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Multi-coloured jigsaw percolation on random graphs
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Abstract

The jigsaw percolation process, introduced by Brummitt, Chatterjee, Dey and Sivakoff, was inspired

by a group of people collectively solving a puzzle. It can also be seen as a measure of whether two graphs

on a common vertex set are “jointly connected”. In this paper we consider the natural generalisation of

this process to an arbitrary number of graphs on the same vertex set. We prove that if these graphs are

random, then the jigsaw percolation process exhibits a phase transition in terms of the product of the

edge probabilities. This generalises a result of Bollobás, Riordan, Slivken and Smith.

Mathematics Subject Classification: 05C80

1 Introduction

1.1 Jigsaw Percolation.

In recent years there has been significant research inspired by the observation that certain advances are
only possible as a result of the collaboration of a group of people, rather than the work of one individual
e.g. [2, 11, 12, 13].

To model this mathematically, Brummitt, Chatterjee, Dey and Sivakoff [6] introduced the jigsaw percola-
tion process. The premise is that a group of people each have one piece of a puzzle which must be combined
in a certain way to solve the puzzle. The individuals (and their associated puzzle pieces) are represented by
a set of vertices, and there are two graphs on these vertices: a people graph, with an edge if the two people
know each other; and a puzzle graph with an edge if the two puzzle pieces are compatible. In the jigsaw
percolation process, we begin with each vertex forming its own cluster and we merge two clusters if there is
an edge between them in both the people and the puzzle graph – this represents these two people sharing
all their information. The new merged cluster inherits all the incident edges of the original clusters. (The
process will be described more formally later.) This process is iterated until either there is only one cluster
remaining, in which case we say that the process percolates indicating that the puzzle has been solved, or
no more clusters can be merged, in which case we say that the process does not percolate. More generally,
if the two graphs are G1 and G2, we say that the double-graph (G1, G2) percolates or does not percolate
respectively.

This process was introduced by Brummitt, Chatterjee, Dey and Sivakoff in [6] and was also considered
by Gravner and Sivakoff in [10].

Bollobás, Riordan, Slivken and Smith [5] considered the case when the people graph and the puzzle
graph are independent binomial random graphs, and proved that the property of the two graphs percolating
undergoes a phase transition in terms of the product of the two associated edge probabilities. More precisely,
their result can be stated as follows. Let G(n, p) denote the Erdős-Rényi binomial random graph on vertex
set [n] := {1, 2, . . . , n} in which each pair of vertices forms an edge with probability p independently of each
other. We say that a property or event holds with high probability (abbreviated to whp), if it holds with
probability tending to 1 as n tends to infinity.
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Theorem 1 ([5]). There exists a constant c such that the following holds: let G1 = G(n, p1), G2 = G(n, p2)
be independent binomial random graphs on the same vertex set, where 0 ≤ p1 = p1(n), p2 = p2(n) ≤ 1. Then

(i) if p1p2 ≤ 1
cn lnn or min{p1, p2} ≤ lnn

cn then whp (G1, G2) does not percolate;

(ii) if p1p2 ≥ c
n lnn and min{p1, p2} ≥ c lnn

n , then whp (G1, G2) percolates.

Note that this theorem is not quite stated as it appeared in [5], but it is easy to derive this form
from the original. We also observe that connectedness of each of the two graphs is a necessary (but not
sufficient) condition for percolation of the double-graph. The conditions on min{p1, p2} determine whether
this necessary condition is satisfied whp, since the threshold for connectivity is at p = lnn

n as famously proved
by Erdős and Rényi in [8].

Theorem 1 was extended to hypergraphs by Bollobás, Cooley, Kang and Koch [4], with a whole family
of generalisations of the percolation process to k-uniform hypergraphs in which the clusters consist of j-sets
of vertices for 1 ≤ j ≤ k − 1.

In this paper, we extend in a different direction, namely to an arbitrary number of graphs on the same
vertex set.

Definition. An r-fold graph is an (r+ 1)-tuple G := (V,E1, ..., Er), where V := [n] is the set of vertices and
Ei ⊆

(

V
2

)

for each i ∈ [r]. We will call 1, 2..., r the colours of G and the graph Gi = (V,Ei) will be said to
be of colour i for every i ∈ [r].

The multi-coloured jigsaw algorithm on an r-fold graph is the natural generalisation of the 2-coloured
version in which clusters must be joined by an edge of each colour in order to merge. A formal description
of this algorithm is given later in Algorithm 4.

It is easy to see that percolation for r = 1 is equivalent to connectedness of the graph. Thus, percolation
of the jigsaw process is a generalised notion of connectedness of multiple graphs on the same vertex set.
Therefore Theorem 1 and the main results of this paper. (Theorems 2 and 3) may be seen as generalisations
of the connectedness threshold of Erdős and Rényi [8].

1.2 Main theorem

To state the main result of the paper, we introduce the following generalisation of the binomial model for
random graphs.

