

Automated Authentication Credential Derivation for the Secured Configuration of IoT Devices

<u>Thomas Ulz, Graz UT</u> (<u>thomas.ulz@tugraz.at</u>) Thomas Pieber, Graz UT Christian Steger, Graz UT Andrea Höller, Infineon Austria Sarah Haas, Infineon Austria Rainer Matischek, Infineon Austria

Automated Credential Derivation for Configuring IoT Devices

SIES'18

|| T | Outline

2

I. Introduction

- I. Motivation
- 2. System Model
- 2. Credential Derivation
 - I. Process & Protocol
 - 2. Hardware Architecture
- 3. Evaluation
 - I. Threat Analysis & Performance
- 4. Conclusion

"The S in IoT stands for Security."

(unknown / reddit)

UTL

Website attacks show vulnerability of having default passwords

Home devices linked to the web, in 'Internet of Things', open sites to hacking attacks

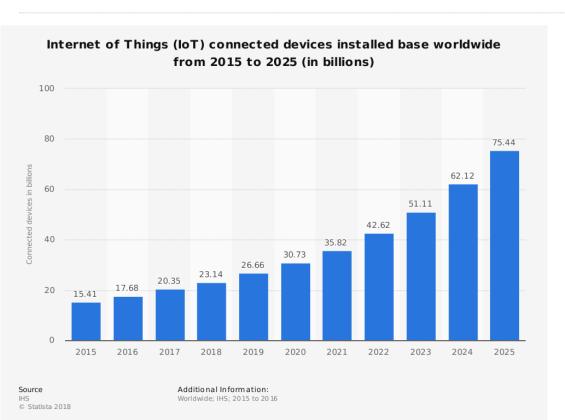
Ø Mon, Oct 24, 2016, 07:32 Updated: Mon, Oct 24, 2016, 08:17

Is 'admin' password leaving your IoT device vulnerable to cyberattacks?

Internet-connected devices in your home or office will be vulnerable to botnets and other attacks, if you don't change the original login credentials.

By Danny Palmer | April 26, 2017 -- 10:10 GMT (11:10 BST) | Topic: Security

Passwords used in the biggest ever cyberattack revealed - and '12345' and 'password' were top


- DDoS attack uses networks of computers that hackers bring under control
- It was revealed that Mirai botnet was one of two involved in recent attacks
- It used 61 unique username-password combinations to attempt access
- These were largely default credentials found among connected devices

By CHEYENNE MACDONALD and ABIGAIL BEALL FOR DAILYMAIL.COM PUBLISHED: 19:20 BST, 6 October 2016 | UPDATED: 08:34 BST, 7 October 2016

15% of All IoT Device Owners Don't Change Default Passwords

By Catalin Cimpanu

Five username-password combos is all you need

🛗 June 19, 2017 🕜 10:35 AM 🛛 🔲 0

After performing several mass Internet scans, according to Positive Technology experts, just five username and password combos will be enough to get your hands on a large number of IoT devices, may they be DVRs, IP cameras, routers, smart washing machines, or anything else.

support/support		
admin/admin		
admin/0000		
iser/user		
oot/12345		

666666 / 666666 888888 / 888888 admin / (none) admin / 1111 admin / 1111111 admin / 1234 admin / 12345 admin / 123456 admin / 54321 admin / 7ujMko0admin admin / admin admin / admin | 234 admin / meinsm admin / pass admin / password

admin / smcadmin admin I / password administrator / 1234 Administrator / admin guest / 12345 guest / guest mother / fucker root / (none) root / 0000000 root / IIII root / 1234 root / 12345 root / 123456 root / 54321 root / 666666

root / 7ujMko0admin root / 7ujMko0vizxv root / 888888 root / admin root / anko root / default root / dreambox root / hi3518 root / ikwb root / juantech root / jvbzd root / klv123 root / klv1234 root / pass root / password

These 60 aumb passwords can hijack over - 500,000 IoT devices into the Mirai botnet ALWAYS CHANGE YOUR DEVICE'S DEFAULT PASSWORD. Uthor: Graham Cluley UBLISHED OCTOBER 10, 2016 2:43 PM IN BOTNET, DENIAL OF SERVICE, MALWARE root / system root / user root / vizxv root / xc3511 root / xmhdipc root / zlxx root / Zte521 service / service supervisor / supervisor support / support tech / tech ubnt / ubnt user / user

Introduction – Possible Solutions

- More sophisticated and diverse default passwords?
 - E.g. as used for WiFi default passwords on routers
- Force users to change passwords?
 - When? On first login only? Repeatedly?
 - Leads to simple passwords such as ,password'
 - Enforce password constraints such as numbers
 - If complex passwords chosen, users might forget them

- Why not trigger an automated authentication credential derivation process?
 - On configuration changes \rightarrow thats the reason we need credentials!

