Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

Engaging Students in Open Source:
Establishing FOSS Development at a University

Matthias Miiller
Graz University of Technology
mueller @ist.tugraz.at

Christian Schindler
Graz University of Technology
cschindler @ist.tugraz.at

Wolfgang Slany
Graz University of Technology
wslany @ist.tugraz.at

Abstract

Open source is widely used for educational purposes
in higher education around the world. While many
educators use open source resources for teaching, there
seems to be few contributions to such projects of
students as part of their university courses. In this
work we present our experience on establishing open
source development from student contributors as part of
their university curriculum. Since 2010 more than 300
students from Graz University of Technology have been
involved in the presented Catrobat project and have
gained knowledge about agile software development
as well as several related domains, e.g., project
management, marketing, or graphical design. In this
paper we provide detailed insights into the project’s
organization and evaluate in a study how students feel
in this setting. As we conclude, bringing open source
to university courses is an effective practical approach
based on social learning and provides benefits for
students and researchers.

1. Introduction

The digital transformation has changed education
tremendously in the last years. E-learning and open
education are nowadays commonly used at schools and
universities, providing new possibilities and chances for
educators and learners [1]. Open source software, such
as Moodle or Wikimedia, are today accepted services
and used in classrooms all over the world. Since the
beginning of open source, universities, e.g., the MIT
or Berkeley, have played an important role in shaping
the idea of sharing code [1, 2]. Open source provides
various opportunities for universities and especially
its students [3]. Awareness of open source software,
especially learning management systems, e.g., Moodle,
and adapting it is on its rise in higher educational
institutions [4]. Although open source software use and
development seems to be mainstream at universities all
over the world, there seems not to be much literature

URL: https://hdl.handle.net/10125/60210
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

HYCSS

about how to foster its development in the curricula
and research of universities. There is a small number
of practical examples and considerations for doing so,
pointing out potential gains but also challenges [5, 6, 7].
Participating in open source software development is
beneficial for students since they gain access to expert
code, development tools, and are connected with a
community of skilled programmers [3, 6, 8, 9, 10].
Moreover, companies nowadays are widely using open
source solutions and gain benefits in hiring students
who already have experience using this software during
their studies [2, 11]. Thus, fostering contributions of
students to open source software at a university can
have a positive impact on their learning success and
later career [7]. Bringing open source to classes also
has benefits for educators, since it is a cost-effective,
scalable, and practical approach [10]. Nevertheless, it is
also challenging in several aspects, such as community
bonding or grading [6, 9, 11]. We present how open
source development can be introduced at universities
and how students can learn from it. We use the open
source project Catrobat as a case study in our work. This
project has its roots at Graz University of Technology
(Austria), and the main proponents of the project are
either employees or students of it. We introduce how
this project is organized and how it is used for university
courses. The results of a survey give insights into the
background of the participating students.

For our work we consider the following questions:

* RQI: How can open source projects be organized at
universities?

* RQ2: How to respond to challenges in engaging
students in open source during their studies?

* RQO3: How do students experience contributing to
open source software projects during their studies?

The aim of our work is to provide a positive example
how open source development can be brought to and
driven forward by universities. We want to encourage

Page 7721

more educational institutions to motivate students to be
engaged in open source software development and foster
an open and innovative mindset. We also highlight
challenges that need to be considered.

Several definitions of what is meant by open
source can be found in literature, especially connected
to the movements of Free (Libre) Software (FS),
founded by Richard Stallman [12], and Open Source
Software (OSS), described by Eric Raymond [13].
The studied Catrobat project is a classic free/libre
software project that uses the GNU Affero General
Public License version 3 and the Creative Commons
Attribution-ShareAlike 4.0 International Public License.
Since most of our findings apply to both FS and OSS
projects, and since there is a lot of overlap, we use
the term FOSS (Free and Open Source Software) in the
following, with the understanding that the findings will
also apply to some situations that do not strictly involve
free/libre projects.

2. Used methodology and structure

Since our work represents a personal experience,
we use qualitative methods to describe a case study,
supported by the quantitative results of a survey.
The focus of our work is “how” and “why” active
involvement in FOSS projects can be beneficial for
universities. Thus, the methodology of case studies is
well suited to answer our research questions [14, 15].
We use a single case study for our work to analyze the
benefits and challenges described in existing literature,
and to present the unique project-setting [14]. To
create a more holistic understanding of the presented
case study and underpin the results, we also discuss
quantitative data from two surveys [15]. This mixed
method of surveys within a case study helps us to enrich
the evidence and gives further insights into the proposed
research questions [14].