Definition. An r-fold binomial random graph G(n, p1, ..., pr) is an r-fold graph ([n], E1, ..., En) where
([n], Ei) ∼ G(n, pi) are independent binomial random graphs for every i ∈ [r].

The following generalisation of Theorem 1 is the main result of this paper.

Theorem 2. Let 2 ≤ r ∈ N. There exists a constant Cr such that the following holds: suppose that p1, ..., pr
are functions of n such that 0 ≤ p1 ≤ p2 ≤ ... ≤ pr ≤ 1 and G = G(n, p1, p2, ..., pr). For i ∈ [r] let
Pi := p1p2...pi. Then

(i) if Pi ≤ 1
Crn(lnn)i−1 for some 2 ≤ i ≤ r or P1 ≤ lnn

Crn
then whp G does not percolate;

(ii) if Pi ≥ Cr

n(lnn)i−1 for every 2 ≤ i ≤ r and P1 ≥ Cr lnn
n , then whp G percolates.

In fact we will prove a slightly stronger result; we allow r tend to infinity sufficiently slowly as a function
of n (then Cr also depends implicitly on n).

Theorem 3. Let 2 ≤ r = o(
√
ln lnn) and Cr := 28r

2

. Then the following holds: suppose that p1, ..., pr are
functions of n such that 0 ≤ p1 ≤ p2 ≤ ... ≤ pr ≤ 1 and G = G(n, p1, p2, ..., pr). Then

(i) if Pi ≤ 1
Crn(lnn)i−1 for some 2 ≤ i ≤ r or P1 ≤ lnn

Crn
then whp G does not percolate;

(ii) if Pi ≥ Cr

n(lnn)i−1 for every 2 ≤ i ≤ r and P1 ≥ Cr lnn
n , then whp G percolates.
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Note that both in the proof of Theorem 1 in [5] and in the proof of Theorems 2 and 3 in this paper, no
attempt is made to optimise the constants c and Cr, and the value given in Theorem 3 is probably far from
best possible.

Remark. Given an r-fold graph G = ([n], E1, ..., Er) it is easy to see that percolation of every i-fold graph
([n], Ej1 , ..., Eji) obtained by considering a subset of i colours is a necessary condition for percolation of G
(but not sufficient). For i = 1, we guarantee connectedness by taking p1 = P1 ≥ Cr lnn

n . For 2 ≤ i ≤ r the

inequalities Pi ≥ Cr

n(lnn)i−1 together with p1 ≤ p2 ≤ ... ≤ pr ensure that every such i-fold graph percolates

whp.

Proof of Theorem 2. Theorem 2 follows immediately from Theorem 3.

We will therefore focus on proving Theorem 3. We will only present the proof of the supercritical case
since the proof of the subcritical case is an obvious generalisation of the corresponding proof for 2 colours
in [5]. It is a simple first moment argument which we omit here, see [9] for details.

While much of the proof of the supercritical case follows that in [5], there are important differences for
the multi-coloured case which present additional difficulty. We will point out these differences in the course
of the proof.

1.3 The multi-coloured jigsaw algorithm.

The multi-coloured jigsaw process is formally described as follows

Algorithm 4 (The multi-coloured jigsaw algorithm).
Input: r-fold graph G := ([n], E1, ..., Er).
At time t ≥ 0 there is a partition Ct = {C1

t , C
2
t , ...., C

kt
t } of the vertex set [n], which we construct inductively

as follows:

1. We take k0 = n, set Cj
0 := {j} and C0 = {{1}, . . . , {n}} for all j ∈ [n] i.e. we begin at time 0 with the

discrete partition into single vertices.

2. At time t ≥ 0, construct a graph Ht on vertex set Ct by joining Ci
t to Cj

t if there exist edges es :=
{vi,s, vj,s} ∈ Ei for all s ∈ [r] such that vi,s ∈ Ci

t and vj,s ∈ Cj
t .

3. If E(Ht) = ∅, then STOP. Otherwise, construct the partition

Ct+1 = {C1
t+1, ..., C

kt+1

t+1 },

where C1
t+1, ..., C

kt+1

t+1 are obtained by merging the connected components of Ht i.e. if Di
t ⊆ Ct induces

a connected component in Ht then Ci
t+1 =

⋃

C∈Di
t
C.

4. If |Ct+1| = 1 STOP. Otherwise, go to step 2.

Definition. • We say that the r-fold graph G = (V,E1, E2, ..., Er) percolates if Algorithm 4 applied to
G ends with one single cluster. Otherwise we say that G does not percolate.

• We say that a subset W ⊆ V is a percolating subset (or that it percolates) in G = (V,E1, E2, ..., Er) if
the induced r-fold subgraph G[W ] := (W,E1[W ], ..., Er [W ]) percolates.

The definition of a percolating subset corresponds to the definition in [5] of an internally spanned set.
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1.4 Intuition

Let us consider heuristically how the jigsaw process might be expected to evolve. For simplicity we discuss
the case r = 2, although the intuition is transferrable to a larger number of colours.

