on the type of a device high level function are available. The HAL
layer provides functions to delegate hardware specific tasks of these high level
function to hardware devices. The high level functions either need a refer-
ence to a platform device instance or these functions have to search the list
of available platform device instances for devices of specific types. With the
specific platform device instance, the HAL layer functions delegate the needed
functionality to the driver and therefore hardware specific functions. The HAL
layer functions need a reference to a platform device instance and call the
driver specific functions.

Following is a list of supported device types:

Serial Device A serial device is a simple serial IO device. It supports reading
and writing data from and to it.

Watchdog Device A watchdog device will reset the platform, if the watchdog
not gets reset after a specific time. The watchdog emits an interrupt to
wake up the kernel again. This can interrupt the normal world operating
system (OS) or a user space application. This ensures that the kernel
periodically gets the control of the system. This functionality is currently
not used, but will be needed when ANDIX OS will become preemptive.
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Interrupt Controller Device An interrupt controller device is used to control
hardware interrupts. In a TrustZone (TZ) aware system, hardware inter-
rupts have to be secured. An interrupt is called secured, if the interrupt
controller notifies the secure world when the interrupt occurs and not the
normal world. When the ANDIX OS kernel registers an interrupt han-
dler function for a specific interrupt, ANDIX OS automatically secures
this interrupt. An interrupt handler function is a function, that is called
when a the interrupt occurs, it is registered for.

Secure Memory Controller Device A secure memory controller device is used
to protect physical RAM regions. These regions can not be accessed,
neither reading nor writing, from the normal world.

Central Security Unit Device A central security unit device is used to manage
the access to the peripheral devices on the system. The peripheral device
can be secured or not. If a device is secured the normal world cannot
access it. (see section 2.5.3)

5.5. Task System

ANDIX OS is developed as multi-tasking, non-preemptive operating system.

The task system provides multi-task support. ANDIX OS supports multiple
kernel and user space tasks in the secure world. To switch between tasks,
ANDIX OS uses the monitor system 5.6. The monitor system provides context
switches between the normal and the secure world. ANDIX OS uses these
same world switches to switch between kernel and user tasks.

There are 3 important kernel tasks in ANDIX OS.

The main kernel task is responsible for high level initializations. It queries
the user for the system password to generate the file system master key and
creates the two other secure world kernel tasks. Then it prepares the statically
linked user space tasks. ANDIX OS can load Executable and Linking Format
(ELF) files. Currently, only statically linked user space tasks, are supported
in ANDIX OS, but the ELF loader is capable of loading arbitrary executables.
These static tasks are created and initialized by the main kernel task. It was out
of scope of this thesis to implement a dynamic application loader, but in future
work we want to implement a dynamic loading facility. Finally, main kernel
task queries the user to select which non-secure guest operating system should
be started and prepares the non-secure system task. The ANDIX OS is capable
of hosting Linux and Android as non secure guest operating system. The
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available operating system kernel for the non-secure guest operating system is
statically linked into the ANDIX OS kernel. ANDIX OS acts as a boot loader
for these operating systems. It supports boot parameters via ATAGS and an
initial ram disk.

The TEE task is the second kernel task, and it is responsible for handling the
TEE requests from the non secure world. More information on this task is
available in section 5.9.

The service task is the third kernel task and it is responsible to provide secure
services, that have a non-secure back end. More information on this task is
available in section 5.9.1.

Scheduling in ANDIX OS is simple, because ANDIX OS is preemptive. ANDIX
OS is only scheduled if the normal world operating system invokes ANDIX OS.
When ANDIX OS is scheduled, the normal world has requested some service
from it. This means, that ANDIX OS knows which task has to be executed in
order to service the request from the normal world. The scheduler in ANDIX
OS looks up all available tasks and schedules the first task, that is ready to
execute. ANDIX OS organizes itself, so that every time only one task is ready
for scheduling, when the scheduler is called.

5.6. Monitor System

The monitor system performs world switches between the secure and the nor-
mal world. It operates in the monitor mode. The monitor system performs
world switches and task switches. It detects possible attacks against the TEE,
and performs countermeasures. Because the monitor system is the interface
between the normal and secure world, it takes an important role in the secu-
rity concept.

The monitor system offers three operations to the secure world:

1. Task switch: The task switch operation is used to switch between two
ANDIX OS tasks. The target task is provided as a pointer to the task
structure as the first argument.

2. Task schedule: The task schedule operation is used to call the scheduler.
The scheduler searches for the next non-blocking task and hands control
over to this task.
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3. Non-secure service: The Non-secure service operation is used to switch
to the non-secure world. The non-secure world also has its own task in
the secure world.

As discussed in section 4.5 the normal and the secure world can communicate
with each other, via a system call like interface. Both worlds can issue an secure
Monitor Call (SMC) instruction to trap into the monitor mode. The monitor
system is the code that is executed, when the SMC instruction is executed. We
can think of the monitor system as a small layer of software below the normal
world operating system and ANDIX OS. But it still is part of ANDIX OS. The
current state of the system, secure or normal, is determined by the Non-Secure
Bit (NS-BIT) in the Secure Configuration Register (SCR). But when the system
is in monitor mode, the state of the system is always secure. This is a power-
ful property, because with this property the monitor system, which is always
running in monitor mode, can switch between the two states, by manipulating
the NS-BIT. When one of the worlds traps into the monitor system by issuing
an SMC instruction, the monitor system is able to determine the world, that
trapped into the monitor system, by inspecting the value of the NS-BIT. Trap-
ping into the monitor system only makes sense, if some functionality of the
monitor system is required.

The monitor system provides different operations for the different worlds. In
ANDIX OS the requested operation is encoded as a 32 bit value and trans-
ferred to the monitor mode in register 12. This is similar to the system call
number in a system call interface. The three operations available to the secure
world, are enumerated earlier in this section. The arguments for the operation
are stored in the registers zero to three. To pass on complex data structures,
pointers to memory structures must be used. When the SMC instruction is
issued from the secure world the monitor mode can simply dereference the
pointer, because it operates in the same virtual memory environment as the
secure world. When the SMC is issued from the normal world, the memory
address has to be translated into a physical memory location and this physical
memory location has to be mapped into the virtual memory layout of the se-
cure world. To temporary map a physical memory location from the normal
world into the secure world virtual memory, ANDIX OS uses the mappable
memory area (see 5.3.3.2).