First, we present the case study of Catrobat: how
it was established and how it is organized as an
international FOSS organization. To answer RQ1 in
detail, we describe the project’s setting that has been
established in 2010 and been adapted since then to the
needs of contributing students and educators. On the
one hand, certain of these settings are provided from
the university and/or externally from the organization,
on the other hand there are several aspects that resulted
from the nature of the community.

Second, we describe the insights from an educator’s
point of view about bringing open source development
to universities. To answer RQ2, we point out in detail
how students can participate, how certain challenges
are handled, e.g., grading or community bonding, and

how research projects in the field of open source are
conducted.

Third, we answer RQ3. In spring 2018 we
conducted two anonymous online surveys for active
and former students that have contributed to Catrobat
during their studies at Graz University of Technology.
58 of 103 current students we asked have answered
the survey (56% response rate) and provided detailed
insights into their background, their motivation, and
their contribution to the project. We also asked 98
former students to take part in a smaller survey, giving
insights into how they see their past contribution to the
project and whether it helped their career. 31 of these
alumni provided feedback, resulting in a response rate
of 32%. Although we are aware that these response
rates may lead to a non-response bias, we can identify
certain arguments that can be used to answer the
presented research questions. We provide a holistic
perspective on this unique setting and how it has been
driven forward in an innovative way, paying respect
to the students, educators, stakeholders, and also the
software’s users. Last, we discuss the obtained results
and their implications, leaving room for further research.

3. The Catrobat project

In 2010 project founder Wolfgang Slany, professor at
the Institute of Software Technology at Graz University
of Technology, came up with the idea of a mobile
programming framework for smartphones similar to
the well known Scratch framework developed at the
MIT Media Lab. Since no mobile solution existed,
he kicked off the Catrobat project, aiming to develop
an easy-to-use mobile app allowing to create programs
with simple visual bricks. The project’s vision is to
provide tools that foster computational thinking skills
among teenagers, independently of traditional PCs and
in an environment that they are nowadays used to:
mobile devices. Mobile devices have become part of
our everyday life, are widely used by teenagers all over
the world, and provide a cheap alternative for computer
science classes that often still rely on traditional
PCs. Catrobat aims at enabling young smartphone
users to express themselves creatively throughout their
digital mobile life instead of remaining mere consumers
of the underlying technology. Starting with a few
interested students, first ideas were implemented, and
over the years it gradually became an international
project. Several hundred people from all over the world
already contributed to the project and delivered code,
translations, educational resources, or other support
under FOSS licenses, helping to realize the project’s
vision. In 2014 the first version of Catrobat’s free coding

Page 7722

app Pocket Code! was released on Google Play [16],
attracting more than 500,000 users as of June 2018. An
additional drawing app, Pocket Paint, got released at the
same time, allowing users to create and design their own
graphics for their games and apps. Several extensions
for various hardware (e.g., Arduino boards or Lego
Mindstorms robots) were added to Pocket Code over
the time and further features implemented to provide
more possibilities relevant for the young target group.
Whereas this Android app is already available to the
public, a version for iOS is currently in an alpha testing
phase, and a beta version of an HTMLS player for
desktop and mobile browsers is available on Catrobat’s
sharing website?. On this sharing site, users can publish
their projects created with Pocket Code. Besides the
development of the described services, further value has
been added by contributors through creating different
educational resources, maintaining the community of
users, or translating the services in more than 50
languages. Although the project nowadays is based on
an international community of contributors, the majority
of its developers is connected to Graz University of
Technology. The main reason for this is that students
are actively recruited, motivated, and supported to
contribute to the project during their studies.

4. Project structure

As mentioned, the project got kicked off by a
professor and a couple of interested computer science
students working on the main Android app (called
Catroid in the project’s beginning) and its sharing
site. Over the years, a community of international
contributors was established to bring the project
forward. Although many contributors are connected to
the university, “Catrobat” itself exists independently as
a FOSS project. This ensures the independence of the
project and also allows external contributors to easily
contribute to the project. These external contributors
led to a distributed network of project members who
are used to work together from all over the world
as well as with new developers, which supports
teaching global software engineering in an educational
context [10]. The closeness of the contributing
community to the university is beneficial, since it makes
it easier for students to get into it, something that has
been identified as a potential challenge for bringing
FOSS development to universities [9]. Open source
projects and communities usually don’t rely on a strict
hierarchical structure, yet contributors are organized by
their roles and influence within the community [3, 17].