We begin with n clusters each containing a single vertex. Initially clusters can only merge if there is a
double-edge (i.e. both a red and a blue edge) between the corresponding vertices. Although such double-edges
are rare, the fact that there are many vertices will mean that some clusters will indeed merge.

Subsequently clusters may continue to merge and grow larger. Indeed, the larger a cluster becomes, the
more likely it is to merge with other clusters and continue growing. Thus we might expect that after a
certain size we encounter a snowball effect, and the growth of the largest cluster accelerates until it contains
all vertices.

Indeed, this intuition turns out to be correct: there is a bottleneck in the percolation process, which
occurs at size Θ(lnn) (this was observed by Bollobás, Riordan, Slivken and Smith in [5]). More precisely,
in the subcritical case we show that the largest cluster in the percolation process will not exceed size lnn
whp. On the other hand, in the proof of the supercritical process, the hardest part is proving that there is a
cluster of size slightly larger than lnn - then it is fairly easy to prove that this cluster will eventually merge
with all other clusters whp, and therefore we have percolation.

We will ignore floors and ceilings throughout the paper whenever they do not significantly affect the
arguments (this is usually the case since we consider graphs on n vertices, where n → ∞). We also assume
that n is sufficiently large in calculations.

2 Proof of the supercritical case.

In this section we will prove part (ii) of Theorem 3. The main idea for the proof is to construct an increasing
sequence of percolating subsets V1 ⊆ V2 ⊆ V3 = V . Therefore we will divide the proof into three parts, and
we aim to prove the following:

Part I: whp there is a percolating subset V1 ⊆ V of size at least t1:= (lnn)1+
1
r ;

Part II: conditioned on the existence of a percolating subset V1 ⊆ V of size at least t1, whp there exists
a percolating subset V2 ⊃ V1 of size at least n

2r+2 ;

Part III: conditioned on the existence of a percolating subset V2 of size at least n
2r+2 , whp the whole

set V percolates.

The independence between the three parts of the proof is guaranteed by independent rounds of exposure.

More precisely, let G(j) := ([n], E
(j)
1 , E

(j)
2 , ..., E

(j)
r ) ∼ G(n, p1

3 , p2

3 , . . . , pr

3 ) independently for j = 1, 2, 3. Then

we will view G as the union G
(1) ∪G

(2) ∪G
(3). 1

In Part j of the proof we will work only with G
(j), effectively exposing an r-fold probability of

(p1/3, p2/3, . . . , pr/3) in each round.

2.1 Preliminaries

We begin with some basic observations.

Proposition 5. Let r, Cr, p1, p2, ..., pr satisfy the conditions of Theorem 3 (ii). Then for n large enough
there exist real numbers 0 ≤ p′1 ≤ p′2 ≤ ... ≤ p′r ≤ 1 that also satisfy conditions of Theorem 3 (ii) and such
that

• p′i ≤ pi for every i,

• p′1p
′
2...p

′
r = Cr

n(lnn)r−1 .

1Note that this is not quite true, since the union of three independent copies of G(n, p/3) is distributed as G(n, p∗), where
p∗ = p − p2/3 + p3/9. However, since p∗ < p we can couple G(n, p∗) with G(n, p) such that G(n, p∗) ⊆ G(n, p), and since
percolation is a monotone increasing property, this will be sufficient.

4



We omit the proof of this intuitively obvious result – for details see [9].
Since percolation is a monotone property, by Proposition 5 we may assume that

Pr = p1...pr =
Cr

n(lnn)r−1
. (1)

From this, and recalling that p1 ≥ Cr lnn
n , we can deduce that

p2 ≤
(

p1p2p3...pr
p1

)1/(r−1)

≤
(

1

lnn

)
r

r−1

. (2)

Remark. In the two-coloured case, i.e. r = 2, we obtain the bound p1 ≤ p2 ≤ (lnn)−2. In the general case,
the analogous calculation only yields the bound pi ≤ (lnn)−1 (for i ≥ 3). This seemingly minor difference
leads to significant extra difficulties, as some approximations are no longer valid. We will therefore have to
distinguish between “small” and “large” pi (see Lemmas 8 and 9 in Section 2.2).

2.2 Part I

We will construct a large percolating subset V1 by “trial and error”. Algorithm 6 will start from a single
vertex and add one vertex at a time in an attempt to construct V1. We will make several attempts to
construct V1 – each such attempt is called a round ; each round consists of a number of steps. We divide the
proof into two stages:

I.a First, we will bound from below the probability that the algorithm constructs a percolating subset of

size at least t0 := lnn
cr

(in one round, see Lemma 10) where cr := C
1

r−1
r .

I.b Second, conditioned on the algorithm constructing a percolating subset of size at least t0, we will
bound from below the probability that the algorithm constructs a percolating subset of size at least
t1 = (lnn)1+

1
r (in one round, see Lemma 11).

The probability that Algorithm 6 reaches t1 in one round is bounded from below by the product of the
probabilities of the two stages. This product turns out to be small, but crucially Algorithm 6 makes many
attempts to reach t1. The probability that at least one of these rounds succeeds will be large (see Lemma 13).