When an unauthorized access to secured memory occurs, the memory con-
troller, throws an exception, that is handled by the monitor system. The moni-
tor system, checks if the accessed memory location is within a secure memory
region. It the accessed memory location is within a secure memory region,
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it is a possible attack against the TEE. ANDIX OS performs countermeasures
against this attack, by keeping the control of the system and stopping.

5.7. Cryptographic System

To provide cryptographic functionality we ported TropicSSL to the ANDIX OS
kernel space. The cryptographic system provides us with necessary tools to im-
plement mechanisms for confidentiality and integrity in our security concept.
It provides a base functionality utilized by high level systems to implement
their security critical functions. TropicSSL is a fork from PolarSSL. It is the last
version of PolarSSL, which was licensed under the liberal Berkeley Software
Distribution (BSD) license. To port TropicSSL we removed file IO functions
and added a simple implementation of the Password-Based Key Derivation
Function 2 (PBKDF2) according to [Kal00] . We used the TropicSSL library
because it does not rely on any external libraries. Only a few standard C func-
tions are required to implement the cryptographic functionality. The library is
perfect for porting to a bare metal project like the ANDIX kernel. ANDIX OS
generates one master key. Subsystems inside the kernel can use this key as a
root secret. The master key is currently derived, using the PBKDF2 function,
from a password entered by the user via a trusted IO channel, and a machine
unique id. The machine unique id is unique for each platform instance. With
the current implementation TropicSSL provides support for the following cryp-
tographic functions.

Symmetric cryptographic algorithms:

• Advanced Encryption Standard (AES),
• Data Encryption Standard (DES), and
• Extended Tiny Encryption Algorithm (XTEA)

Asymmetric cryptographic algorithms:

• RSA

Message digest algorithms:

• Message-Digest Algorithm 5 (MD5),
• Secure hash algorithm (SHA1), and
• Secure hash algorithm 2 (SHA2)

Message encoding algorithms:
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• Base64

5.8. Persistence System

The persistence system of ANDIX OS provides persistent storage for the secure
world. To simplify development of the system and to remove hardware depen-
dencies we decided to implement the persistence system with a non-secure
back end. This means, that the persistence system uses the normal world to
store the data to some long term storage device. It provides confidentiality and
integrity for the data store in with this system. We cannot ensure availability,
because we rely on a non-secure back end. But the usage of the non-secure
back end saved a lot of functionality in the ANDIX OS kernel. No block de-
vice driver and no file system had to be implemented. This keeps the TCB
smaller.

The persistence system provides a simple file system. Persistent data from the
secure world is confidential and has to be protected. The system has to protect
the data against off-line attacks. The persistence system uses cryptography to
protect its data. The persistence system provides private root file systems to
every user space task in ANDIX OS. These root file systems are implemented as
prefix to the file name. The prefix is generated by the SHA2 hash of Universally
Unique Identifier (UUID) of the requesting Trusted Application. A specific file
is identified by the SHA2 hash of the file name. In the normal world, the data
is organized in files and directories. Each root file system in the secure world
is a directory, named after the hash of the prefix. The file name in the normal
world is the SHA2 hash of the file name in the secure world. Dictionary attacks
against the file names in the normal world are possible, but would only reveal
the file name of the secure world. We process the file names, to normalize the
file names for the normal world and protect against file name attacks. One
example would be to create a file name containing ’..’ to change to a different
directory.

ANDIX OS protects the data by splitting it up into blocks. The first block of
each file contains an AES key data, the hashed file name and the hashed store
name. Every block has a header containing an initialization vector, a Keyed-
Hash Message Authentication Code (HMAC) and a hash value. The HMAC is
used to ensure authenticity and integrity. The HMAC ensures correctness of
the decryption function. The initialization vector is used for AES encryption
and decryption, which protects the block’s confidentiality. To ensure that the
normal world has to answer with the correct information block when reading

56



5.9. Trusted Execution Environment System

data back again, the key to decrypt and verify the block is derived from the
initialization vector, the block number and the file specific key from the first
block. Instead of the file specific key, which is encrypted in the first block the
master key (see section 5.7) is used for the first block. With this mechanisms
the persistence system can provide the confidentiality and integrity for data
stored with it.

The service task is used to write blocks and to read blocks. The responsibility
of the normal world TZ service daemon is to store and retrieve these blocks
somewhere. A simple implementation just uses the common file based IO.

5.9. Trusted Execution Environment System

The Trusted Execution Environment (TEE) system is responsible for providing
communication between the normal world and Trusted Applications. The TEE
system takes care about the logical communication channel (see section 4.5) in
the secure world. It acts as counterpart to the normal world kernel module
(see section 4.6). The TEE system is invoked when a TEE request is received
in the secure world. The TEE system interprets the normal world communi-
cation data and is therefore also a security critical component. It has to make
decisions based on data from the normal world and therefore provides a po-
tential attack surface. The TEE task processes the current TEE memory and
extracts the requested TEE operation and parameters. This system handles
context establishment, session establishment and memory registrations from
the TEE API (see section 2.3.2). If the requested operation has to be handled
by the Trusted Application. The request will be transferred to the user space
task, that is running the requested Trusted Application. At this time the user
space task is pending in a SoftWare Interrupt (SWI) call in the kernel, waiting
for a TEE request.

5.9.1. TrustZone Services

Also the service task of ANDIX OS is part of the TEE system. It can be used
to develop services to the secure world, which are backed by normal world
components. With the service task, the secure world can call pre defined func-
tions in the normal world. We can use this service to remove complex systems,
for example full file system implementations, or a network stack, from the se-
cure world and therefore from the TCB. Currently, the only example for such
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a service is the persistent system. The secure service works together with a
normal world kernel module and the normal world TZ service daemon. When
the normal world calls into the secure world, it hands over a physical mem-
ory block for TEE remote procedure calls, and a memory block for TZ-control
remote procedure calls. The later block is used by the service task to communi-
cate with the normal world. It fills the remote procedure call structure, marks
the control block pending and hands back control to the normal world. The
normal world recognizes that the response from the secure world is actually a
service request and dispatches it to the normal world TZ service daemon. The
normal world TZ service daemon is an application in the normal world, that
polls the normal world kernel module for service requests. When the daemon
receives a request, it tries to handle the request and then issues a response back
to the kernel module. When the module gets the response it sends it back to
the secure world. In the secure world the service task is invoked again and the
response is encoded into the current communication memory, where the task
can read and process the result. The persistence system uses this mechanism
to store data blocks. In future work we plan to also develop a network service
based on this service architecture.