Uhttps://catrob.at/pc
Zhttps://share.catrob.at

This is also the case for Catrobat. Contributors are
characterized by their role and team that focuses on a
certain aspect of the project. Although there is no strict
hierarchical structure, open source projects usually have
a smaller, shifting leadership group that, while not being
able to give strict instructions like in companies, instead
can give recommendations and an overall direction to
the volunteer contributors [2, 17, 18]. At Catrobat,
the overall direction of the project is provided by a
committee that is also motivating the community to
contribute.

4.1. Project roles and teams

Open source communities are composed of a set
of individuals, each having a unique background and
personality. Not only developers are part of these
communities, but also other types of contributors
and users, who collaboratively drive such projects
forward [17]. Since the source code is freely available
anyone can contribute to the code base [13, 3, 18].
Each contributor can take over one or several roles
according to personal interests [17]. These roles are not
assigned and can change, depending on the contributor’s
commitment to the project [17, 19]. Thus, the structure
of the organization of a FOSS project varies according
to the project’s nature and its members [3]. Also
governing these communities of contributors usually
depends on the project’s needs and its structure.
Although the structures in general tend to be flat, some
leadership (providing a vision, giving recommendations,
or keeping the community together) based on trust
from the community is needed [2]. This trust is
essential for contributors and the overall project, since
mistrust may lead the entire project to collapse [20].
The general development and management approach
of Catrobat is based on agile principles, e.g., eXtreme
Programming [21]. Following these principles also
fosters teamwork and guides the community towards
a shared goal. It is important to mention that
management as well as other responsibilities are usually
shared among contributors, reducing complexity and
dependencies on particular persons [18]. Although
several common roles and structures of open source
projects have been identified [3, 19], there are
differences between the individual projects. In the
Catrobat project, we differentiate between the following
roles:

» Users: There are various types of users that are part
of the community. However, they are mostly not
contributing, or just providing value to other users.
Thus, we will not discuss their role in this work.

Page 7723

» Peripheral Contributor: Contributors that do not
interact with the community and contribute in a
narrow or irregular way (e.g., one bug fix commit or a
few translations).

* Active Contributor: Contributors that are regularly
contributing (e.g., code or resources) to the project and
are an active part of the community.

o Senior Contributor: Experienced contributors that
advise newer contributors, take the responsibility to
review pull-requests, and accept code.

* Coordinator: Coordinating a certain part of the
project (team) and guiding the involved contributors.
Communication and coordination are the main tasks.

* Product Owners: Committee of highly involved
contributors (including the project’s founder)
providing the overall vision and direction of the
project.

Students that contribute are treated independently
of their status and are therefore not treated differently
than other members of the project’s community. This
aligns with other open source communities, where the
role is independent of any attributes (e.g., age) and
is earned through contribution [17]. Contributors take
one or more of these roles during their contribution,
depending on their own preferences and situation within
the project.

Besides roles, contributors can also be characterized
by their team within the project. To keep such projects
manageable and successful it is needed to divide the
contributors in teams that can work on well defined tasks
and almost independently from other teams [2]. As
outlined, the Catrobat project with its many services,
features, and other aspects such as education or design,
provides many different possibilities for contributions.
Contributors typically work in small teams that have a
fixed scope and that can work more or less on their own.
As illustrated in Figure 1, these teams have a special
focus. This enables contributors, including students, to
work in a domain they are personally interested in. As
mentioned, these teams are guided by a “Coordinator”,
an experienced and highly engaged contributor. From an
educational point of view, this structure gives students
the choice to work on a field they like and to develop
various skills depending on their interests.

4.2. Communication

A major aspect for open source communities
is internal communication. Failing to interact with
other members can upset contributors and slow down

the whole project by hindering collaboration [20].
Providing communication, documentation, and
guidelines for developers and also users is important
for FOSS projects right from their start [18]. In the
context of Catrobat, services and processes needed
to be introduced to allow communication between
distributed team-members and also ensure the flow of
project relevant information [22]. Catrobat provides a
variety of services to tackle these potential issues. As
an example, the project itself offers public instances of
Jira and Confluence to track the development process
and document the overall project structure. While the
project in early times used IRC (Internet Relay Chat)
for communication [22], Slack channels are now the
main place of communication between contributors.
These tools are commonly used in industry, fostering
the technical skills of the contributing students [9].
Local students are encouraged to use these tools but
also meet with other contributing students in person.
Although working remotely with external contributors
is common, there are also regular meetings between
students and the university staff. These meetings aim to
enhance communication and also to identify potential
problems early. Furthermore, students may use a
dedicated room at the institute to meet and work on the
project. This room, which has space for approximately
20 students, is the primary work space for more than
a quarter (28%) of the currently participating students
(over 100).