In step t of round k of Algorithm 6, we have a trial set Xt
k which is a percolating set. If the algorithm

finds a suitable vertex to add to the trial set Xt
k, we create the new trial set Xt+1

k and proceed to step t+ 1
of round k. If not, we discard the vertices of the trial set Xt

k and begin the new round k + 1. We stop if a
round has reached step t1 or if we have had n

2t1
rounds.

The formal description of the algorithm is as follows:

Algorithm 6 (The 1-by-1 algorithm). The algorithm is divided into rounds, indexed by k, and each round
is divided into steps, indexed by t. At the start of the k-th round there is a set A0

k ⊆ [n] of active vertices
and a set Dk ⊆ [n] of discarded vertices. We begin with A0

1 = [n] and D1 = ∅. The procedure of the k-th
round is as follows:

At the start of the t-th step of the k-th round there are sets of trial and dormant vertices:

• Xt
k = {x1

k, x
2
k, ..., x

t
k} ⊆ A0

k (trial vertices); • U t
k ⊆ A0

k (dormant vertices),

where A0
k = Xt

k ∪̇At
k ∪̇U t

k.

(1) For t = 0, we move an arbitrary active vertex x1
k ∈ A0

k to the trial set:

• X1
k := {x1

k}; • U1
k := ∅; • A1

k := A0
k\x1

k; • R0
k := ∅,

and set t := 1.
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(2) For t ≥ 1, we reveal all edges of E
(1)
1 between At

k and xt
k and edges of E1

i (i = 1, . . . , r) between any

neighbour of xt
k in E

(1)
1 and x1

k, . . . , x
t
k. Let

• Rt
k := {x ∈ At

k : xxt
k ∈ E

(1)
1 };

• Bt
k := {x ∈ Rt

k : for every i ∈ {2, 3, ..., r} there exists si ≤ t such that xxsi
k ∈ E

(1)
i }.

(3) If Bt
k 6= ∅, then let xt+1

k be an arbitrary element of Bt
k. Then set:

• Xt+1
k := Xt

k ∪ {xt+1
k }; • At+1

k := At
k\Rt

k; • U t+1
k := U t

k ∪
(

Rt
k\{xt+1

k }
)

.

If t ≥ t1 = (lnn)1+
1
r then STOP, otherwise set t = t+ 1 and go to step (3).

(4) If Bt
k = ∅, then set

• A0
k+1 := A0

k\Xk; • Dk+1 := Dk ∪Xt
k.

(5) If

k ≥ n

2(lnn)1+
1
r

then STOP, otherwise set k := k + 1 and t := 0, and go to step (1).

We reveal edges and non-edges as they are exposed in the algorithm, e.g. when defining Rk
t we test each

pair (xk
0 , a) for a ∈ At

k to reveal whether it lies in E
(1)
1 . Note that since every tested pair has at least one of

its endpoints in the trial set, we guarantee independence between rounds by discarding the trial set at the
end of each round. We also have independence within each round, because no pair is tested twice within a
round.

Since we consider at most n/(2(lnn)1+
1
r ) rounds, and stop each with a trial set of size at most (lnn)1+

1
r

vertices, we start each new round with at least n/2 vertices, i.e.

|A0
k| ≥

n

2
.

We will need the following definitions:

Definition. • Let X t
k be the event that Xt

k is defined (i.e. we reach step t in round k).

• Let St
k := {|Rs

k| ≤ n
4t1

for s = 0, 1, 2, ..., t}.

• Let Yt
k := X t

k ∩ St
k.

• Let rtk := P
[

Yt
k

∣

∣Yt−1
k

]

for k ≤ n/(2(lnn)1+
1
r ) and t ≥ 1.

The event X t
k means that we found a percolating subset of size t formed with only edges of the first

round of exposure. Conditioned on getting to round k the event X 1
k always holds. For t ≥ 2 the event X t

k is
equivalent to the event that Bt−1

k is non-empty. The event St
k guarantees that within a round k, we do not

discard too many vertices by step t. More specifically, if the event Yt−1
k holds, we have

|At
k| ≥ |A0

k| − (t− 1)
n

4t1
≥ n

2
− t

t1

n

4
≥ n

4
.

Note that if we get to round k, the event S0
k always holds, since R0

k = ∅.
We will use the following easily verified inequalities to approximate some expressions.

Fact 7. For t ≥ 0, p ≤ 1 we have

a) If 1− pt ≥ 0 then 1− (1− p)t ≥ pt(1− pt);

b) If 1− pt ≤ 1
2 then 1− (1− p)t ≥ 1

5 .
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Note that a) was used in [5], but that b) is only needed for the multi-coloured case. We will also use the
following observation: for t ≤ t1,

p1t ≤ p2t1
(2)

≤ (lnn)1+
1
r

(lnn)
r

r−1
= (lnn)

1
r− 1

r−1 = o(1). (3)

The following parameter will help us distinguish between “small” and “large” pi’s, something that is not
needed in the 2-coloured case since both p1 and p2 are “small”.