The service task with the normal world backed services helps us to reduce the
TCB of the platform, but on the other hand cannot reach the performance of
implementations, that would simply operate in the secure world, because of
the world switches. This holds especially for IO intensive operations.
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All Trusted Applications operate in the userspace in the secure world. ANDIX
OS provides libraries for Trusted Applications, that run in the secure world
userspace. See Figure 6.1 for the components of the secure world userspace.
These components are located in the upper right quadrant of the figure. We
used newlib to provide a libc runtime in the userspace environment. The
secure libc syscall library implements the syscall stubs from the newlib library.
The secure libc syscall library also implements specific system calls for the
Trusted Execution Environment (TEE) user space implementation.

Figure 6.1.: Infrastructure components overview

Trusted Applications in the secure world user space are similar to normal C
programs, but they have a different life cycle. In a normal C program the entry
point is the main function. In a Trusted Application this function is not the
entry point. A Trusted Application implements a five functions as defined in
[Glo11] . These functions are:
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• TA CreateEntryPoint: This function is executed once on start up of
the Trusted Application.

• TA DestroyEntryPoint: This function is executed once when the Trusted
Application is destroyed.

• TA OpenSessionEntryPoint: This function is executed when a TEE
session is created.

• TA CloseSessionEntryPoint: This function is executed when a TEE
session is closed.

• TA InvokeCommandEntryPoint: This function is used to invoke a com-
mand issued from the normal world.

These functions implement the TA interface from [Glo11] . ANDIX OS utilizes
this interface to call Trusted Application code in the secure userspace. The
available userspace libraries in the secure world are listed below:

Secure Libc Syscall Library The secure libc syscall library implements the newlib
syscalls functions. Furthermore, it provides the C runtime zero code,
which is the main entry point into a Trusted Application. The C runtime
zero code is the first code executed for every application in an operating
system, it sets up an operating system specific environment. In the case
of ANDIX OS it behaves very different to other operating system, because
of the different life cycle of a Trusted Application. The C runtime zero
code starts a loop, which polls the kernel with a non standard system
call for a new TEE request. These requests are then dispatched to the TA
interface functions of the Trusted Application.

Newlib Newlib is an open source libc implementation. To port newlib only the
predefined syscall functions for Input/Output (IO), timing and memory
manipulation like sbrk, have to be implemented. Steve Chamberlain et
al. explain in [Ste10] how to port the newlib to a new operating system.
For more information on the newlib library please see 1.

TropicSSL TropicSSL library is used to provide cryptographic functionality
for the user space. There were two reasons why we chose the TropicSSL
library.
First of all the TropicSSL library is licensed under the liberal Berkeley
Software Distribution (BSD) license. It is a fork of the PolarSSL library.
The fork is from the last version of the PolarSSL under the BSD license.
This allows the source code of the TropicSSL library to be included and
distributed in ANDIX OS, which is also licensed under the BSD license.
The second reason for TropicSSL is that it has no dependencies to other
libraries. It just uses the standard c library which is available through

1http://sourceware.org/newlib/
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newlib. Thats why the TropicSSL library is easy to port to a new operat-
ing system like ANDIX OS.

Trusted Execution Environment Library The Trusted Execution Environment
(TEE) library provides a common Application Programming Interface
(API) throughout different TEEs for Trusted Applications. In [Glo11]
such a standardized API is described. In ANDIX OS we started to imple-
ment this API, but most functionality is not implemented yet. The full
implementation of the API was out of scope of this thesis. We imple-
mented basic memory management functions and the Trusted Applica-
tion life cycle functionality. The current Trusted Application implementa-
tions utilize the the TropicSSL for cryptographic functions and the newlib
library for IO functionality.
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This chapter describes the normal world components of ANDIX OS and it
explains why ANDIX OS needs components in the normal world to provide a
TEE.

7.1. Overview

To use the functionality provided by the ANDIX and the Trusted Applications
operating inside the TrustZone (TZ), the normal world has to know about these
functions. ANDIX OS provides a communication interface via the monitor
mode as described in section 5.6. The necessary instruction to trap into the
monitor mode, the secure Monitor Call (SMC) instruction, can only be executed
in the Supervisor mode. Meaning the normal world kernel must execute this
instruction. So for a normal user space application to use TZ functionality, the
normal world operating system (OS) has to provide some kind of method to
issue such an SMC instruction. Figure 7.1 shows the full communication path
from a normal world application to a Trusted Application.

Figure 7.1.: World communications
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In ANDIX OS, a Linux kernel module was developed to take care of the TZ
communication. This kernel module is available in a plain Linux system, but
also available for an Android system. This module allows the user space ap-
plications to use the TZ functionality. The interface between the module and
user space application is specific to the ANDIX OS. The functionality of the
kernel module is explained in more detail later in the next section. To re-
move the implementation specific interface for normal world applications, also
a C library was developed. This C library provide the standardized Global
Platform Trusted Execution Environment Client (TEEC) API to normal world
applications. It hides the ANDIX OS specifics behind a standardized API.
This API is described in section 7.3. The full documentation of the API is
found in [Glo10a] . Applications developers therefore don’t have to known
about ANDIX OS specifics, but can simply use the standardized Global Plat-
form TEEC API. In section 5.8 we stated, that the persistence system has a
non-secure back end. This back end is implemented in the TrustZone service
daemon. The TrustZone service daemon operates in the normal world user
space. It uses the kernel module to communicate with the secure world, and
offers services to the secure world. Currently a long term storage is imple-
mented. This storage saves blocks of data organized in files in the normal
worlds file system.

7.2. Kernel Module

The Linux kernel module provides a pseudo character device and handles
Input/Output control (IOCTL) calls on this device. The IOCTL calls enable
applications to push TEE requests to the secure world. These requests are send
to the TZ via a physical memory location. This memory location cannot be
the original memory blob from the user space application, because the kernel
cannot guarantee the stability of the physical memory location. For example in
a multi processor system the kernel could start to swap out the memory of the
user space process containing the TEE request. When the memory is swapped
in again the physical memory location is probably a different one. ANDIX OS
is unable to recognize this change. The solution to this problem is that the
Linux kernel module has to understand the TEE request structure and provide
kernel memory locations that guaranteed to stay in the same physical memory
location. The user space requests are copied to these kernel space locations and
the physical address of the kernel space location is handed to the TZ. The TEE
request structure may contain multiple memory blocks and all of these blocks
have to be exchanged with kernel space memory blocks. This is accomplished
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by copying the data, from the user space memory block to the kernel space
memory block.