4.3. Infrastructure and setting

For a FOSS project, various infrastructure has to
be maintained to keep the project running, e.g., hard-
and software for development as well as internal and
end user related services. Projects have to provide
various tools, e.g., for communication, information
management, or version control [18]. We give an
overview over the infrastructure maintained for the
Catrobat project and briefly describe it. Some of this
infrastructure is provided by the university (especially
testing infrastructure), others (e.g., general services and
software) by the project itself. We distinguish between
hardware, software, and provided services to keep the
project running.

Hardware

Dedicated Servers: We are running 12 dedicated
machines ranging from desktop-class (32GB Ram,
quad-core) to mid-range server-class (256GB Ram, 14
cores/28 threads) used mainly to host virtual machines,
except an Apple XCode server and Jenkins instances, to
flexibly provide services.

Page 7724

Catrobat
I
[I I 1
App Development Web Development Supportive Infrastructure
i0S Android Sharing
! ! — - Usability Servers
Development Development Platform
Coding App .
™ "Pocket Code" 1 HTMLS - Translation CI/CD
Drawing App « .
["Pocket Paint" - Blockly” — Marketing
Hardware Scratch to Catrobat .
1 . — - Design
Extensions Converter
— Robotics — Education

Figure 1. Team structure of Catrobat as of June 2018

Mobile Devices: We provide over 120 mobile devices
(phones and tablets) for the testing and development of
the project’s iOS and Android applications.

Equipment: A dedicated project room at the Institute
of Software Technology, open 24/7 for the students,
is equipped with 20 LCD screens for the developers
and testers, 4 white boards, a color laser printer, and
a 50 inch flat screen TV for meetings, presentations,
and Jenkins monitoring. Two mobile beamers for
presentations and meetings are also available, as well
as a coffee machine and air conditioning (both not
standard for student projects).

Miscellaneous: This category consists of single-board
computers, such as Raspberry Pi and Arduino,
electronic and robotic assembly Kkits, tinkering material,
micro/little bit kits, various robots, drones, as well as
robot arms for hardware testing on the CI server.

Software

Jira: Atlassian Jira for issue tracking and management
of the developers’ backlog.

Confluence: Atlassian Confluence is used as a
knowledge base for every sub team in the project.
Slack: The daily short term communication is facilitated
by various slack channels for every sub team in the
project. Most channels are open and can be subscribed
if needed.

GitHub: The project’s source code is hosted on GitHub.
Crowdin: All project’s translations are handled with
Crowdin, an online localization management platform.
Yourls: A short link service to resolve short URLs.

Services for internal use

Jenkins: Jenkins is used as a continuous integration
platform. The complete tests are run on a regular basis
and when GitHub pull requests are issued.

Backups: Additionally to the individual local backups
of the different systems, a centralized backup solution
with redundant storage is maintained.

LDAP: An LDAP instance is used to log-on to the
different services (JIRA, Confluence, Share, Jenkins,...).
Workspace maintenance: The project’s open workspace
is equipped for convenience reasons with a coffee
machine, a fridge, air condition, and office material.
Coffee and snacks are refilled regularly.

Services for end users

Catrobat Share: The central point of service
for the end user is the project’s sharing website
https://share.catrob.at/. On this site users can download
projects and, if registered, they are able to upload
projects.

APK generator: To foster sharing, projects can be
downloaded as Android Application Packages (APKs).
They are install- and executable on any compatible
Android device without the need of the installed Pocket
Code app.

Recommender System: The sharing site is backed by a
recommender system to suggests similar projects.
Converter: A Scratch-to-Catrobat converter allows to
run Scratch programs with Pocket Code.

Page 7725

5. Students’ involvement

Students, as other contributors, participate at
Catrobat on a volunteer basis only, and -clearly
understand the rights and limitations entailed by the
project’s FOSS nature. There is no compulsion for
students to contribute, as there are ample alternatives for
them to choose from among many other projects and it is
not required for their studies. Nevertheless, we provide
an attractive environment to get engaged in Catrobat
as part of their curriculum if they want to. Various
possibilities are available for students to participate in
Catrobat, depending on their degree program, the field
they are interested in, and current research projects
connected to the project.

5.1. Organization at the university level

Besides the described general structure of Catrobat,
there is also a university related framework behind the
project. Wolfgang Slany and his team of currently three
assistants manage the students and take care of them.
This team has several research backgrounds, covering
fields such as software development, economics,
usability, or sociology. This also allows to supervise the
students while they are working in different teams of the
project, focusing on a variety of domains. Cooperations
with other academic institutes and companies provide
access to further expertise in specific fields. In the
setting of open source projects, instructors act more as
a guide, fostering the students’ understanding built from
experience [6]. Thus, the involved staff offers regular
consulting hours, joins the local meetings of students,
and actively participates on the project’s communication
channels. Furthermore, individual meetings with the
currently over 100 actively involved students happen on
aregular basis, also helping to ensure a positive learning
outcome for them. This approach is time-consuming but
apparently beneficial, since students get used to work
individually in teams, learn from each other, but are still
supervised in a way that ensures a relevant outcome.

