
A Security Analysis of FirstCoin

Alexander Marsalek1, Christian Kollmann2, and Thomas Ze↵erer2

1 Graz University of Technology, IAIK, Austria
Alexander.Marsalek@iaik.tugraz.at

2 A-SIT Plus GmbH
Christian.Kollmann@a-sit.at, Thomas.Zefferer@a-sit.at

Abstract. Supported by the current hype on Bitcoin, the number of
available cryptocurrencies has steadily increased over the past years. Cur-
rently, relevant portals list more than 1.500 cryptocurrencies. Many of
them slightly deviate from approved and tested technical concepts and re-
alize security-related functionality in di↵erent ways. While the security of
major cryptocurrencies has already been studied in more detail, security
properties of less popular cryptocurrencies that deviate from approved
technical concepts often remain unclear. This is a problem, as users run
the risk of losing invested money in case the respective cryptocurrency is
unable to provide su�cient security. In this paper, we underpin this state-
ment by means of a detailed analysis of the cryptocurrency FirstCoin. We
identify and discuss vulnerabilities of FirstCoin, which lead to a low net-
work hash rate and allow for 51% attacks. We propose a double-spending
attack that exploits these vulnerabilities and demonstrate the proposed
attack’s feasibility by running it in an isolated evaluation environment.
This way, we show FirstCoin to be insecure and provide a real-world
example that underpins the general problem of cryptocurrencies deviating
from approved security concepts and relying on weak security designs.

Keywords: Blockchain, double spending, proof-of-work, FirstCoin, cryp-
tocurrency, 51% attack

1 Introduction

In 2017, cryptocurrencies have experienced an impressive increase in popularity
and market capitalization [1]–[4]. In the wake of Bitcoin, which has reached
a market capitalization of more than 336 billion USD in 2017, an increasing
number of alternative cryptocurrencies have been introduced. The website Cryp-
tocurrency Market Capitalizations [5] currently lists more than 1.500 di↵erent
cryptocurrencies. While none of them is yet as successful as Bitcoin in terms
of market capitalization, all currencies aim to employ the current hype around
cryptocurrencies and seek to attract potential investors. Although all currencies
have been subject to fluctuating market values during the past months, their
popularity remains high.

On a technical level, most cryptocurrencies rely on the same basic concepts
as Bitcoin [6]. However, other cryptocurrencies still cannot be regarded as sim-
ple Bitcoin clones, as they often rely on a slightly modified underlying design

Marsalek A., Kollmann C., Zefferer T. (2018) A Security Analysis of FirstCoin. In: Janczewski L.,
Kutyłowski M. (eds) ICT Systems Security and Privacy Protection. SEC 2018. IFIP Advances in

Information and Communication Technology, vol 529. Springer, Cham
The final publication is available at Springer via http://doi.org/10.1007/978-3-319-99828-2_10

2

and implement various technical aspects di↵erently. For instance, several cryp-
tocurrencies adapt Bitcoin’s proof-of-work based consensus mechanism [7] by
varying certain parameters of the consensus algorithm or even follow a completely
di↵erent approach to achieve consensus between participating entities. These
deviations from the original Bitcoin algorithm have yielded a technically hetero-
geneous ecosystem of cryptocurrencies. This heterogeneity bears a risk: while the
security of popular currencies such as Bitcoin [8], Ethereum [9] or Ripple [10]
have been subject to detailed analyses [11], the security of less popular currencies
often remains uninvestigated and hence undetermined. In particular, it remains
unclear if and to what extent deviations from the original Bitcoin concept a↵ect
a cryptocurrency’s overall security. In the worst case, only slight deviations can
already cause flaws that undermine the currency’s security and pose serious risks
to people investing money in this currency.

In this paper, we underpin this statement with hard facts. We show by means
of a real-world example that bad design decisions and inadequate deviations from
well-tried security concepts can make a cryptocurrency prone to rather simple
attacks. While our research interests are not limited to certain cryptocurrencies,
we focus on one specific currency in this paper, i.e. the cryptocurrency FirstCoin3.
FirstCoin has been chosen for multiple reasons. First, this currency has shown
a rather unusual development of both, price and market capitalization during
the past months. Second, the currency’s proposed consensus mechanism and its
implementation seem rather unorthodox. Finally, the published source code of
FirstCoin does not include the necessary mining functionality, which supports
the hypothesis that FirstCoin at least partly applies the disproved concept of
security by obscurity.