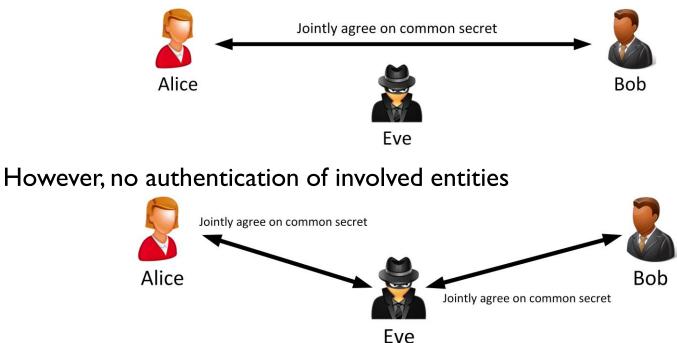
Introduction – System Model

- Arbitrary number of IoT devices
- Managed by a Configuration Back-End (CBE)
 - Is aware of current configuration state
 - Also all configuration updates known
 - Validates / attests correct configuration states
- Configuration data might contain confidential information
 - Such as IP or production relevant information for IIoT devices, WiFi keys for IoT devices, ...
- Configuration data is protected while transferred
 - Confidentiality
 - Integrity
 - Authenticity

ПТІ

Outline

9


I. Introduction

- I. Motivation
- 2. System Model
- 2. Credential Derivation
 - I. Process & Protocol
 - 2. Hardware Architecture
- 3. Evaluation
 - I. Threat Analysis & Performance
- 4. Conclusion

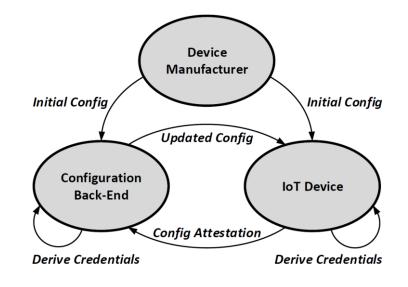
¹⁰ Credential Derivation – Primer on Key Agreement

- Two (or more) entities, agree on a common secret, such that
 - All involved entities influence the final key
 - An attacker is not capable of (easily) recovering the key

ΙТΙ

¹¹ Credential Derivation – Primer on Key Agreement

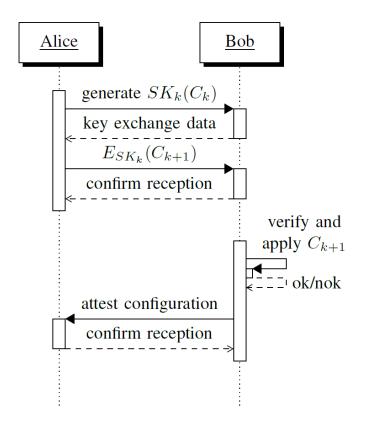
- Solution: authenticated key agreement process
 - E.g. Diffie-Hellman (DH) with authentication



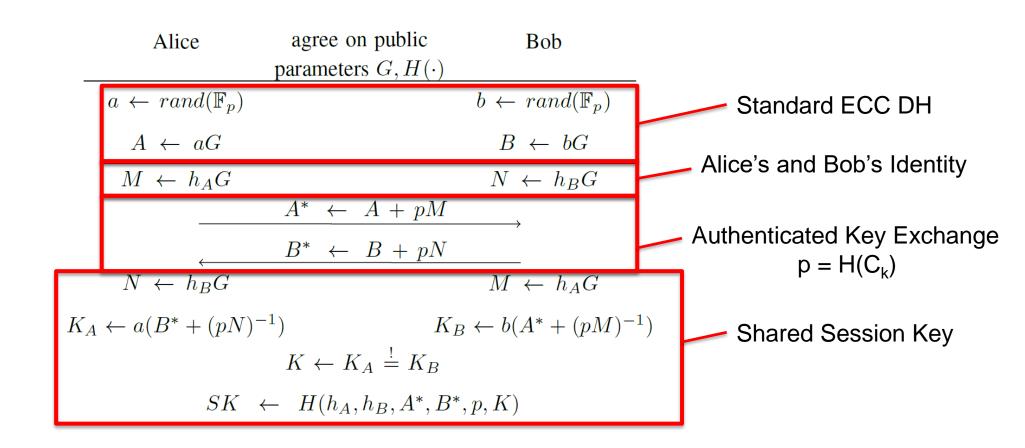
- SPAKE2
 - Lightweight authenticated key agreement based on DH
 - Uses passwords for authentication \rightarrow previously discussed issues

¹² Credential Derivation – Process

- In general, we have two types of configurations
 - Initial configuration by the device manufacturer
 - Subsequent configurations by the device's user
- IoT Device and CBE independently can derive authentication credentials
 - Based on currently applied configuration
- Advantages
 - Improved security since process is automatically triggered by configuration update
 - Users do not need to remember passwords, since CBE manages derived credentials