5.2. Participation model

The project is situated at Graz University of
Technology, which currently offers four degree
programs in the domain of computer science. Although
the scope of these studies varies (“Computer Science”,
“Software Development and Business Management”,
“Information and Computer Engineering”, and
“Teaching Subject Computer Science”), the presented
structure enables students of all these fields to contribute
to the project within their curriculum. Professor Slany
and his team of assistants are offering several practical

courses (e.g., “Mobile Applications” and “‘Software
Technology”) that are directly part of these curricula.
Students have the choice whether they want to work on
a traditional task offered in these courses, or whether
they want to work on tasks that are directly related to the
“Catrobat” project, but still following the scope of the
course. The majority of students still take the “classical”
courses, with no relation to Catrobat. However, several
dozen students every year (e.g., over 40 in the first
five months of 2018) choose this participation model.
Although the majority of students just stays with the
project for a short period of time (usually less than
a year), there are students that get committed to the
project for a longer period. As shown in Figure 2, by
spring 2018 there are students in the project who started
6 years ago with their first contribution and are still an
active contributor to it. The introduced setting allows
students to stay longer than just a single course, getting
committed to the project and gain deep knowledge in
different fields related to their studies. But there are also
students and even university alumni who voluntarily
stay longer with the project for various reasons and do
not earn any further credits.

2016

2015

19.0% [86% 2014
2013
2012

2018

2017

Figure 2. Year active students started contributing
to Catrobat as of June 2018

Besides the course-related contribution, students
also have the opportunity to write their Bachelor’s,
Master’s, or PhD thesis on a topic related to their
contribution to Catrobat. This enables students to
stay with the project for a longer time than just a
certain course, as described above. The scope of the
project provides many domains, e.g., software quality,
usability, computer education, or project management,
from which students can choose more or less freely for
their thesis, according to their interests, the relevance
to their studies, the level required by the thesis, and
the requirements of the project. This allows them
to write about a topic they are personally interested
in. Furthermore, their practical work gets directly
applied to a worthwhile, relevant, and publicly available

Page 7726

project, impacting a real user-base that provides fast
feedback and data for their work. Till today, over 190
bachelor’s projects, more than 30 master’s theses, and
two PhD theses are related to Catrobat. In addition to
that, university staff uses the project for their research
and in courses, e.g., to teach coding concepts to
beginners. Several grants and fundings also allowed
to employ student contributors as university staff either
part time during their studies or full time after they have
graduated. As an example, these employees developed
specific project relevant features, e.g. the Right-To-Left
language version of Pocket Code, but also support
students in their work. Employing students for FOSS
development also worked for other universities, such as
at the Oregon State University Open Source Lab [7].

This approach allows students and researchers to
focus on open source by making it their primary work.
By doing so, opportunity costs are minimized, meaning
that there is no disadvantage for the participating
contributors (e.g., students could get slowed down in
their studies if they work on open source unrelated
to their curriculum, or an academic’s output could be
affected negatively if he works on open source besides
his or her main research topic) [2]. This approach
also ensures the sustainable development of the project,
since students’ contribution is not limited to a certain
course. Time constraints can be challenging since they
delay the contribution process and make the engagement
of students in FOSS projects difficult [9]. Especially
the writing of a thesis or doing project work is not
necessarily restricted to the official semesters and can
also happen during summer or winter breaks. This gives
the students further freedoms and independence, as long
as they are discussed with the university’s assistants in
advance.

As outlined by previous research [6, 11], grading
might become a problem in such settings. In general,
theses and project works are graded individually, also
independently of this approach. Thus, there is no
additional effort needed compared to the traditional
setting. Students taking the described courses are
graded in the same individual way. All students have
an initial meeting with the professor and one of the
assistants, setting the conditions for their work, also
outlining the expected outcome in regard of the learning
success. This expected outcome and work is defined
with respect to the course they take, the credits they
will earn for it, their field of study, as well as their
personal interest in a topic. The expected contribution
for the defined outcome is hard to predict since the
therefore needed work is a group effort and varies by
a multitude of factors, e.g. previous experience of the
student. Thus, all contributions rewarded by university

