

Interactive Visual Exploration of Local Patterns in Large Scatterplot Spaces

Mohammad Chegini*, Lin Shao*, Robert Gregor*, Dirk Joachim Lehmann§, Keith Andrews*, Tobias Schreck*

* Graz University of Technology, Austria§ University of Magdeburg, Germany

June 5, 2018

What is a pattern?

A global pattern.

Local pattern (Also a query).

Motivation

- Hidden information in local patterns.
- Finding redundant attributes.
- Finding local relationship in data.

Overview of the System and Dataset

Renewable energy	GDP	Unemployment	class	year
25.13	3.55	3.11	AT	1991
24 47	2 41	3 31	ΔΤ	1997
2	2.11	5151		1992
26.13	0.97	3.47	AT	1993
26.35	0.29	4.09	AT	1994

Regression Lens [1]

[1] Shao, Lin, et al. "Interactive Regression Lens for Exploring Scatter Plots." *Computer Graphics Forum*. Vol. 36. No. 3. 2017.

Collaborative Scatterplot Analysis [2]

[2] Mohammad Chegini, et al. "Interaction Concepts for Collaborative Visual Analysis of Scatterplots on Large Vertically-Mounted High-Resolution Multi-Touch Displays." Forum Media Technology & All Around Audio Symposium. 2017.

ScagExplorer [3]

[3] Dang, Tuan Nhon, and Leland Wilkinson. "Scagexplorer: Exploring scatterplots by their scagnostics." Visualization Symposium (PacificVis), 2014 IEEE Pacific. IEEE, 2014.

Initializing the Query (Step 1)

- Selecting a scatterplot from SPLOM.
- The user selects a region of interest inside a scatterplot as a query.

Sliding Window Approach (Step 2)

- Step size.
- Scale size.

Shape and Model-based Descriptors (Step 2)

Shape-based descriptor.

Model-based descriptor.

Purity Scores (Step 2)

User defined query pattern.

A matching pattern.

Ranking Algorithm (Step 2)

- Create a ranking of all patterns in the SPLOM, according to similarity with the query pattern.
- The ranking depends on the chosen weights for the descriptors.

Visualisation of Patterns (Step 3)

Aggregation

Best-Matches

Union

Relevance Feedback (Step 4)

- The user can select related local patterns from the highlighted matches in the SPLOM.
- Based on the patterns marked as relevant by the user, the system adapts the parameters (weights, thresholds, step and scale sizes).
- The system searches again with the new parameters.

Use Case 1: Finding Similar Patterns

Energy use, per capita (toe)

Income per person (fixed 2000 US\$)

Original query pattern.

Similar patterns to the query.

Use Case 2: Finding Positive Correlations

Original query pattern

A similar pattern

A local positive correlation

Use Case 3: Finding Negative Correlations

Original query pattern

A similar pattern

A local negative correlation

Future work

- Including more than two dimensions.
- Using production dataset.
- Adding other modalities for interaction.
- Conducting user studies.
- Considering other descriptors.

Questions?

Extra Slide: Ranking Formula

$$s(q, p) = \begin{cases} 0 & \text{if } P_{precision} < P_{pmin} \text{ or } P_{recall} < P_{rmin} \\ w_m(1 - d_m) + s(1 - w_m)(1 - d_s), & \text{otherwise} \end{cases}$$

$$\operatorname{argmin}_{C_k} \left(\sum_{i=1}^n \operatorname{ranking}_{C_k}(q, u_i) \right)$$

Extra Slide: Scalability

- Step and scale size for slidingwindow (385).
- Number of dimensions (10 -> 34650).
- Number of descriptors (34650 x 3136 x t).