Definition. For t ≤ t1, let it := max{i ∈ [2, r] : 1− pit
3 ≥ 1

2}.
Note that by (3), it is well defined.
We now calculate a lower bound on the probability of “one-step success” i.e. the probability of being able

to add a vertex to the percolating set in Algorithm 6. Recall that Pi = p1p2...pi for each 1 ≤ i ≤ r.

Lemma 8. For n large enough and 1 ≤ t ≤ t1 = (lnn)1+
1
r we have that independently for each x ∈ At

k the
following holds:

P[x ∈ Bt
k] ≥

(

1

5

)r−1
Pit

3it
tit−1.

Proof. We have

P[x ∈ Bt
k] =

p1
3

r
∏

j=2

(

1−
(

1− pj
3

)t
)

(F. 7)
≥ p1

3

(

1

5

)r−it it
∏

j=2

pjt

3

(

1− pjt

3

)

≥
(

1

5

)r−it Pit

3it
tit−1

(

1

2

)it−1

≥
(

1

5

)r−1
Pit

3it
tit−1.

We now make use of the lower bound of Lemma 8 and the fact that the events {x ∈ Bt
k} are independent

for different vertices x. Recall that cr := C
1

r−1
r .

Lemma 9. For 1 ≤ t ≤ t1 = (lnn)1+
1
r and n large enough the following holds

(a) P
[

Yt
k

∣

∣Yt−1
k

]

≥ 1− exp
(

−
(

1
16

)r ( crt
lnn

)it−1
)

.

(b) If
(

1
16

)r ( crt
lnn

)it−1 ≤ 1 we have

P
[

Yt
k

∣

∣Yt−1
k

]

≥
(

1

32

)r (
crt

lnn

)it−1

.

Proof. Since case (b) follows from case (a) and the inequality 1− x
2 ≥ exp(−x), valid for x ∈ [0, 1], we only

need to prove case (a).
We recall that Yt

k = X t
k ∩ St

k, and therefore

P
[

Yt
k

∣

∣Yt−1
k

]

≥ 1− P

[

X t
k

∣

∣Yt−1
k

]

− P

[

St
k

∣

∣Yt−1
k

]

. (4)

We bound the two probability terms on the right-hand side of the inequality separately.
Let Zt

k be the random variable that represents the number of sets Z of size n
4t1

such that Z ⊆ Rt
k. If

S̄t
k ∩ Yt−1

k holds then Zt
k ≥ 1, therefore we deduce using Markov’s inequality that

P

[

St
k

∣

∣Yt−1
k

]

≤ E

[

Zt
k

∣

∣

∣
Yt−1
k

]

≤
(

n
n
4t1

)

(p1
3

)
n

4t1 ≤
(

4

3
et1p1

)
n

4t1

≤ e−
√
n. (5)

For the last inequality we used that n/(4t1) ≥
√
n and p1t1

(3)
= o(1) ≤ 3

4e2 for n large enough.

7



For the second term in (4), we use Lemma 8 and the observation that |At−1
k | ≥ n/4 to obtain

P

[

X t
k

∣

∣Yt−1
k

]

=
∏

x∈At−1
k

P[x /∈ Bt−1
k ] ≤

(

1−
(

1

5

)r−1
Pit

3it
tit−1

)
n
4

≤ exp

(

−n

4

(

1

5

)r−1
Pit

3it
tit−1

)

.

From the assumptions of Theorem 2, we have that Pit ≥ Cr

n(lnn)it−1 ≥ cit−1
r

n(lnn)it−1 . We deduce that

P

[

X t
k

∣

∣Yt−1
k

]

≤ exp

(

−
(

1

15

)r (
crt

lnn

)it−1
)

. (6)

Substituting (5) and (6) into (4) gives

P
[

Yt
k

∣

∣Yt−1
k

]

≥ 1− exp

(

−
(

1

15

)r (
crt

lnn

)it−1
)

− exp(−√
n).

To complete the proof we recall that t ≤ t1, 2 ≤ it ≤ r and observe that

(

t

lnn

)it−1

≤
(

t1
lnn

)r−1

= (lnn)
r−1
r = o(

√
n),

and conclude that

P
[

Yt
k

∣

∣Yt−1
k

]

≥ 1− exp

(

−
(

1

16

)r (
crt

lnn

)it−1
)

.

Recall that t0 = lnn

C
1/(r−1)
r

= lnn
cr

. In order to calculate a lower bound on the probability of “proceeding to

step t1” we use Lemma 9 to calculate lower bounds for the events “proceeding to step t0” and “proceeding
to step t1 given that we already proceeded to step t0”. We formally express this in Lemmas 10 and 11.

Lemma 10. P
[

Yt0
k

∣

∣X 0
k

]

≥ n− 7(r−1)
cr .