Another advantage when the kernel module understands the basic communi-
cation methods, is that the kernel module can keep track of the TEE sessions,
shared memory regions and TEE contexts. If a user space application dis-
connects from the TZ device without cleaning up all TZ resources, the kernel
module is able to inform ANDIX OS and therefore close all TZ resources prob-
ably. So the kernel module also acts as a garbage collector for TZ resources.

ANDIX OS also utilizes the normal world for persistence storage tasks. See 5.8
for a detailed explanation of the persistence system in the TZ. The Linux kernel
module also provides two IOCTL calls to support TZ service routines. One
IOCTL call polls the TZ service request queue and returns a service request if
available. The second one posts a service response for a specific service request,
which is again transferred to the TZ in response for the service request. In
ANDIX OS currently only the persistent system uses this service mechanism.

7.3. Application Library

The application library for the normal world implements and exposes the stan-
dardized API defined in [Glo10a] . It uses the Linux kernel module and ab-
stracts the ANDIX OS specific TEE message formats and IOCTL calls from
normal world applications. So normal world applications can use the stan-
dardized API to communicate with the TZ. For an introduction into the API
defined in [Glo10a] see Section 2.3.2.

The defined API methods are:

• TEEC InitializeContext(const char* name, TEEC Context*
context): This method initializes a new context for the TZ communi-
cation. In the TEEC API multiple TEEs are supported. A context is a
handle to one of these TEEs.

• TEEC FinalizeContext(TEEC Context* context): This method fi-
nalizes a TZ context and cleans up all resources associated with it.

• Memory management functions:
TEEC RegisterSharedMemory(TEEC Context * context,TEEC-

SharedMemory * sharedMem): This method registers a new shared
memory region with the TZ OS. The Linux kernel module has to create
a kernel space memory region and register this in the TEE TZ system.
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Then this kernel space memory region is associated with the user space
memory region.

TEEC AllocateSharedMemory(TEEC Context* context, TEEC-
SharedMemory* sharedMem): This method behaves the same as the

TEEC RegisterSharedMemory method, but it allocates the user space mem-
ory for the shared memory location as well.

TEEC ReleaseSharedMemory (TEEC SharedMemory* sharedMem):
This method releases the resources associated with the shared memory
region including the kernel memory space and associated TZ resources.

• TEEC OpenSession (TEEC Context* context, TEEC Session*
session, const TEEC UUID* destination, uint32 t
connectionMethod, const void* connectionData,
TEEC Operation* operation, uint32 t* returnOrigin): This
method opens a new session with the specified Trusted Application. The
Trusted Application is identified by the destination parameter, which is a
Universally Unique Identifier (UUID). The connection parameters allow
the implementation of an authentication mechanism, where the normal
world application authenticates itself to the TEE. These authentication
mechanisms are currently not implemented in ANDIX OS. The returnO-
rigin parameter describes the origin from where the call returned. In case
of a success it is always the Trusted Application.

• TEEC CloseSession(TEEC Session* session): This method closes
a TEE session and releases all resources associated with it.

• TEEC InvokeCommand( TEEC Session* session, uint32 t
commandID, TEEC Operation* operation, uint32 t*
returnOrigin): This method remotely invokes a command in a Trusted
Application. The command to invoke is identified by the commandID pa-
rameter. This is an application specific value. The operation parameter
contains a structure with parameter types and parameter values. These
values can either be simple integer values or shared memory blocks.
These memory blocks can be temporary memory blocks or can be reg-
istered shared memory blocks created with the TEEC RegisterShared-
Memory or TEEC AllocateSharedMemory methods. Temporary memory
blocks do not have to be registered before use, but also need a little over-
head in the TEE communication system, because they are internally reg-
istered and unregistered for every call in the TEE communication system.

• TEEC RequestCancellation(TEEC Operation* operation): This
method allows pending remote procedure calls into the TZ to be can-
celled. ANDIX OS does not support asynchronous TZ operations and
therefore also does not implement this method.
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7.4. TrustZone Service Daemon

The TrustZone service daemon polls the TZ pseudo device for service requests,
like service requests for the persistent system. When such a request appears
in the queue, the service daemon receives it and handles the request. The
service daemon issues a service response to every handled request and pushes
this response through a IOCTL call into the Linux kernel module. The kernel
module again sends the response back to the secure world.

Currently the daemon allows the TZ OS to read and write files in a predefined
directory. Also the size of a file can be queried. This is the non-secure back end
of the persistence system (see section 5.8). This daemon is actual responsible
for storing the secured data blocks from the persistence system. It simple
saves these blocks into files, and allows the persistence system to read and
write these blocks again.

The daemon can also be extended, to provide network functionality to the se-
cure world. This would allow the secure world to use networking, but without
the need to implement of a full network stack.

The TrustZone service daemon acts as the back end system to secure world ser-
vices. Secure services backed by this daemon, lack performance in comparison
to full implementations in the secure world, because of the world switches,
needed for each request. But depending on the system, they can reduce the
Trusted Computing Base (TCB) of ANDIX OS enormously. The persistence
system, is currently the only system, that is backed by the TrustZone service
daemon. But to provide a long term storage natively in the secure world,
ANDIX OS would have to implement a block device driver, for each platform
and a file system layer.
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We developed a sample application. This sample application provides a trusted
encryption system, which encrypts arbitrary data using Advanced Encryption
Standard (AES), where the secret key never leaves the secure world. It consists
of a command line interface application operating in the normal world and
a small Trusted Application, operating in the secure world. The application
parts communicate via a predefined Remote Procedure Call (RPC) interface.
The Trusted Application itself utilizes the ANDIX OS persistence system to
store the keys. Figure 8.1 shows the system with all components.

