Lower Bound of the Discrete Green Energy Elkies Lemma

Damir Ferizović joint work with
Carlos Beltrán (Universidad de Cantabria)

Institute of Analysis and Number Theory

April 12, 2019

Green Functions

Definition

A Green function $\mathcal{G}(x, y)$ for a linear differential operator L is given as the distributional solution, unique modulo $\operatorname{kern}(L)$, to

$$
L_{x} \mathcal{G}(x, y)=\delta_{x-y},
$$

where δ_{z} is the Dirac Delta. Put differently, if we want to solve

$$
L u(x)=f(x)
$$

we set

$$
u(x)=\int f(y) \mathcal{G}(x, y) \mathrm{d} y
$$

*It follows that

$$
L u(x)=\int f(y) L_{x} \mathcal{G}(x, y) \mathrm{d} y=\int f(y) \delta_{x-y} \mathrm{~d} y=f(x)
$$

Why Green Energy?

Theorem (C. Beltrán, N. Corral, J. G. Criado Del Rey (2017))

Let (M, g) be a compact Riemannian manifold of dimension $n>1$. Let G be its normalized Green function for the Laplace-Beltrami operator, then the unique probability measure μ minimizing

$$
\iint_{M} G(x, y) \mathrm{d} \mu(x) \mathrm{d} \mu(y)
$$

is the uniform measure λ (via normalized volume element) on M. Moreover the minimizing point set for the Green energy interpreted as counting measure converges weak-* to λ.
*" Discrete and continuous Green energy on compact manifolds". Journal of Approximation Theory (2019).

One of our Main Results

Let

$$
\mathcal{E}_{G}(N):=\inf _{\left\{\alpha_{1}, \ldots, \alpha_{N} \in \mathcal{S O}(3)\right\}} \sum_{j \neq k} G\left(\alpha_{j}, \alpha_{k}\right)
$$

Theorem (C. Beltrán, DF (2019))

The discrete energy for the normalized Green function of the LaplaceBeltrami operator on $S O(3)$ satisfies for all $N \in \mathbb{N}$:

$$
-3 \pi^{1 / 3} N^{4 / 3}+O(N) \leq \mathcal{E}_{G}(N)
$$

and for $N=\mathcal{C}_{2 L}^{(2)}(1)$, the Gegenbauer polynomials of degree $2 L$, for $L \in \mathbb{N}$:

$$
\mathcal{E}_{G}(N) \leq-4\left(\frac{3}{4}\right)^{4 / 3} N^{4 / 3}+O(N)
$$

*" Approximation to uniform distribution in SO(3)" . arXiv (2019).

Other Results

Theorem (C. Beltrán, DF (2019))
For $s \in(0,3)$ and $N=\binom{2 L+3}{3}$ for $L \in \mathbb{N}$, we have

$$
\mathcal{E}_{R}^{s}(N) \leq \frac{2}{8^{s / 2} \pi} \mathcal{B}\left(\frac{3-s}{2}, \frac{1}{2}\right) N^{2}+O\left(N^{1+s / 3}\right)
$$

If $s \in\{1,2\}$, we have more information on the term $O\left(N^{1+s / 3}\right)$: It is

$$
-\frac{\sqrt{2}}{\pi}\left(\frac{3}{4}\right)^{4 / 3} N^{4 / 3}+O(N) \quad \text { and } \quad-\frac{4}{15}\left(\frac{3}{4}\right)^{5 / 3} N^{5 / 3}+O\left(N^{4 / 3}\right) .
$$

Theorem (C. Beltrán, DF (2019))
Let $N=\binom{2 L+3}{3}$ for $L \in \mathbb{N}$, then the Riesz 3-energy satisfies

$$
\mathcal{E}_{R}^{3}(N) \leq \frac{N^{2} \log (N)}{12 \sqrt{2} \pi}+\frac{3 \gamma+\log \left(8^{2} \cdot 6\right)-\frac{21}{4}}{12 \sqrt{2} \pi} N^{2}+O\left(N^{5 / 3} \log (N)\right)
$$

*" Approximation to uniform distribution in SO(3)" . arXiv (2019).
$\mathcal{S O}(3)$

Definition

The special orthogonal group $\mathcal{S O}(3)$ is the compact (Lie) group of 3 by 3 orthogonal matrices over \mathbb{R} that represent rotations in \mathbb{R}^{3}, i.e. with determinant equal to one.
$\mathcal{S O}(3)$

Definition

The special orthogonal group $\mathcal{S O}(3)$ is the compact (Lie) group of 3 by 3 orthogonal matrices over \mathbb{R} that represent rotations in \mathbb{R}^{3}, i.e. with determinant equal to one.