For the listed reasons, we analyze FirstCoin in more detail. Applied analyses
include a detailed evaluation of FirstCoin’s source code, reconstruction of the
not-published mining functionality, as well as the successful mounting of a
double-spending attack in a protected environment. This way, we confirm the
hypothesis that double-spending attacks are feasible if mining power is not
su�ciently distributed amongst participants. Furthermore, our results confirm
the common sense that the concept of security by obscurity does not necessarily
yield secure solutions. Overall, our work shows that the cryptocurrency FirstCoin
is insecure and prone to attacks. This supports the above-made statement that
cryptocurrencies deviating from approved concepts of established cryptocurrencies
must not be assumed to be secure. This is a relevant finding also for people
planning to invest money in one of the many available cryptocurrencies out there.

The remainder of this paper is structured as follows. We first provide general
background information on cryptocurrencies in Section 2 and discuss related
work on the security of cryptocurrencies in Section 3. In Section 4, we introduce
FirstCoin and analyze its most important features and properties. Based on the
properties of FirstCoin, we then identify potential vulnerabilities and propose
an attack vector in Section 5. To prevent any damage to the FirstCoin network,
we have tested and evaluated the proposed attack vector in a special evaluation
3 Available at http://www.firstcoinproject.com/ and
https://github.com/firstcoino�cial

3

environment. Details on the conducted evaluation are presented and discussed in
Section 6. Finally, conclusions are drawn in Section 7.

2 Background

Bitcoin was the first project to build a cryptocurrency based upon a distributed
ledger modeled by a blockchain. Bitcoin uses the blockchain as a public record of
all transactions ever made, whereas a transaction transfers a certain amount of
coins from a sender to a receiver. Transactions are grouped together into blocks.
Blocks, in turn, are linked with each other, forming a chain of blocks. This makes
any ex-post modification on blocks or their contents detectable. Blocks are created
by so-called miners, which perform costly computations to solve cryptographic
puzzles defined by the Bitcoin software. The di�culty of the puzzle is regularly
adapted to reach an average block creation interval of ten minutes. The first
miner able to solve the puzzle is allowed to create a new block and broadcast it
on the network. Along with transactions, each created block contains a link to
the previous block and a proof of work. In case that more than one block tries to
build upon the existing chain of blocks concurrently, i.e., forking the blockchain,
the chain with the higher proof-of-work is selected as the valid chain. As a reward
for spending its computation power, the successful miner receives the reward for
the block, i.e., newly mined coins, and the fees associated with each transaction
in the block. With that compensation, all participants of the Bitcoin network
have an incentive to be honest and follow the protocol.

The consensus algorithm of Bitcoin guarantees several properties of the
blockchain, all without relying on a central trusted authority, e.g., the correct
chaining to the previous block, that su�cient work was put into the creation of
the block, valid cryptographic signatures of all transactions, and most important
that no double-spending has occurred. In a double-spending attack, an attacker
sends the same coins to di↵erent recipients, to e.g. wrongfully buy goods from a
vendor. To mount such an attack, the attacker first creates a valid transaction,
spending its coins, to make a purchase. As soon as the vendor sends the good
to the buyer, e.g. upon receiving and verifying the transaction, the attacker
creates a second transaction, spending the same coins again, but sending them
to a di↵erent recipient. To mitigate this attack, the vendor is advised to wait
until the respective transaction is included in the public blockchain and has
received enough confirmations. A confirmation is merely a block in the chain
building upon the block that includes the transaction. To have a high certainty
to actually be in possession of the received coins, recipients usually wait until
six confirmation blocks are appended to the blockchain. This confidence stems
from the fact that rewriting the history of the blockchain requires quite large
computation power. The attacker would not only need to recalculate the existing
blocks (leaving out the first transaction to the vendor), but also would need
to keep pace with the benign nodes extending the valid blockchain. A double
spending attack is only guaranteed to succeed if the attacker controls more than
half of the network’s computing power, as we shall see later.