credits are time boxed by the amount of time expected to
be spent depending on the course credits for the student.
This is similar to the way most regular employees are
rewarded for their work, and allows students to plan
their contribution in a tractable way, as well as it ensures
that they do not get overloaded with work, e.g., by a
too large defined expected outcome. It also forces us
to split up the work in small parts, which works well
with agile software development methods, and fosters
cooperation between contributors. Still, although the
contribution is time boxed, the outcome itself, in terms
of quality and scope, must relate to the requirements of
the taken course. After having their work completed, the
students’ work gets evaluated by the staff. Therefore,
also the feedback of the community is used, since all
pull requests to Catrobat get reviewed by experienced
contributors before they get merged. Pure peer-grading
would not be sufficient, since contributors might not be
critical enough [6] or too critical. All progress of the
student is tracked through the project’s coding tools (i.e.,
GitHub, Jira, and Confluence), helping the staff to get an
overview of the completed work. Although the effort of
grading is still higher compared to traditional grading, a
good project’s infrastructure setting and communication
eases the process for educators. Also students benefit
from this individual feedback since their strengths and
weaknesses can be discussed in a final meeting, showing
up potential room for improvement.

6. Motivation for students to contribute

Although this open source project was initiated at
a university, and students may earn credits for their
contribution, choosing to participate happens on a
voluntary basis. This voluntary basis is not only legally
required because of the special relationship between
students and their university, as they are basically
a kind of “customer” of their university, but also
psychologically essential for the success of the project,
since it is directly connected to the motivation of the
contributors [3]. The students can take this either as
elective courses, project work, or as part of their thesis.
Thus, the role of motivation also needs to be considered
to attract motivated students and run such a project in a
sustainable and successful way. Not just for contributors
in general there is a diverse number of motivations
to contribute, but also for students in particular [11].
Research by Ellis, Morelli and Hislop [6] already
pointed out several motivational aspects for students
(e.g., working on real world projects) that we want to
analyze with our survey.

Page 7727

6.1. Motivation to contribute to open source

Previous research pointed out different reasons why
people contribute to open source projects (e.g., Hars &
Ou [23], Ye & Kishida [3], or van Krogh et al. [24]).
Contributing to open source comes along with a variety
of benefits and costs for the contributors [2]. A main
aspect is that contributors aim to receive a net-benefit,
meaning that the benefits of contribution, or innovation,
exceed their costs [2, 25]. In this respect, the net benefit
is defined individually for each contributor. Failing to
recognize the individual goals of community members
is a potential source of failure for such projects and can
hinder their success [20]. A variety of motivators, such
as reputation, one’s own use or career, got identified
in the literature and got pointed out as overall drivers
that get people into open source [24]. Motivation of
contributors is a core research topic in open source
and has attracted a large number of researchers [26].
Nevertheless, many aspects and questions related to the
motivation of volunteer contributors in open source are
still not answered properly [24].

It is important to note that there are also paid
contributors to open source projects, whose motivation
might differ. Having long-term contributors, e.g.,
through hiring them, allows sustainability, since
swapping programmers or introducing new ones slows
down the development [18]. Whole businesses
emerged around open source and enable contributors
to profit from their contributions [27]. Furthermore,
corporations started actively to involve themselves in the
development of open source software, since it provides
manifold benefits [18, 27]. Also Catrobat benefits
from university research projects in that developers can
get employed for a certain timespan. Also grants for
contributing to open source are available for students.
As an example, Catrobat has been selected as a
mentoring organization for Google Summer of Code for
several years now, allowing the project to fund students
from all over the world to work on our project during
their summer break.

6.2. Surveying active and former project’s
students on motivational aspects

Following previous literature, we examined the
motivation of currently active students of the Catroabt
project. As described, we asked 103 active students and
received feedback from 58 of them (56% response rate)
in an anonymous online survey. The results align with
previous studies that outline the importance of future
rewards for the motivation of contributors [23]. As
illustrated in Figure 3, the majority of students see the
credits they earn for participating (72%), the learning