Figure 8.1.: Example encryption application

The Trusted Applications provides an RPC interface for communication with
the normal world. This interface defines three operations:

• Generate new secret key: This operation expects an integer as a key iden-
tification to identify this specific secret key. During generation, the user
is queried for a Personal identification number (PIN) to secure the gen-
erated key. This PIN input is done directly from the secure world. When
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using a secret key this PIN is queried directly from the secure world via
trusted Input/Output (IO). This means, that the normal world kernel has
no possibility to enter this PIN automatically, without modification of the
hardware.

• Encrypt data: This operation takes a data blob as the data to encrypt
and an integer as the key identifier. The data blob length has to be a
multiple of 16 in bytes. Before the secret key, that is identified by the
key identifier, is used to encrypt the data, the secure world queries the
secret PIN via trusted IO, that is associated with the secret key. This
operation authorizes the use of the secret key. The result of the operation
is a initialization vector of 16 bytes and the encrypted data blob.

• Decrypt data: This operation takes a data blob as the data to decrypt, an
integer as the key identifier and an initialization vector. The data blob
length has to be a multiple of 16 in bytes. Before the secret key, that is
identified by the key identifier, is used to decrypt the data, the secure
world queries the secret PIN via trusted IO, that is associated with the
secret key. This operation authorizes the use of the secret key. The result
of the operation is the decrypted data blob.

The Trusted Application also encrypts the secret keys with AES before storing
them in the persistence system. The secret key for this key encryption is gen-
erated by applying a key derivation function on the PIN. This PIN is entered
directly into the TrustZone via the serial console. So this PIN is never seen
in the normal world. In our current development environment (the freescale
i.MX53 QSB 1) we were not able to fully secure the serial console, by secur-
ing the device. We had only one serial console available on the board and
this serial console was also used by the normal world operating system. So in
our development environment we simulated a trusted user input via a shared
serial console.

By encrypting the secret keys with a PIN the Trusted Application also ensures,
for each operation involving a secret key, that the users consent is achieved.
The user manually has to authorize the key usage by entering the PIN via the
serial console.

The Trusted Application does not define an operation for secret key extraction.
Secret keys cannot leave the Trusted Execution Environment.

To use the sample encryption application, the user starts the command line
interface in the normal world. The users issues the command to create a new

1http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=
IMX53QSB
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key. Figure 8.2 shows a sequence diagram of the components included in the
operation for creating a new secret key. First the application calls the Linux
kernel to issue a new key request to the Trusted Execution Environment (TEE).
This request is forwarded into the secure world to the ANDIX OS. The ANDIX
OS dispatches the request to the sample Trusted Application. The Trusted Ap-
plication generates a new secret key and queries the user for a PIN. It uses
this PIN to encrypt the secret key and saves the encrypted secret key and a Se-
cure hash algorithm 2 (SHA2) checksum of the plaintext secret key through the
ANDIX OS persistent system. If the key was successfully saved, the Trusted
Application returns a success message back to the command line interface ap-
plication in the normal world.

Figure 8.2.: Secret key generation

Figure 8.3 shows a sequence diagram of the components included in the en-
cryption and decryption operation. First the user issues the encrypt or decrypt
command in the command line application. The application will call the Linux
kernel to issue an encrypt or decrypt operation to the TEE. This request is
forwarded to the secure world to the ANDIX OS. The ANDIX OS dispatches
the request to the sample Trusted Application. The Trusted Application tries
to read the key data, identified by the key identifier issued with the encrypt
and decrypt operation, from the ANDIX OS persistence system. The Trusted
Application queries the user via the serial console for the PIN and derives a
decryption key from the PIN. This key is used to decrypt the secret key. If the
SHA2 checksum of the decrypted secret key matches the saved checksum, the
entered PIN is correct and the use of secret key is authorized. The user gets
four attempts to enter the correct PIN. If the data was encrypted or decrypted,
it is returned through the TEE RPC mechanism to the command line applica-
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tion and presented to the user. If the user fails to enter the correct PIN an error
is returned to the command line application.

Figure 8.3.: Encryption or decryption of data

This sample application shows the separation of security critical components
from user interface components. The command line interface is the user in-
terface and the Trusted Application takes care of security critical components.
All sensitive information, the secret AES keys, and the PIN cannot leave the
trusted execution environment provided by ANDIX OS. Even when the Linux
kernel is fully compromised it cannot access these secret informations. This
sample application is a proof on concept application for solving the problem
shown in the the introduction with ANDIX OS.

72



9. Conclusion and Future Work

9.1. Conclusion

ANDIX OS includes a monolithic kernel, which is responsible for common
operating system (OS) functionality. It provides multi-tasking for kernel and
user space tasks. It also implements a memory management facility, including
process isolation through virtual memory. It furthermore implements software
interrupts to provide a system call interface for the user space. The kernel is ca-
pable of performing asymmetric and symmetric cryptography and hash func-
tions. It contains an Hardware Abstraction Layer (HAL), to abstract hardware
devices from the concrete hardware implementation to high level interfaces.
Other features of the ANDIX OS kernel are the normal world communication
through the monitor mode and the Trusted Execution Environment (TEE) sys-
tem.

We have ported the newlib to the trusted world user space. We developed
a small libc glue code. This glue code implements the system call functions
necessary for the correct operation of the newlib on top of ANDIX OS. With
newlib ANDIX OS has a libc implementation available for the trusted world
user space. TropicSSL is located on top of this libc implementation. TropicSSL
introduces cryptographic capabilities to the trusted world user space. Based
on these two libraries the ANDIX OS TEE Application Programming Interface
(API) is developed. At the time of the writing of this thesis, the TEE library
is not fully implemented yet, but none the less, it acts as a sufficient base for
Trusted Applications as demonstrated.

We developed a Linux kernel module to ease communication between the nor-
mal world and the secure world. It abstracts the implementation specifics of
the secure Monitor Call (SMC) interface. The kernel module provides a pseudo
character device to access the TrustZone (TZ). The kernel module functions ex-
posed via the pseudo character device are ANDIX OS specific. To comply
with the TEE API for client applications [Glo10a] , we developed a user space
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library to abstract the ANDIX OS pseudo device specifics and provide an stan-
dardized way for client applications to communicate with the corresponding
Trusted Application.