4

3 Related Work

The possibility of double spending attacks on blockchain-based currencies was
known from the beginning. In the work introducing Bitcoin, Nakamoto [12]
calculated its success probability for the Bitcoin network. In 2014, Rosenfeld [13]
showed that an entity controlling more than 50% of the computing power in
an proof-of-work-based blockchain network can always (successfully) perform a
double-spending attack. Even with less than 50% of the computing power, the
attack will succeed with a certain probability, mostly dependent on the number
of confirmation blocks required by the vendor. Pinzón et al. [14] build on the
work of Rosenfeld and include time-based information in their attack model
to account for attackers secretly mining blocks in advance. Gervais et al. [8]
construct a framework to evaluate security features of several proof-of-work-based
blockchains. With that framework, the authors can give recommendations for
vendors on how many confirmation blocks to wait on to achieve the desired
security level. Karame et al. [15] analyze double-spending attacks in Bitcoin on
zero-confirmation transactions, i.e. transactions only published to the network,
but not included in any block at all. The authors deduce that such attacks are
easy to mount and do not require significant work by the attacker. Carlsten et

al. [16] analyze the consequences of the block reward halving every 210,000 blocks
(about every four years) and the limited supply of tokens. Carlsten et al. argue
that Bitcoin would become unstable and insecure, as soon as the reward for
mining a block falls below a threshold. Then, the reward for investing computing
power to append blocks to the blockchain would be the sum of the transaction
fees in the new block only. The authors propose that new cryptocurrencies should
set a fixed block reward, to take an e↵ective countermeasure against the looming
instability of the underlying blockchain.

So far, double-spending attacks have been discussed in related work mainly
from a theoretical perspective. Practical double-spending attacks published so
far target transactions before they are added to the blockchain and obtain a
su�cient level of confirmation. The attack presented in this paper is way more
powerful, as it enables double-spending attacks on already confirmed transactions
by rewriting the public history of the blockchain. To the best of our knowledge,
this is the first scientific publication of such an attack.

4 FirstCoin

FirstCoin is a proof-of-work based peer-to-peer cryptocurrency. It shares many
similarities with Litecoin [17], like the PoW algorithm scrypt. Litecoin, in turn,
resembles Bitcoin in its core principles—sans its PoW algorithm4 (Bitcoin uses
SHA-256). However, FirstCoin neither forked Litecoin’s blockchain5 nor its source
code repository. Still, there are various similarities in the source code and in

4 Litecoin also aims at a di↵erent block interval and limits the supply to 84 million
coins amongst other di↵erences. 5 FirstCoin’s blockchain starts from a di↵erent first
block (called the genesis block) as Litecoin and is therefore completely disjunct.

5

the provided build instructions, which support the assumption that FirstCoin is
technically closely related to Litecoin. Despite these similarities, there are some
considerable di↵erences between the two cryptocurrencies. In contrast to Litecoin,
FirstCoin aims at a block interval of 60 seconds, premined 109,999,999 coins,
limited the number of coins to 110 million, and reduced the block reward to one
Satoshi6. The minimum di�culty (di�culty target) of the puzzle to be solved, is
updated every 3.5 days to reach an average block interval of 60 seconds.

As most cryptocurrencies, FirstCoin uses a hard-coded genesis block7 as the
root of trust. Furthermore, the source code defines a domain name service seed
node as well as eight additional checkpoints (hard-coded block data) between
the genesis block and block 52. All these features are also used in Litecoin.

A key di↵erence between Litecoin and FirstCoin is the missing mining code.
While the help message of the FirstCoin daemon states ”-gen Generate coins
(default: 0)”, the parameter is actually ignored in the source code. Furthermore,
the JavaScript Object Notation Remote Procedure Call (JSON-RPC) methods
needed for mining are not available. The fact that no white paper or other
documentation describing FirstCoin’s mining process is available either, supports
the hypothesis FirstCoin aims to increase security by obscurity.

As additional security-increasing measures, the FirstCoin network enforces
additional rules, like a maximum block size of one megabyte and several time-
related constraints. The timestamp of the block has to be greater than the time
of the last checkpoint and greater than the median time of the last eleven block
times, but must no be greater than the median time of the connected nodes plus
two hours. These block-timestamp rules are obviously inherited from Bitcoin [18],
[19]. The network also enforces that every block smaller than 100,000,001, except
block 2, pays one Satoshi plus the fees of all included transactions as block reward.
Block 2 is an exception and is allowed to pay out 109,999,999 coins (the premined
coins). Other blocks are only allowed to pay out the fees as block reward. These
rules enforce a limited coin supply and a defined, albeit very small, block reward.
This way, miners cannot reward themselves with arbitrary high rewards.

In summary, FirstCoin appears to be a modified version of Litecoin. From a
security perspective, some deviations applied by FirstCoin seem questionable at
first glance. We elaborate on that observation in the next section and propose an
attack that exploits FirstCoin’s questionable security properties.