Proof. Since crt
lnn ≤ 1 for 1 ≤ t ≤ t0, we can use Lemma 9 (b):

P
[

Yt0
k

∣

∣X 0
k

]

= P
[

Yt0
k

∣

∣Y0
k

]

=

t0
∏

t=1

P
[

Yt
k

∣

∣Yt−1
k

]

≥
t0
∏

t=1

(

1

32

)r (
Crt

lnn

)it−1

≥
t0
∏

t=1

(

1

322

)r−1(
crt

lnn

)r−1

≥
(

crt0
1024 lnn

)(r−1)t0

=

(

1

1024

)(r−1) lnn
cr

≥ n− 7(r−1)
cr ,

since 1
1024 ≥ 1

e7 .

Lemma 11. P
[

X t1
k

∣

∣Yt0
k

]

≥ n−28r+2/cr .

In the proof of Lemma 11 we will use the following claim.

Claim 12. For any real numbers α ≥ 1 and 0 ≤ y ≤ 1− 1
α , we have

1− y ≥ e−αy.

Proof. From the hypothesis we deduce that

α ≥ 1

1− y
=

∞
∑

i=0

yi
(y≥0)

≥ 1

y

∞
∑

i=1

yi

i
=

− ln(1 − y)

y
,

and the desired inequality follows.
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Proof of Lemma 11. We begin by applying Lemma 9 (a):

P
[

X t1
k

∣

∣Yt0
k

]

≥ P
[

Yt1
k

∣

∣Yt0
k

]

=

t1
∏

t=t0+1

P
[

Yt
k

∣

∣Yt−1
k

]

≥
t1
∏

t=t0

(

1− exp

(

−
(

1

16

)r (
crt

lnn

)it−1
))

.

Setting α := 1

1−exp{−( 1
16 )

r} > 1 and y := exp
(

−
(

1
16

)r ( crt
lnn

)it−1
)

and noting that crt
lnn ≥ crt0

lnn = 1 for

t ≥ t0, we deduce that y ≤ exp
(

−
(

1
16

)r)
= 1− 1

α , therefore we can apply Claim 12. Thus

P
[

X t1
k

∣

∣Yt0
k

]

≥ exp

(

−α

t1
∑

t=t0

exp

(

−
(

1

16

)r (
crt

lnn

)it−1
))

≥ exp

(

−α

∞
∑

t=t0

exp

(

−
(

1

16

)r (
crt

lnn

))

)

= exp

(

− α exp
(

−
(

1
16

)r)

1− exp
(

−
(

1
16

)r cr
lnn

)

)

.

We now simplify the denominator by using the inequality e−x ≤ 1− x/2 valid for x ≤ 1 :

P
[

X t1
k

∣

∣Yt0
k

]

≥ exp

(

− α exp
(

−
(

1
16

)r)

1−
(

1− 1
2

(

1
16

)r cr
lnn

)

)

= exp

(

−24r+1α exp
(

−
(

1
16

)r)
lnn

cr

)

.

We now observe that

24r+1α exp

(

−
(

1

16

)r)

= 24r+1 exp
(

−
(

1
16

)r)

1− exp
(

−
(

1
16

)r) ≤ 24r+1 1
1
2

(

1
16

)r = 28r+2,

and the result follows.

Using Lemmas 10 and 11, we can complete the proof of Part I

Lemma 13. G
(1) contains a percolating subset of size (lnn)1+

1
r with probability at least 1− e−

√
n.

Proof. Let k ≤ n

2(lnn)1+
1
r
. Applying Lemmas 10 and 11, the probability that in round k we find a percolating

subset of size (lnn)1+
1
r is at least

n− 7(r−1)
cr · n− 28r+2

cr ≥ n− 28r+3

cr .

We conclude that the probability of not finding a percolating subset of size t1 = (lnn)1+
1
r in each of the

n/
(

2(lnn)1+
1
r

)

rounds is at most

(

1− n− 28r+3

cr

)
n

2(ln n)
1+ 1

r ≤ exp



− n1− 28r+3

cr

2(lnn)1+
1
r



 ≤ exp(−√
n).

These inequalities hold since cr ≥ 28r+5, provided n is large enough compared to cr.

Remark. We note that as r becomes larger, Algorithm 6 has a harder time constructing a percolating set
larger than lnn. While for two colours we reach size (lnn)

3
2 whp, for r colours we must settle for size

(lnn)1+
1
r .

2.3 Part II

In this subsection we aim to prove that conditioned on the existence of a percolating set of size t1 in G(1),
whp there is a percolating set of size at least n

2r+2 in G(1) ∪G(2) (see Lemma 17).
We will attempt to construct a percolating set of linear size with the following algorithm:
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Algorithm 14 (The doubling algorithm).
Input: an r-fold graph G(2) and a subset X0 which is percolating with respect to G(1).

For t ≥ 0, we construct Xt inductively as follows:

• Let At := V \Xt be the set of active vertices.