UTI


¹³ Credential Derivation – Process

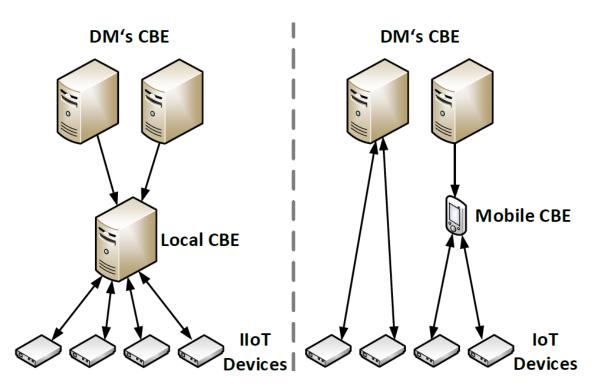
- Automatically derive passwords whenever changing a configuration
- Configuration is considered as shared secret
 - Thus, needs to be kept confidential
- K+I-th configuration is transferred encrypted
 - Based on a Session Key (SK)
 - Authenticated by credentials that are derived from the K-th configuration
 - And that is generated by an authenticated DH

ПΤІ



¹⁵ Credential Derivation – Protocol

Advantages


- Key agreement authenticated
- Only I roundtrip for authentication and key agreement
- Shared secret for session key derivation is derived from current configuration
- To protect confidential information, we propose to use dedicated security hardware such as Secure Elements
 - To store confidential information
 - To perform cryptographic operations

¹⁶ Credential Derivation – Architecture

- Depending on usage scenario either
 - Local CBE hosted on dedicated hardware
 - Data not known by DM
 - Local CBE run on mobile device
 - Data not known by DM
 - DM's global CBE is used

ШΤІ

¹⁷ Outline

I. Introduction

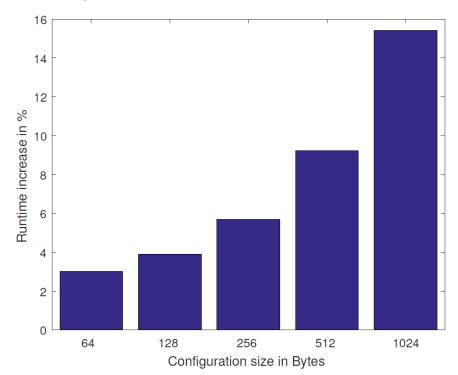
- I. Motivation
- 2. System Model
- 2. Credential Derivation
 - I. Process & Protocol
 - 2. Hardware Architecture
- 3. Evaluation
 - I. Threat Analysis & Performance
- 4. Conclusion

¹⁸ Evaluation – Prototype

- Implemented and evaluated on Infineon hardware
 - XMC4500 general purpose microcontroller
 - SLE78 Secure Element (Common Criteria 5+ certified)

¹⁹ Evaluation – Security

- Comparison with password-based approach
 - Based on so-called Levenshtein distance
 - Distance between a password and a dictionary of words
 - E.g. distance of passwork would be I
- Since configuration parameters could be observable (such as WiFi names)
 - Include salt in form of a true random number (generated by the SE)
- However, if one intermediate configuration is known, subsequent SKs cannot be revealed due to DH properties \rightarrow forward secrecy!


²⁰ Evaluation – Security

- Threat analysis
- 2 Assets that need to be protected
 - IoT device and its functionality
 - Configuration data
- I0 threats are identified
 - 9 of them are completely mitigated
 - I is only partialy mitigated
- Residual risk
 - Denial of Service attacks
 - However, only SE is attacked
 - Normal operation of IoT device not influenced (besides side effects such as draining battery)

²¹ Evaluation – Performance

- Not allowed to tell absolute numbers
 - Runtime increase compared to unauthenticated DH

²² Outline

I. Introduction

- I. Motivation
- 2. System Model
- 2. Credential Derivation
 - I. Process & Protocol
 - 2. Hardware Architecture
- 3. Evaluation
 - I. Threat Analysis & Performance

4. Conclusion

Conclusion

ПΤІ

- Default passwords are a major issue for IoT devices
- However, forcing users to change them does not necessarily increase the device's security
- Thus, we proposed an automated authentication credential derivation process
 - Triggered by configuration updates
 - Using configuration data to derive these credentials
 - Based on authenticated DH to provide forward secrecy
- Induced overhead is reasonable
 - Thus, we think the approach is feasible for IoT devices

²⁴ Acknowledgements

This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 692480. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Germany, Netherlands, Spain, Austria, Belgium, Slovakia.

IoSense is funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) under the program "ICT of the Future" between May 2016 and April 2019. More information: <u>https://iktderzukunft.at/en/</u>

Austrian Ministry for Transport, Innovation and Technology

Thank you! Any questions?

Thomas Ulz thomas.ulz@tugraz.at

Institute for Technical Informatics Hardware/Software-Codesign Group Graz University of Technology