9.2. Security Attributes

We introduced six security attributes for trusted computers defined by David
Grawrock in [Gra09] . These attributes are:

• Isolation of programs
• Separation of user processes from supervisor processes
• Long-term protected storage
• Identification of current configuration
• A verifiable report of the platform identity and current configuration
• Provide a hardware basis for the protections

ANDIX OS provides multiple building blocks to gain and enforce four of these
six attributes. ANDIX OS improves the Isolation of programs, the Separation
of user processes from supervisor processes, the Long-term protected storage, and
the Provide a hardware basis for the protections attributes with hardware backed
mechanisms. ANDIX OS currently is not capable of providing all security
attributes as can be seen in Figure 9.1. There are currently no building blocks
for providing the Identification of the current configuration and therefore there
can’t be a building block for A verifiable report of the identity and the configuration.
But future development of ANDIX OS the necessary building blocks can be
developed to also achieve these attributes.

The building blocks ANDIX OS adds to off-the-shelf operating systems are:

• TrustZone Address Space Controller: This building block allows the hard-
ware based access control list for system memory. It is implemented in
the system by a ARM TrustZone Address Space Controller and utilized
by ANDIX OS via the Hardware Abstraction Layer (see section 5.4.3).
By providing a hardware based access control for system memory this
building block improves the isolation of programs. ANDIX OS enables
developers to en capsule the security critical code and information of his
application into a separate application, that is executed in a Trusted en-
vironment. The memory of this environment is access protected with
the TrustZone Address Space Controller from the normal operating system
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Figure 9.1.: Security Attributes and building blocks for ANDIX operating system

and therefore this building block provides a hardware based isolation of
programs.

• Trusted Execution Environment Remote Procedure Calls: This building block
allows separated application parts, as described above, to communicate
with each other via an interface. ANDIX OS implements this building
block by implementing the Trusted Execution Environment Client API
from GlobalPlatform [Glo10a] .

• ARM Secure vs Non-secure state: The ARM TrustZone splits the system
into two states one secure and one non-secure state. ANDIX OS uses the
hardware isolations provided by this system split to isolate the ANDIX
OS kernel from the normal operating system. Therefore, this building
block achieves the Separation of user processes from supervisor processes at-
tribute utilizing hardware to separate the normal operating system from
the ANDIX OS, as ANDIX OS can be seen as supervising the normal
operating system.

• ANDIX Persistent System and Cryptography: The ANDIX Persistent System
uses cryptography to provide a Long-term protected storage. ANDIX
OS is transparently encrypts and decrypts data, before storing it. The
secret keys for the encryption are derived from a user secret. Therefore
without knowledge of the user secret the data is protected from access
via cryptography. The user secret is acquired directly in ANDIX OS,
even before the normal world is activated the first time. The user secret
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and an unique platform id is than put into a key derivation function to
produce the secret master key. ANDIX OS ensures, using the hardware
backed memory isolation, that the user secret never leaves the TZ.

• TrustZone aware Interrupt Controller: This building block allows ANDIX
OS to secure and isolate interrupts. This is important for securing pe-
ripheral devices for exclusive access from the secure world. When se-
cured these interrupts are always routed to ANDIX OS by the interrupt
controller and can only be unsecured by ANDIX OS again. ANDIX OS
utilizes special hardware functions which have to be implemented by the
hardware interrupt controller and abstracts these in its Hardware Ab-
straction Layer (see section 5.4.3). In conjunction with the TrustZone Ad-
dress Space Controller the TrustZone aware Interrupt Controller can be used
to fully secure hardware devices. And can therefore be seen as a hard-
ware device access control system. This gives ANDIX OS full control
over the platform and the possibility to securely access every device on
the system. Therefore the building blocks TrustZone Address Space Con-
troller and TrustZone aware Interrupt Controller provide a good basis for
hardware protection.

We demonstrated ANDIX OS capabilities by developing a secure encryption
application, that is able to hide secret keys inside the ARM TZ and using these
key safely. This application can be run on real hardware platform the iMX 53

Quick Start Board (iMX53QSB) development board, with real memory isola-
tion activated. To simplify development we ported ANDIX OS to an emulator
platform.

ANDIX OS is already used in follow-up projects. A dynamic OpenSSL engine
library, that is backed by ANDIX OS was already developed by Florian Arch-
leitner. This library moves RSA operations into the TEE provided by ANDIX
OS. The secret RSA keys are stored within ANDIX OS and never leave the TZ.
So the RSA keys are bound to the platform. As proof of concept implementa-
tion a trusted web server based on the Apache web server1 was developed. The
trusted web server authenticates it self during an Secure Sockets Layer (SSL)
connection via the ANDIX OS backed OpenSSL library. In an ongoing project
Florian Archleitner is already porting the mono runtime to the secure world
user space of ANDIX OS. This project is going to improve isolation inside the
ARM TZ between Trusted Applications and ease the development process of
Trusted Applications.

1http://httpd.apache.org/
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ANDIX OS is an open source TZ aware OS. It was developed to run on a cheap,
TZ enabled development board, the iMX53QSB. During the development pro-
cess thought was put into the portability of the OS and compatibility with
standards for TEE. ANDIX OS can provide a highly functional development
platform for researchers and industry to develop TZ aware applications, with-
out the need to sign an non-disclosure agreement (NDA) or invest money into
proprietary development systems.

ANDIX OS provides a hardware isolated execution environment. Therefore
this environment is also protected from superuser access in the rich operating
system. This gives the user the possibility to executed a variety of low security
applications, like multimedia applications or games, and high security appli-
cations, like on-line banking or business applications, next to each other. The
high security application can utilize the execution environment provided by
ANDIX OS to protect their sensitive informations.

9.3. Future Work

ANDIX OS enables many possibilities for future work. Future work includes
applications based on ANDIX OS, security improvements of ANDIX OS, port-
ing ANDIX OS onto more platforms, and supporting more rich world operat-
ing systems.

As one example application, ANDIX OS can be used to implement a TZ pro-
tected citizen card environment for the Austrian e-government infrastructure.
A citizen card environment is a middle ware to allow access to the Austrian
electronic identification card. The electronic identification card is a smart card
that can generate digital signatures. In a TZ implementation the Trusted Ap-
plication would act as smart card part and the normal world application would
act as the middle ware.

Another possible extension to ANDIX OS would be to provide a trusted user
interface. This would provide a trusted user interface library for Trusted Ap-
plications to use in the TZ. Global platform released an API specification for a
trusted user interface library2, which could be implemented in ANDIX OS.