(1) At step t ≥ 0 we reveal all edges of G(2) between At and Xt \Xt−1, where X−1 := ∅. We define

• Bt := {v ∈ At : ∀ i ∈ [r] there is a vi ∈ Xt \Xt−1 such that vvi ∈ E
(2)
i }.

In other words, Bt is the set of active vertices joined to Xt \Xt−1 by an edge of each colour from the
second round of exposure.

(2) If |Bt| < |Xt| we STOP. Otherwise, we set

• Xt+1 := Xt ∪Bt,

• At+1 := At \Bt.

If |Xt+1| ≥ n/2r+2 then STOP, otherwise go to (1) for step t+ 1.

We set bt := |Bt| and xt := |Xt| for all t.

Remark. (i) If we reach step t+ 1 in Algorithm 14, then bs ≥ xs for every s ∈ [t] and therefore

xs = xs−1 + bs−1 ≥ 2xs−1 for every s ∈ [t+ 1].

Thus bt ≥ xt ≥ 2xt−1 ≥ 22xt−2 ≥ ... ≥ 2tx0 = 2tt1.

(ii) If we reach step t+ 1, then
xt+1 = bt + xt ≤ 2bt. (7)

Let t2:= max
{

t ∈ N ∪ {0} : xt <
n

2r+2

}

. Note that if Algorithm 14 constructs a percolating set Xt of size
≥ n

2r+2 , then it will stop at time t = t2 + 1; otherwise it will stop at time t2. Furthermore, by the previous

remark we know that 2t2 ≤ bt2
t1

≤ n, so t2 ≤ log2(n) = O(lnn).
Given an r-fold graph G, we denote the event that V contains a percolating subset of size at least m by

E(G,m). The general idea to prove the main result of this section (Lemma 17) is as follows: we first prove
in Claim 15 that the expected number of “suitable” vertices Bt is at least twice the size of the percolating set
Xt constructed in step t− 1 (see Steps 1&2 of Algorithm 14). Subsequently, in Lemma 16 we prove a lower
bound on the conditional probability that Algorithm 14 proceeds to step t + 1 conditioned on it reaching
step t. Finally, we apply this lower bound multiple times to obtain Lemma 17.

Claim 15. Let t ≤ t2. Then
E[bt] ≥ 2xt.

Proof. Let qt,i denote the probability that a vertex v ∈ At is joined to Bt−1 = Xt \Xt−1 by at least one

edge of G
(2)
i . From (7) we know that bt−1 ≥ xt/2 for 0 ≤ t ≤ t2, where b−1 := x0, and so we obtain

qt,i = 1−
(

1− pi
3

)bt−1

≥ 1−
(

1− pi
3

)xt/2

≥ 1− exp
(

−pixt

6

)

≥
{

pixt

12 if pixt ≤ 6;
1
2 otherwise.

(8)

Let jt := max{j ∈ [r] ∪ {0} : pjxt ≤ 6} ≥ 0, where p0 := 0. Recalling that At ≥ n/2 for t ≤ t2, we obtain

E[bt] = |At|





r
∏

j=1

qt,j





(8)
≥ n

2





jt
∏

j=1

pjxt

12





(

1

2

)r−jt

=

{

2
(

n
2r+2

)

≥ 2xt for jt = 0;

n
(

xt

3

)jt
Pjt

(

1
2

)r+jt+1
otherwise.
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Thus we may assume that jt ≥ 1 (otherwise we are done). Making a further case distinction we obtain
Case 1: jt = 1. We recall that P1 = p1 ≥ Cr lnn

n , thus for n large enough we have:

E[bt] ≥
(

Cr lnn

2r+2

)

xt

3
≥ 2xt,

since Cr

2r+2 ≥ 1.
Case 2: jt ≥ 2. We recall that Pi = p1...pi ≥ Cr/(n(lnn)

i−1) for all 2 ≤ i ∈ [r] and xt ≥ 2tt1 for all
0 ≤ t ≤ t2. Thus

E[bt] ≥
n

2r+jt+1

(2tt1)
jt−1

3jt
xt

(

Cr

n(lnn)jt−1

)

= Cr
2t(jt−1)

2r+jt+13jt

(

t1
lnn

)jt−1

xt ≥
Cr

22r+13r
xt ≥ 2xt,

where the last two inequalities are valid since t1
lnn ≥ 1 and Cr ≥ 28r

2 ≥ 22r+23r.

We apply Claim 15 to bound the probability that we are able to double the size of the percolating set in
each step.

Lemma 16. For each integer 1 ≤ t ≤ t2, we have

P [bt ≥ xt|Xt 6= ∅] ≥ 1− exp

(

− t1
4

)

.

Proof. For t ≤ t2, the trial set Xt is of size at most n/2r+2. This means that there are at least n−n/2r+2 ≥
n/2 vertices in the set of active vertices At.

We note that the events that v ∈ Bt are independent for different v ∈ At, so bt is distributed as
Bi(|At|, qt,1qt,2...qt,r),. Note that the distribution of bt is dependent on both |At| and bt−1 = |Xt \Xt−1|. In
what follows we will suppress the conditioning on these two variables for ease of notation.