5 Proposed Attack

Due to the missing mining code and the low block reward, it is reasonable to
assume that only a few miners participate in the FirstCoin network. Mining for
FirstCoin seems unattractive, as a miner has to implement the missing mining
code and then receives only a low reward of one Satoshi for each accepted block.
This assumption is supported by concrete figures. Figure 1 shows the network
hash rate of FirstCoin in red color and of Litecoin in blue color. Both plots start

6 One Satoshi is a one hundred millionth of a single FirstCoin (0.00000001 FRST), the
smallest representable unit in FirstCoin. 7 The first block is called genesis block.

6

from their respective genesis block and end in March 2018. We have derived the
hash rate using the getnetworkhashps API call and estimated the network hashes
per second based on the last 120 blocks. Additionally, Figure 1 shows the hashes
per second of a Nvidia GTX 1070 graphic card and an Antminer L3 unit. Both
plots start at the release date of the respective product. As shown in Figure 1, the

2011-10-07 2014-01-01 2016-01-01 2018-03-14
102

105

108

1011

1014

Date

H
as
h
op

er
at
io
n
s
p
er

se
co
n
d
[H

/s
] Litecoin

FirstCoin
GTX 1070

Antminer L3

Fig. 1: Comparison of the hash rate of FirstCoin and Litecoin network with a
logarithmically scaled y-axis. Additionally, the hash rate of a single GTX 1070
GPU and an Antminer L3 is shown, starting from their release dates.

hash rate of Litecoin is currently about 800 million times bigger than the hash
rate of FirstCoin. Because of this big di↵erence Figure 1 uses a logarithmically
scaled y-axis. From Figure 1 it becomes apparent that FirstCoin’s hash rate is
rather low and does not pose a serious computational challenge. Thus, we assume
that it is feasible to mount 51% attacks against FirstCoin with a single consumer
graphics card, provided that we manage to create a working FirstCoin miner. We
propose a double-spending attack on FirstCoin comprising the following steps:

1. Implement the missing methods in the source code to create a working miner
for FirstCoin.

2. Buy or mine a su�cient number of FirstCoin coins. Send them to Address X.
3. Create and publish Transaction TX, which sends the coin(s) from Address X

to Address Y. Wait until TX is included in a Block B and Block B is added
to Chain C.

4. Create the double-spending Transaction TX’, which sends the same coin(s) to
Address Z. Start mining the conflicting Block B’ which includes TX’ instead
of TX. Block B’ must reference a block before Block B in Chain C, otherwise
the network will later refuse to accept the forked chain C’. Block B’ must be
kept secret.

7

5. The network will continue to mine blocks based on Block B. Wait until the
Block B has enough confirmations, so that TX is considered accepted. Keep
mining on the secret Chain C’.

6. As soon as C’ has a higher cumulated proof-of-work than the benign Chain
C, publish C’.

7. As C’ has a higher proof-of-work, the network will accept it as the main chain.
From now on, the network will mine blocks based on C’. Hence, address Y
will not receive any payment.

For a better understanding, the listed steps are visualized in Figure 2.

X Y

(a) The valid blockchain C in green color, with a newly created Block B
including Transaction TX, paying coins to Address Y.

X Y

X Z

(b) The blockchain C’ with a conflicting, not published, Block B’ in red
color. The block contains Transaction TX’, which double spends the coins
sent in Transaction TX.

X Y

X Z

Keep mining on our secret chain.

(c) The honest network adds blocks to Chain C including Block B. Mean-
while, blocks are secretly mined for Chain C’, including Block B’.

X Y

X Z

7. As our chain has an higher proof-of-work the network will accept it as main chain.
(d) After some time, Transaction TX has enough confirmations and the
owner of Address Y assumes to be in possession of the coins. After that,
mining is continued until the modified Chain C’ has a higher cumulated
proof-of-work than all other chains.

X Y

X Z

(e) After publishing C’, the network evaluates and accepts C’ as long
as it is the chain with the most proof-of-work and every block and
transaction included is valid. As all rules have been followed, the new
chain C’ is accepted. Thus, Transaction TX’ has become part of the chain
and Transaction TX (and its block and all subsequent blocks) have been
dismissed. From now on, the honest network will append blocks to C’.

Fig. 2: Visualization of a double spending attack

8

6 Evaluation

In this section, we describe how we evaluated our proposed attack. We aimed to
evaluate the feasibility of the attack without harming the network or diminish
users’ trust into FirstCoin. Therefore, we conducted our attack on an air-gapped
network. The entire evaluation setup is introduced in the following.