We are currently porting ANDIX OS to the SABRE Lite iMX6
3 development

board.

2http://www.globalplatform.org/specificationform.asp?fid=7779

3http://boundarydevices.com/products/sabre-lite-imx6-sbc/
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We plan to port ANDIX OS to Samsungs Chromebook4. When this port is
successful we plan to support Chromium OS5 as rich operating system.

4http://www.samsung.com/us/computer/chrome-os-devices/XE303C12-A01US
5http://www.chromium.org/chromium-os
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Global Platform Sample Codes

A.1. Trusted Execution Environment Client

Listing A.1: Trusted Execution Environment Client sample code
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <tee_client_api.h>
#include <tee_utils.h>
#include <trustlets/hello_world_trustlet.h>

#define RESPONSE_BUFFER_SIZE 200

int main(int argc, char** argv) {
TEEC_Result result;
TEEC_Context context;
TEEC_UUID trustlet_uuid;
TEEC_Session session;
uint32_t origin;
TEEC_Operation operation;
char response_buffer[RESPONSE_BUFFER_SIZE];
char name_buffer[USER_NAME_BUFFER_SIZE];
int answer;

printf("[NW]: Starting trusted hello world\n");

memset(name_buffer, 0, USER_NAME_BUFFER_SIZE);

// Parse Trustlet UUID
if (TEE_uuid_parse(TRUSTLET_UUID, &trustlet_uuid) != 0)
{

printf("[NW]: Failed to parse UUID: %s\n",
TRUSTLET_UUID);

return (0);
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}

// Ask user for user name
printf("Whats your user name:\n");
scanf(" %49s", name_buffer);
getchar();

printf("Whats your answer to the Ultimate Question"
" of Life (Tip its a number):\n");

while(scanf(" %d", &answer) != 1) {
while (getchar() != ’\n’);
printf("Please input a number!\n");

}
getchar();

result = TEEC_InitializeContext(ANDIX_TEE_NAME,
&context);

if (result == TEEC_SUCCESS) {
// TEE Contex successfully connected
result = TEEC_OpenSession(&context, &session,

&trustlet_uuid, 0, NULL, NULL, &origin);

if(result == TEEC_SUCCESS) {
// Session to Trustlet open
// Answer to the Ultimate Question of Life?
operation.params[0].value.a = answer;

// Setup response buffer
operation.params[1].tmpref.buffer =

(void*)name_buffer;
operation.params[1].tmpref.size =

USER_NAME_BUFFER_SIZE;

// Setup response buffer
operation.params[2].tmpref.buffer =

(void*)response_buffer;
operation.params[2].tmpref.size =

RESPONSE_BUFFER_SIZE - 1;

operation.paramTypes = TEEC_PARAM_TYPES(
TEEC_VALUE_INOUT,
TEEC_MEMREF_TEMP_INPUT,
TEEC_MEMREF_TEMP_OUTPUT,
TEEC_NONE);

printf("Calling Hello World Trustlet\n");
result = TEEC_InvokeCommand(&session,

HELLO_WORLD_CMD, &operation, &origin);
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printf("back from Trustlet\n");
if(result == TEEC_SUCCESS) {
printf("Trusted Answer on Ultimate Question"

" of Life: %d\n",
operation.params[0].value.b);

printf("Answer from Trustlet: %s\n",
response_buffer);

} else {
// Failed to connect to Trustlet
printf("[NW]: Failed to invoke command: %s "

"from %s\n",
TEEC_StringifyError(result),
TEEC_StringifyOrigin(origin));

goto cleanup;
}

} else {
// Failed to connect to Trustlet
printf("[NW]: Failed to connect to Trustlet: "

"%s from %s\n",
TEEC_StringifyError(result),
TEEC_StringifyOrigin(origin));

goto cleanup;
}

} else {
// Failed to connect to TEE
printf("[NW]: Failed to connect to TEE: %s\n",

TEEC_StringifyError(result));
goto cleanup;

}

cleanup:
// Cleanup Trustlet Session
TEEC_CloseSession(&session);

// Cleanup TEE context
TEEC_FinalizeContext(&context);
return (0);

}

A.2. Trusted Execution Environment Trusted
Application

Listing A.2: Trusted Execution Environment Trusted Application sample code
#include <tee_internal_api.h>
#include <client_constants.h>
#include <stdio.h>
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#include <trustlets/hello_world_trustlet.h>

TEE_Result TA_CreateEntryPoint() {
printf("HELLO WORLD: Started\n");
return TEE_SUCCESS;

}

void TA_DestroyEntryPoint() {
printf("HELLO WORLD: Destroyed\n");

}

TEE_Result TA_OpenSessionEntryPoint(uint32_t paramTypes,
TEE_Param params[4], void** sessionContext) {

(*sessionContext) = NULL;
printf("HELLO WORLD: SESSION OPENED!\n");
return (TEE_SUCCESS);

}

void TA_CloseSessionEntryPoint(void* sessionContext) {
printf("HELLO WORLD: SESSION CLOSED!\n");

}

TEE_Result hello_world_command(void* sessionContext,
uint32_t paramTypes,
TEE_Param params[4]) {

char in = ’x’;
char username[USER_NAME_BUFFER_SIZE];
char* userptr;

printf("HELLO WORLD: Hello World Command!\n");

memset(username, 0, USER_NAME_BUFFER_SIZE);

if (paramTypes
!= TEE_PARAM_TYPES(TEEC_VALUE_INOUT,
TEEC_MEMREF_TEMP_INPUT,
TEEC_MEMREF_TEMP_OUTPUT, TEEC_NONE)) {

printf("HELLO WORLD: Invalid Parameters\n");
return (TEEC_ERROR_BAD_PARAMETERS);

}

// Set the trusted answer to the Ultimate Question
// of Life
if (params[0].value.a == 42) {

printf("The send answer %d is correct!\n",
params[0].value.a);

} else {
printf("The send answer %d is not correct!\n",

params[0].value.a);
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}

params[0].value.b = 42;

// Check User Name:
while (!(in == ’y’ || in == ’n’)) {

printf("Is your user name really: %s\n (y|n)\n",
params[1].memref.buffer);

read(0, &in, 1);
}

// Not real user name read trusted username
if (in == ’n’) {

in = ’x’;
printf("Well we cannot trust the normal world with "