of new skills (69%), and the experience they gain
(64%) as motivators for their participation. At the same
time, the project’s vision and idea also got identified
as an important motivating aspect for almost all of the
students (78%). This matches research by Hars &
Ou [23], who found that students are strongly motivated
by intrinsic factors (self-determination and altruism),
but also strengthening their human capital. One factor
that surprisingly has not been rated as high as we
expected by the surveyed students is the potential impact
on their future career. Only 36% of the participating
students claimed that they see it as a reference for their
career after graduation. This also aligns with the results
that came up for the questions how relevant they would
rate their contribution to the project for their career.
Students showed very mixed feelings from “not at all” to
“very relevant” about this question, without allowing us
to get a more in depth answer to this question. This is in
contrast to the conducted survey of the project’s alumni
students who already graduated from university and
stopped contributing to the project. We received answers
from 31 out of 98 former students asked (response rate
of 32%). 71% of these alumni, all of which are working
in a related field (e.g., software development or project
management), claimed that contributing to this project
helped their career, compared to just 36% of currently
involved students who subjectively see a benefit for
their future career related to their contribution. One
possible reason for this could be that students still at
the university may not be able to clearly foresee the
benefits for their later career, since they do not yet have
had the experience of working in industry. Alumni
students further had the opportunity to anonymously
provide an optional comment within the survey. 13
of the alumni left a comment, of which 8 positively
highlighted the impact of working on this project to
their career. Especially the usage of professional tools
such as Jira or Confluence, the application of agile
methods, and working in interdisciplinary teams got
pointed out in these comments. Although there is a
strong probability of a non-response bias, since there
is the chance that only students who have positive
feelings about the project participated in the survey,
we nevertheless can infer that participating in open
source projects during university studies can have a
positive impact on the students’ later careers. This
is also underpinned by the personal informal feedback
we received from local ICT companies that employ
former students. They state that the onboarding of these
employees is sped up due to their previous knowledge
in working in development teams, applying common
software development methods, and using professional
software tools (e.g., git or Atlassian).

Page 7728

I like what the project is doing

I earn credits

I want to improve my knowledge

I want to gain experience in IT projects
I enjoy being part of a community

I see it as a reference for future jobs

1 like contributing to open source

I can realize own ideas I have

I like working at a non-profit project
Friends or colleagues participate 17%

I want to participate in an international project 16%

78%

1
20%

1 1 1]
40% 60% 80% 100%

Figure 3. Catrobat students’ motivators to join the project

Another factor we surveyed has been the
contribution of students to other open source projects.
36% of the surveyed students of Catrobat have already
been contributing to other open source projects before
their involvement in Catrobat. This aligns with the
results of an additional survey done with 104 students
of a coding course at the university. A similar number
of these students (35%) has already been contributing to
open source projects. Also 42% of the surveyed alumni
stated that they did so. We can see that students, but
also alumni, have an active interest in open source. By
establishing the possibility of working on open source
projects during their studies, students are supported in
their interest in such organizations and furthermore gain
important experience in practical software engineering.

7. Discussion

This paper describes a single case that has already
been running for several years and was developed from
the needs of the involved students and educators. We
are aware that the results on the motivation of students
and long-term effects on alumni can only be snapshots
based on the data over a short period of time. Further
insights into the long-term effects are expected from
a continuous evaluation of new and leaving students
of the project. The described setting shall help other
institutions to establish similar projects. More published
cases can help to further analyze and evaluate the
development of open source software as part of students’
university work. Our results suggest that this approach
can be repeated at other universities and can help to
prepare computer science students for their later career.

Nevertheless, we want to encourage more researchers
at universities to report their personal experiences of
developing open source software in classes in order to
create a larger basis for research in this field.

8. Conclusion

The presented approach of bringing open source
development by students to universities comes with
many benefits but also challenges, especially for the
involved educators. The students’ personal perception
of this approach is very positive and considered as
beneficial by alumni. There are strong indicators
that this practical setting has a positive effect on
the participating students’ later career, since they get
exposed to real-world problems, have to work in teams,
and get to know common professional tools in the field.
Furthermore, students in general show a strong interest
in open source software. By enabling them to bring
this interest to courses, they can gain knowledge and
advance their studies at the same time. Also researchers
can benefit from the described setting, as it fosters the
general research in this domain and gives direct access
to real-world problems for potential research projects.
Manifold possibilities for research are created, as the
case of Catrobat and Graz University of Technology
shows. Especially from an organizational point of view
(e.g., providing the infrastructure, guiding students, and
keeping track of their involvement) additional work and
resources have to be invested compared to traditional
course settings. But the personal experience of all
involved entities shows that the gained benefits, at least
in the presented case, outweigh the effort.

Page 7729

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9

—

(10]

(1]

[12]

(13]

(14]

(15]

[16]

References

S. E. Lakhan and K. Jhunjhunwala, “Open source
software in education,” Educause Quarterly, vol. 31,
no. 2, p. 32, 2008.

J. Lerner and J. Tirole, “Some simple economics of open
source,” The Journal of Industrial Economics, vol. 50,
no. 2, pp. 197-234, 2002.

Y. Ye and K. Kishida, “Toward an understanding of
the motivation open source software developers,” in
Proceedings of the 25th International Conference on
Software Engineering, ICSE 03, pp. 419-429, 2003.