6.1 Evaluation Setup

Our setup consists of two virtual machines, one running the original unmodi-
fied FirstCoin daemon and a second one running our modified version, which
includes the complemented mining code. We call these machines Honest VM and
Malicious VM, respectively. Figure 3a shows the first evaluation phase. Both
VMs are connected to the Internet and synchronize their local blockchain with
the remaining network, visualized as External Client. After both daemons are

Send TX

Internet

Honest
Client

Malicious
Client

External
Client

(a) The initial phase of the attack. Both
VMs are connected to the Internet and
synchronize the FirstCoin blockchain.
The malicious VM sends Transaction
TX:A!B to the network.

Internet

Honest
Client

Malicious
Client

External
Client

Create TX

(b) We disconnect the Malicious VM from
the Internet, create the conflicting Trans-
action TX’: A!C, and start secretly min-
ing it into a block.

Internet

Honest
Client

Malicious
Client

External
Client

TX

(c) We continue secretly mining and wait
for the network to accept Transaction TX
as valid. After that, we continue mining
until our chain has a higher combined
proof-of-work than the benign chain.

Internet

Honest
Client

Malicious
Client

External
Client

(d) As soon as our chain has a higher proof-
of-work, we stop mining, disconnect the
Honest VM form the Internet, connect it
to our Malicious VM, and monitor which
chain will be accepted by the clients.

Fig. 3: Visualization of the evaluation setup and the attack steps.

9

synchronized, we create Transaction TX on the Malicious VM, transferring coins
from Address X to a second Address Y, running on the Honest VM. All addresses
used are under our control. The Address Y simulates the victim’s wallet (e.g. a
merchant’s or exchange’s). Then, we wait until TX is included in a valid block
by the honest network.

Subsequently we disconnect the Malicious VM from the Internet and create a
second Transaction TX’, transferring the same coins as TX to a di↵erent Address
Z under our control. This step is visualized in Figure 3b. TX’ spends the coins a
second time, hence the name double-spending attack. Next, the Malicious VM

forks the blockchain by creating Block B’ including TX’. Block B’ is designed as
a competitor to Block B, which includes TX. Thus the network will only accept
one of these blocks and dismiss the other one. Next, we use a standard scrypt

miner-software and start secretly mining the second chain.
The honest network will mine blocks based on Block B. We continue to secretly

mine on our chain and wait until Transaction TX has enough confirmations that
the victim accepts it as confirmed. The default client requires six confirmations
(Figure 3c). We continue secretly mining until our chain has a higher combined
proof-of-work than all other chains. The probability that this situation occurs
depends on the ratio of our hash rate to the networks’ hash rate [13]. As we
have a higher hash rate than the remaining network, it is guaranteed that this
situation occurs at some point.

As soon as our chain has a higher proof-of-work than the other chain, we
stop mining on the Malicious VM. We subsequently disconnect the Honest VM

form the Internet and connect it to our Malicious VM via a private local area
network to simulate publishing our chain to the network. If the client on the
Honest VM accepts our chain, it is very likely that the whole network would
accept it in a real attack, since it runs an unmodified FirstCoin daemon. After a
short time, both clients will agree on the one valid chain with the most combined
proof-of-work (Figure 3d). As our chain holds a higher combined proof-of-work
than the forked chain, our chain will be accepted.

6.2 Implementation

A key aspect for a successful attack was the reconstruction of the missing mining
functionality. In order to gain a working FirstCoin miner, we implemented the
missing RPC functions required for mining and used a default, publicly available
scrypt miner. As we assumed a close technical relation between FirstCoin and
Litecoin, we cloned both git repositories and started comparing key files of
FirstCoin with Litecoin using the git di↵ operation. This step was repeated for
every commit in a reasonable time-frame. The resulting di↵ files were sorted
based on their file size. Several files had the same size, so we chose a file (commit)
from the smallest ones and used it as the reference. From this commit we took
all source code necessary to implement the RPC methods getblocktemplate and
submitblock. getblocktemplate returns all information necessary to mine a block
on top of the current best chain. submitblock is called by the miner after it finds a
block to submit it to the FirstCoin daemon. The daemon subsequently validates

10

the block and sends it to the network or rejects it depending on the validation
result. After implementing these two methods and deactivating a check that
verified if the daemon is connected to the network, we were able to mine blocks
for the FirstCoin blockchain on an isolated machine.