Now the Chernoff bound (see e.g. [1]) tells us that

P[Bi(m, q) ≤ (1− δ)mq] ≤ exp

(

−mqδ2

2

)

for all 0 < δ < 1. (9)

From Claim 15 we deduce that

P [bt ≥ xt|Xt 6= ∅] ≥ P

[

bt >
E[bt]

2

]

(9)
≥ 1− exp(−E[bt]/8) ≥ 1− exp(−xt/4) ≥ 1− exp(−x0/4).

Recalling that x0 = t1, this completes the proof.

We apply Lemma 16 multiple times to obtain the main result of this section.

Lemma 17. For n large enough,

P

[

E
(

G(1) ∪G(2),
n

2r+2

) ∣

∣

∣E
(

G(1), (lnn)1+
1
r

)]

≥ 1− exp(− t1
5
).

Proof. Since t2 ≤ K lnn for some K, we deduce from Lemma 16 that

P

[

E
(

G(1) ∪G(2), n/2r+2
) ∣

∣

∣
E
(

G(1), t1

)]

≥
t2
∏

t=0

P
[

bt ≥ xt

∣

∣Xt 6= ∅
]

≥
(

1− exp

(

− t1
4

))K lnn

≥ 1−K(lnn) exp

(

− t1
4

)

≥ 1− exp

(

ln(K lnn)− t1
4

)

≥ 1− exp

(

− t1
5

)

,

where the last inequality is valid since t1 = Ω(lnn).
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2.4 Part III

Finally we prove that G
∗ := G(1) ∪G(2) ∪G(3) percolates whp.

Lemma 18. Conditioned on G(1) ∪ G(2) containing a percolating subset X of size at least n/2r+2, G
∗

percolates whp.

Indeed, we will prove that whp every vertex in V \X is connected to X by edges of every colour by using
the final round of exposure G(3).

Proof of Lemma 18. We begin by defining K to be the event that there is at least one vertex v ∈ V \X
and one colour i ∈ [r] such that E

(3)
i contains no edge between v and X . Thus

P[K] ≤
∑

i∈[r]

∑

v∈V \X

(

1− pi
3

)|X|
≤ rn

(

1− p1
3

)
n

2r+2 ≤ rne−
Cr

3·2r+2 lnn = rn1− Cr
3·2r+2 ≤ r

n
= o(1),

where the last inequality holds since Cr ≥ 28r
2 ≥ 3 ·2r+3. Since K̄ implies that G∗ percolates, this completes

the argument.

3 Concluding remarks.

A number of open questions naturally present themselves.

3.1 Optimising Cr

Similar to Bollobás, Riordan, Slivken and Smith [5], we made no attempt to optimise the constant Cr in
Theorems 2 and 3. As a result, the bounds on Pr for the subcritical and supercritical case are a long way
apart. It is natural to expect them to be asymptotically equal, leading to the following strengthening of
Theorem 2:

Conjecture 19. Let r ∈ N. There exists constants C∗
1 , C

∗
2 , . . . , C

∗
r such that the following holds: suppose that

p1, ..., pr are functions of n such that 0 ≤ p1 ≤ p2 ≤ ... ≤ pr ≤ 1 and G = G(n, p1, p2, ..., pr). For i ∈ [r] let
Pi := p1p2...pi. Then for any constant ε > 0:

(i) If Pi ≤ (1−ε)C∗

i

n(lnn)i−1 for some 2 ≤ i ≤ r or P1 ≤ (1−ε) lnn
n then whp G does not percolate.

(ii) If Pi ≥ (1+ε)C∗

i

n(lnn)i−1 for every 2 ≤ i ≤ r and P1 ≥ (1+ε) lnn
n , then whp G percolates.

It would be interesting to determine the exact value of the C∗
i .

3.2 Size of the critical window

If the C∗
i can be determined precisely, the next parameter to optimise would be the parameter ε in Con-

jecture 19. More precisely, does the result still hold if rather than ε being a constant it is allowed to be
a function of n which tends to 0 sufficiently slowly. This has already been extensively studied in the case
r = 1, which corresponds to connectedness of the graph, but is an open problem in general.

3.3 Speed of the jigsaw process

In the supercritical case of Theorem 2, we know that whp the jigsaw percolation algorithm will terminate
with just one cluster, but how many steps does this process require?

More precisely, in each step we create an auxiliary graph on the clusters of vertices, with an edge between
clusters if there are edges between them of every colour in the r-fold graph, and merge each connected
component of this auxiliary graph. How many iterations of this process are required before we have one
single remaining cluster?

12



An analysis of the proof shows that, for the random graphs considered in the supercritical case, whp at
most (1 + o(1))(lnn)1+1/r steps are required. However, this was not optimised and it would be natural to
conjecture that actually Θ(lnn) steps are sufficient. It would also be interesting to determine the constant
in this Θ(lnn) term, which would most likely be dependent on how close the probability product Pr is to
the jigsaw percolation threshold.
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