S. W. van Rooij, “Higher education sub-cultures and
open source adoption,” Computers & Education, vol. 57,
no. 1, pp. 1171-1183, 2011.

J. D. N. Dionisio, C. L. Dickson, S. E. August, P. M.
Dorin, and R. Toal, “An open source software culture in
the undergraduate computer science curriculum,” ACM
SIGCSE Bulletin, vol. 39, no. 2, pp. 70-74, 2007.

H. J. Ellis, R. A. Morelli, T. R. De Lanerolle, and G. W.
Hislop, “Holistic software engineering education based
on a humanitarian open source project,” in Software
Engineering Education & Training, 2007. CSEET’07.
20th Conference on, pp. 327-335, IEEE, 2007.

A. Casson and L. Hawthorn, “Introducing the oregon
state university open source lab,” Open Source Business
Resource, 08/2011 2011.

J. Seely Brown and R. Adler, “Open education, the long
tail, and learning 2.0,” Educause review, vol. 43, no. 1,
pp. 16-20, 2008.

G. Pinto, F. Figueira Filho, 1. Steinmacher, and M. A.
Gerosa, “Training software engineers using open-source
software: the professors’ perspective,” in The 30th IEEE
Conference on Software Engineering Education and
Training, pp. 1-5, 2017.

S. Beecham, T. Clear, D. Damian, J. Barr, J. Noll,
and W. Scacchi, “How best to teach global software
engineering? educators are divided,” IEEE Software,
vol. 34, no. 1, pp. 16-19, 2017.

G. DeKoenigsberg, “How successful open source
projects work, and how and why to introduce students
to the open source world,” in Software Engineering
Education and Training, 2008. CSEET’0S. IEEE 2Ist
Conference on, pp. 274-276, IEEE, 2008.

R. M. Stallman, Free Software, Free Society: Selected
Essays of Richard M. Stallman. Gnu Press, 2002.

E. Raymond, “The cathedral and the bazaar,”
Knowledge, Technology & Policy, vol. 12, no. 3,
pp. 23-49, 1999.

R. Yin, Case Study Research: Design and Methods.
Applied Social Research Methods, SAGE Publications,
20009.

P. Baxter and S. Jack, “Qualitative case study
methodology: Study design and implementation for
novice researchers,” The qualitative report, vol. 13, no. 4,
pp. 544-559, 2008.

W. Slany, “Pocket code: a scratch-like integrated
development environment for your phone,” in
Proceedings of the companion publication of the 2014
ACM SIGPLAN conference on Systems, Programming,
and Applications: Software for Humanity, pp. 35-36,
ACM, 2014.

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida,
and Y. Ye, “Evolution patterns of open-source software
systems and communities,” in Proceedings of the

international workshop on Principles of software
evolution, pp. 76-85, ACM, 2002.

K. Fogel, Producing open source software: How to run a
successful free software project. O’Reilly Media, Inc.”,

M. M. Torres, S. Toral, M. Perales, and F. Barrero,
“Analysis of the core team role in open source
communities,” in Complex, Intelligent and Software
Intensive Systems (CISIS), 2011 International
Conference on, pp. 109-114, IEEE, 2011.

D. Ehls, “Open source project collapse—sources and
patterns of failure,” in Proceedings of the 50th Hawaii
International Conference on System Sciences, 2017.

A. Harzl, “Can foss projects benefit from integrating
kanban: a case study,” Journal of Internet Services and
Applications, vol. 8, p. 7, Jun 2017.

S. Fellhofer, A. Harzl, and W. Slany, “Scaling
and internationalizing an agile foss project: Lessons
learned,” in IFIP International Conference on Open
Source Systems, pp. 13-22, Springer, 2015.

A. Hars and S. Ou, “Working for free? - motivations
of participating in open source projects,” in Proceedings
of the 34th Annual Hawaii International Conference
on System Sciences (HICSS-34)-Volume 7 - Volume 7,
HICSS °01, 2001.

G. Von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin,
“Carrots and rainbows: Motivation and social practice
in open source software development,” MIS quarterly,
pp. 649-676, 2012.

E. Von Hippel, “Innovation by user communities:
Learning from open-source software,” MIT Sloan
management review, vol. 42, no. 4, pp. 82-86, 2001.

G. Von Krogh and E. Von Hippel, “The promise of
research on open source software,” Management science,
vol. 52, no. 7, pp. 975-983, 2006.

H. Chesbrough, Open business models: How to thrive in
the new innovation landscape. Harvard Business Press,
2006.

Page 7730