Next, we implemented a double-spending proxy that manipulates the getblock-
template responses of the FirstCoin daemon to create a blockchain fork containing
our double-spending Transaction TX’. The proxy is visualized in Figure 4. It

FirstCoin
daemon

scrypt-
miner

Double-
spending

proxy

TX ID TX

Fig. 4: A double-spending proxy is put between the FirstCoin daemon and the
miner. It takes as input the transaction ID to double spend and the double-
spending Transaction TX’. Based on these inputs, it creates manipulated get-

blocktemplate information and sends them to the miner when requested.

takes as input the transaction ID of TX and the raw Transaction TX’8. Based on
the transaction ID the proxy searches for the block containing the corresponding
transaction. Then the proxy analyzes and stores all information for later use.
When the miner starts and asks for getblocktemplate information, the proxy loads
the previously stored information and creates a double-spending block based on
it. Compared to the original block the proxy changes the transactions only. It
removes all existing transactions and adds only TX’. Listing 1.1 shows the values
of an getblocktemplate response without any transactions.

{
” r e s u l t ” : {

” ve r s i on ” : 2 ,

” prev iousb lockhash ” : ”4

b9a4b3e875a522cdf2a2c0e70da520a5711c8c2c35aab0253e7758ca8b40d7e

” ,

” t r an s a c t i on s ” : [] ,

” co inbaseaux ” : {
” f l a g s ” : ”062 f503253482 f ”

} ,

” co inbaseva lue ” : 1 ,

” t a r g e t ” : ”0000064

e6400 ” ,

”mintime ” : 1521719865 ,

”mutable ” : [” time ” , ” t r an s a c t i on s ” , ” prevblock ”] ,

” noncerange ” : ”00000000 f f f f f f f f ” ,

” s i g o p l im i t ” : 20000 ,

” s i z e l i m i t ” : 1000000 ,

” curt ime ” : 1521720490 ,

” b i t s ” : ”1 e064e64 ” ,

” he ight ” : 490914

8 Instead of TX’ we could also give the proxy access to our wallet. This would allow
the proxy to create TX’ on its own. However, for this to work we would have to verify
if all necessary RPC calls are implemented and work correctly. Creating TX’ with a
second wallet that is taken o✏ine before creating TX appeared to be more elegant.

11

} ,

” e r r o r ” : nu l l ,

” id ” : 0

}

Listing 1.1: Response of a getblocktemplate request

After the miner submits a valid block, the proxy increments the stored block
height and calculates and stores the hash value of the block. For subsequent
getblocktemplate calls the proxy always returns the most current previous block
hash value and block height. Also the mintime and curtime fields are adapted to
the current requirements. Finally, all block-templates except the first one contain
an empty transaction list.

6.3 Results

After carrying out the previously described attack steps and connecting the
Honest VM and the Malicious VM, the two machines started to exchange their
blockchains. The honest network was able to find eight blocks instead of the
minimally required six blocks, while the Malicious VM managed to find 12 blocks.
After the Honest VM had received the ninth block, it began to reorganize its
chain as shown in Listing 1.2. The log has been shortened to improve readability.
REORGANIZE: Disconnect 8 b locks ; 8 eba95a63c9b5214 . . . 4 d381800d4682efb . .

REORGANIZE: Connect 9 b locks ; . . 3 d654d31a6855094 . . . 0 5 ca1eb30fa2847d

Committing 371 changed t r an s a c t i on s to co in database . . .

SetBestChain : new best=3d654d31a6855094 . . . 0 5 ca1eb30fa2847d he ight=472191

ProcessBlock : ACCEPTED

Listing 1.2: Firstcoin daemon log showing the reorganization of the blockchain

The remaining three blocks were not necessary for the double spending attack,
but provided some reserve. The log is shown in Listing 1.3, demonstrating the
feasibility of a double spending attack with average consumer hardware. Note that
the used CPU miner9 was only able to calculate about 230,000 hash operations per
second while a modern GPU like a GTX 1070 achieves 700,000 hash operations
per second. Hence, this attack could be carried out even more e�ciently when
using improved hardware.
r e c e i v ed block c13de8e5241787c6 . . . e98425613d148090

Committing 1 changed t r an s a c t i on s to co in database . . .