"getting your real user name.\n");
while (in != ’y’) {

printf("So whats really your username?\n");
read(0, username, USER_NAME_BUFFER_SIZE);
printf("Is your user name really: %s\n (y|n)\n",

username);
read(0, &in, 1);

}
userptr = (char*) username;

} else {
userptr = (char*) params[1].memref.buffer;

}

snprintf((char*) params[2].memref.buffer,
params[2].memref.size,

"Hello %s from the trusted World!\n", userptr);

printf("HELLO WORLD: Sending message: %s\n",
(char*) params[2].memref.buffer);

printf("HELLO WORLD: Hello World Command done!\n");
return (TEE_SUCCESS);

}

TEE_Result TA_InvokeCommandEntryPoint(void* sessionContext,
uint32_t commandID,

uint32_t paramTypes, TEE_Param params[4]) {
printf("HELLO WORLD: Parameter Types 0x%x\n",

(unsigned) paramTypes);
printf("HELLO WORLD: Command invoked 0x%x\n",

(unsigned) commandID);

switch (commandID) {
case HELLO_WORLD_CMD:
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return hello_world_command(sessionContext,
paramTypes, params);

}

return (TEE_ERROR_NOT_SUPPORTED);
}
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Glossary

ANDIX OS ARM TrustZone operating system developed as part of this thesis.
iii, iv, 3, 5–7, 12, 20, 23–29, 31, 35, 39–43, 45, 46, 48, 51–57, 59–61, 63–67,
69, 71–78

Android Open source operating system based on LINUX operating system. iii,
7, 52, 64

ATAGS Kernel boot parameters. 40, 41, 43, 53

Client Application Is an application not executed inside a trusted execution
environment, but communicating with a Trusted Application.. 12, 14, 15,
37

libc C Standard library as defined in ANSI C Standard C99. 73

Linux Open source operating system developed by Linus Torvalds. iii, 3, 7, 26,
40, 52, 64, 65, 67, 71–73

newlib A small libc implementation developed by Red Hat and specialized for
portability and small embedded systems.. 7, 73

OpenSSL Cryptographic library (https://www.openssl.org/). 76

PolarSSL Cryptographic library with a DUAL license (https://polarssl.
org/). 55, 60

Qemu TrustZone TrustZone implemenation for qemu emulator by Johannes
Winter (https://github.com/jowinter/qemu-trustzone). 6

RSA Public-key cryptosystem developed by Rivest, Shamir und Adleman. 55,
76

TropicSSL Fork of PolarSSL. Cryptographic library with a BSD license (https:
//gitorious.org/tropicssl). 7, 35, 55, 60, 61, 73

Trusted Application Is a small application executed inside a trusted execution
environment, which encapsulates small security critical functions.. iii, 4,
6, 7, 10, 12, 14, 15, 24, 31–37, 39, 43, 56, 57, 59–61, 63, 66, 69–74, 76, 77

91

https://www.openssl.org/
https://polarssl.org/
https://polarssl.org/
https://github.com/jowinter/qemu-trustzone
https://gitorious.org/tropicssl
https://gitorious.org/tropicssl




Acronyms

AES Advanced Encryption Standard. 55, 56, 69, 70, 72

API Application Programming Interface. 6, 7, 12, 14, 23, 29, 31, 32, 34, 35, 37,
40, 57, 61, 64, 65, 73, 75, 77

ARM ARM. 15, 17, 26, 27

BSD Berkeley Software Distribution. 55, 60

CPSR Current Program Status Register. 20

CPU Central processing unit. 5, 9, 15, 16, 23, 25

DES Data Encryption Standard. 55

ELF Executable and Linking Format. 52

FIQ Fast Interrupt Request. 16, 17, 19, 20

GPL GNU General Public License. 29

GUI Graphical User Interface. 5

HAB High Assurance Boot. 20

HAL Hardware Abstraction Layer. 41, 49–51, 73

HMAC Keyed-Hash Message Authentication Code. 56

iMX53QSB iMX 53 Quick Start Board. 6, 76, 77

IO Input/Output. 10, 29, 39, 41, 43, 48, 49, 51, 55, 57, 58, 60, 61, 70

IOCTL Input/Output control. 50, 51, 64, 65, 67

IOMMU Input Output Memory Management Unit. 11, 12, 27

IPC Inter-Process-Communication. 11, 27

IRQ Interrupt Request. 17

KVM Kernel-based Virtual Machine. 26

MD5 Message-Digest Algorithm 5. 55

MMU Memory Management Unit. 11, 12, 27, 41, 42, 48, 49

NDA non-disclosure agreement. 77
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Acronyms

NGSCB Next-Generation Secure Computing Base. 25

NS-BIT Non-Secure Bit. 54

OS operating system. 4, 5, 9, 17, 20, 34, 35, 37, 51, 63, 65, 67, 73, 77

PBKDF2 Password-Based Key Derivation Function 2. 55

PIN Personal identification number. 69–72

QEMU Quick EMUlator. 26

RAM Random-Access memory. 40, 41, 48, 52

RPC Remote Procedure Call. 4, 5, 7, 69, 71

SCR Secure Configuration Register. 17, 19, 54

SHA1 Secure hash algorithm. 55

SHA2 Secure hash algorithm 2. 55, 56, 71

SMC secure Monitor Call. 5, 7, 17, 36, 54, 63, 73

SoC System on Chip. 9, 15, 16, 19, 20, 22

SSL Secure Sockets Layer. 76

SWI SoftWare Interrupt. 57

TCB Trusted Computing Base. 4, 5, 10–12, 40, 56–58, 67

TEE Trusted Execution Environment. 6, 7, 10, 12, 14, 24, 28, 29, 31, 34–37, 39,
41, 53, 55, 57–61, 63–66, 71, 73, 76, 77

TEEC Trusted Execution Environment Client. 12, 14, 31, 32, 34, 37, 64, 65

TPM Trusted Platform Module. 25–27

TTBL Translation Table. 40–43, 48, 49

TVMM Trusted Virtual Machine Monitor. 26

TXT Trusted Execution Technology. 25

TZ TrustZone. 3–7, 9, 17, 19, 20, 25, 29, 52, 57, 58, 63–67, 73, 76, 77

TZASC TrustZone Address Space Controller. 6, 19

UUID Universally Unique Identifier. 56, 66

XTEA Extended Tiny Encryption Algorithm. 55
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