SetBestChain : new best=c13de8e5241787c6 . . . e98425613d148090 he ight=472192

,! log2 work =43.792578 tx=580648 date=02�26 19 : 44 : 40 p rog r e s s =0.999999

ProcessBlock : ACCEPTED

rec e i v ed block 1 f f6d3b5e0bf3511 . . . a8ccda5de81b2011

Committing 1 changed t r an s a c t i on s to co in database . . .

SetBestChain : new best=1f f6d3b5e0bf3511 . . . a8ccda5de81b2011 he ight=472193

,! log2 work =43.792579 tx=580649 date=02�26 19 : 44 : 55 p rog r e s s =0.999999

ProcessBlock : ACCEPTED

rec e i v ed block 27 d10e64dcf4e534 . . . c0835111ba84f8e0

Committing 1 changed t r an s a c t i on s to co in database . . .

SetBestChain : new best=27d10e64dcf4e534 . . . c0835111ba84f8e0 he ight=472194

,! log2 work =43.79258 tx=580650 date=02�26 19 : 47 : 55 p rog r e s s =1.000003

ProcessBlock : ACCEPTED

Listing 1.3: Firstcoin daemon log showing the received three reserve blocks.

9 We did not manage to get a modern graphic card.

12

6.4 Discussion

As shown in Section 6.3, the proposed attack on FirstCoin was successful. We
showed that 51%-attacks can be mounted even with consumer hardware. 51%-
attacks can be used to double-spend coins, disrupt the network or rewrite the
blockchains’ history till the last checkpoint. This attack was possible due to the
combination of the proof-of-work consensus algorithm and the low hash rate of the
network. We do not see a quick way to fix this issue and prevent the demonstrated
attack. However, the attack could be complicated by publishing the mining code
and providing miners an incentive to mine, e.g. by increasing the mining reward.
Adding a recent checkpoint in the daemon’s code would prevent rewriting the prior
blockchain. Alternatively, in case a centralized cryptocurrency is desired, shifting
to a proof-of-authority consensus algorithm, where only authorized accounts are
allowed to approve transactions and blocks, might lead to viable results.

As our attack was executed in an air-gapped network, no double-spending
transaction or forked chain was submitted to the public network and its blockchain.
Thus, the double-spending attack was not publicly visible, to prevent diminished
user trust or to harm the network. Still, considering the realistic evaluation
environment, we strongly believe that the attack would also be successful on the
real FirstCoin network.

7 Conclusions

In this paper we have presented a successful double-spending attack on FirstCoin,
which proves this cryptocurrency to be insecure. Our analyses have revealed
two basic weaknesses that undermine FirstCoin’s security. First, FirstCoin relies
on a proof-of-work based consensus mechanism but does not su�ciently reward
miners. This leads to a very low hash rate and enables attackers to easily achieve
more than 50 percent of the overall mining power. Second, FirstCoin intentionally
keeps parts of its source code undisclosed and hence implicitly relies on the
concept of security by obscurity. This concept is well known to be inappropriate
for making systems sustainably secure. FirstCoin is hence another prime example
demonstrating that security by obscurity is never a good choice.

Although this paper has focused on one particular cryptocurrency, the lessons
learned apply in principle to other currencies as well. The key finding is that
intentional deviations from approved security-related crypto-currency concepts
can cause serious vulnerabilities and undermine the overall security of a cryptocur-
rency. FirstCoin is one example for that. However, considering the impressive
number of available currencies—each implementing certain technical details
slightly di↵erent—it must not be assumed that FirstCoin is the only problematic
currency out there. Applying the findings on FirstCoin to other cryptocurrencies
is hence regarded as important future work.

During the past months, the market value of FirstCoin has dropped signifi-
cantly compared to other cryptocurrencies. It is unclear whether this is already
a result of FirstCoin’s weak security. In general, it can be expected that in the

13

long term the free market will automatically sort out cryptocurrencies that do
not meet relevant security requirements. Still, this does not eliminate the risk
of short-term financial damage when using cryptocurrencies with insu�cient
security. Following a security-centric approach when designing a cryptocurrency
is hence crucial for the success of a cryptocurrency as well as for end-users of
that currency.

8 Responsible Disclosure

We informed FirstCoin in February 2018 about the identified issue in order to
allow for mitigation. We would like to thank the FirstCoin team for their quick
response.

References

[1] BitcoinExchangeGuide.com, 2017 – the year cryptocurrency became more

than bitcoin, Dec. 23, 2017. [Online]. Available: https://bitcoinexch
angeguide.com/bitcoin-cryptocurrency-2017-review/ (visited on
12/23/2017).

[2] I. Damti, 2017 will be remembered as the year of bitcoin, Oct. 25, 2017.
[Online]. Available: https://www.forbes.com/sites/outofasia/2017/
10/25/bitcoins-ipo-moment-has-arrived/ (visited on 10/25/2017).

[3] Bonpay, Looking back: 2017 – the year of cryptocurrency, Dec. 29, 2017.
[Online]. Available: https://medium.com/@bonpay/looking-back-2017-
the-year-of-cryptocurrency-e9aa00414a2f (visited on 12/29/2017).

[4] A. Robertson, 2017 is the year cryptocurrency joined the global financial

system, Nov. 29, 2017. [Online]. Available: https://www.theverge.c
om/2017/11/29/16711304/bitcoin-price-10000-cryptocurrency-
regulation-finance (visited on 11/29/2017).

[5] CoinMarketCap, Cryptocurrency market capitalizations, Mar. 15, 2018. [On-
line]. Available: https://coinmarketcap.com/ (visited on 03/15/2018).

[6] A. Hern, Bitcoin and cryptocurrencies – what digital money really means

for our future, Jan. 29, 2018. [Online]. Available: https://www.thegu
ardian.com/technology/2018/jan/29/cryptocurrencies-bitcoin-
blockchain- what- they- really- mean- for- our- future (visited on
01/29/2018).

[7] bitcoinwiki, Comparison of cryptocurrencies. [Online]. Available: https:
//en.bitcoin.it/wiki/Comparison_of_cryptocurrencies (visited on
01/12/2018).

[8] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S.
Capkun, “On the Security and Performance of Proof of Work Blockchains,”
Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security - CCS’16, pp. 3–16, 2016, issn: 15437221. doi:
10.1145/2976749.2978341.

14

[9] M. Bartoletti and L. Pompianu, “An empirical analysis of smart contracts:
platforms, applications, and design patterns,” in Financial Cryptography

and Data Security, 2017, pp. 494–509. doi: 10.1007/978-3-319-70278-
0_31. arXiv: 1703.06322. [Online]. Available: http://arxiv.org/abs/
1703.06322.

[10] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,
“Ripple: Overview and outlook,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 9229, 2015, pp. 163–180, isbn: 9783319228457.
doi: 10.1007/978-3-319-22846-4_10. arXiv: arXiv:1506.07739v2.

[11] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten,
“Research Perspectives and Challenges for Bitcoin and Cryptocurrencies,”
IEEE Symposium on Security and Privacy, pp. 104–121, 2015, issn: 1081-
6011. doi: 10.1109/SP.2015.14.

[12] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” p. 9, 2008,
issn: 09254560. doi: 10.1007/s10838-008-9062-0. arXiv: 43543534534v
343453. [Online]. Available: https://bitcoin.org/bitcoin.pdf.

[13] M. Rosenfeld, “Analysis of Hashrate-Based Double Spending,” pp. 1–13,
2014. arXiv: 1402.2009.

[14] C. Pinzón and C. Rocha, “Double-spend Attack Models with Time Ad-
vantange for Bitcoin,” Electronic Notes in Theoretical Computer Science,
vol. 329, pp. 79–103, 2016, issn: 15710661. doi: 10.1016/j.entcs.2016.
12.006. [Online]. Available: http://dx.doi.org/10.1016/j.entcs.
2016.12.006.

[15] G. O. Karame, M. Roeschlin, A. Gervais, S. Capkun, E. Androulaki, and
S. Čapkun, “Misbehavior in Bitcoin: A Study of Double-Spending and
Accountability,” ACM Transactions on Information and System Security

(TISSEC), vol. 18, no. 1, p. 2, 2015, issn: 1094-9224. doi: 10.1145/2732196.
[16] M. Carlsten, H. Kalodner, S. M. Weinberg, and A. Narayanan, “On the

Instability of Bitcoin Without the Block Reward,” Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security

- CCS’16, pp. 154–167, 2016, issn: 15437221. doi: 10.1145/2976749.
2978408.

[17] C. Lee, Litecoin, 2011. [Online]. Available: https://litecoin.org/.
[18] bitcoinwiki, Block timestamp, Jun. 1, 2016. [Online]. Available: https:

//en.bitcoin.it/wiki/Block_timestamp (visited on 06/01/2016).
[19] ——, Protocol rules, Aug. 25, 2017. [Online]. Available: https://en.

bitcoin.it/wiki/Protocol_rules (visited on 08/25/2017).