Definition (Rotation Angle Distance)
For $\alpha, \beta \in \mathcal{S O}(3)$, we set

$$
\omega\left(\alpha^{-1} \beta\right)=\arccos \left(\frac{\operatorname{Trace}\left(\alpha^{-1} \beta\right)-1}{2}\right) .
$$

$\mathcal{S O}(3)$

Definition

The special orthogonal group $\mathcal{S O}(3)$ is the compact (Lie) group of 3 by 3 orthogonal matrices over \mathbb{R} that represent rotations in \mathbb{R}^{3}, i.e. with determinant equal to one.

Definition (Rotation Angle Distance)

For $\alpha, \beta \in \mathcal{S O}(3)$, we set

$$
\omega\left(\alpha^{-1} \beta\right)=\arccos \left(\frac{\operatorname{Trace}\left(\alpha^{-1} \beta\right)-1}{2}\right) .
$$

Lemma

If $f \in L^{1}(\mathcal{S O}(3))$ such that $\exists \tilde{f} \in L^{1}([0, \pi])$ with $f(x)=\tilde{f}(\omega(x))$, then

$$
\int_{\mathcal{S O}(3)} f(x) \mathrm{d} \mu(x)=\frac{2}{\pi} \int_{0}^{\pi} \tilde{f}(t) \sin ^{2}\left(\frac{t}{2}\right) \mathrm{d} t .
$$

Fredholm Theory

Theorem

Given a compact Riemannian manifold (M, g), then a system of orthonormal eigenfunctions $\left\{\phi_{k}\right\}_{k=1}^{\infty}$ of the Laplacian on M with corresponding eigenvalues $\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ forms a basis for the Hilbert space $L^{2}(M)$; "the" Green function is given by

$$
\mathcal{G}(x, y)=\sum_{k \geq 1} \frac{\phi_{k}(x) \overline{\phi_{k}(y)}}{\lambda_{k}}
$$

Reference?

Fredholm Theory

Theorem

Given a compact Riemannian manifold (M, g), then a system of orthonormal eigenfunctions $\left\{\phi_{k}\right\}_{k=1}^{\infty}$ of the Laplacian on M with corresponding eigenvalues $\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ forms a basis for the Hilbert space $L^{2}(M)$; "the" Green function is given by

$$
\mathcal{G}(x, y)=\sum_{k \geq 1} \frac{\phi_{k}(x) \overline{\phi_{k}(y)}}{\lambda_{k}}
$$

Reference?

Lemma

The eigenvalues of Δ in $\mathcal{S O}(3)$ are $\lambda_{\ell}=\ell(\ell+1)$ for $\ell \geq 0$. Moreover, if H_{ℓ} is the eigenspace associated to λ_{ℓ}, then the dimension of H_{ℓ} is $(2 \ell+1)^{2}$ and an orthonormal basis of H_{ℓ} is given by $\sqrt{2 \ell+1} D_{m, n}^{\ell}$ where $-\ell \leq m, n \leq \ell$ and $D_{m, n}^{\ell}$ are Wigner's D-functions.

Lemma

The Green function for the Laplace-Beltrami operator on $\mathcal{S O}(3)$ is

$$
\mathcal{G}(\alpha, \beta)=\left(\pi-\omega\left(\alpha^{-1} \beta\right)\right) \cot \left(\frac{\omega\left(\alpha^{-1} \beta\right)}{2}\right)-1
$$

Enter Determinantal Point Processes

We will have for any measurable function $f: M \times M \rightarrow[0, \infty]$,

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{i \neq j} f\left(x_{i}, x_{j}\right)\right]= \\
& \quad \iint_{M} f(x, y)\left(\mathcal{K}_{H}(x, x) \mathcal{K}_{H}(y, y)-\left|\mathcal{K}_{H}(x, y)\right|^{2}\right) \mathrm{d} \mu(x) \mathrm{d} \mu(y)
\end{aligned}
$$

where $H \subseteq L^{2}(M)$ is any N-dimensional subspace in the set of square-integrable functions and \mathcal{K} is the projection kernel onto H.

Let's Start Simple

A simple point process on a locally compact polish space Λ with reference measure μ is a positive Radon measure

$$
\chi=\sum_{j=1} \delta_{x_{j}}
$$

with $x_{j} \neq x_{s}$ for $j \neq s$. One usually identifies χ with a discrete subset of Λ. The joint intensities of χ w.r.t. μ, if they exist, are functions $\rho_{k}: \Lambda^{k} \rightarrow[0, \infty)$ for $k>0$, such that for pairwise disjoint $\left\{D_{s}\right\}_{s=1}^{k} \subset \Lambda$

$$
\mathbb{E}\left[\prod_{s=1}^{k} \chi\left(D_{s}\right)\right]=\int_{D_{1} \times \ldots \times D_{k}} \rho_{k}\left(y_{1}, \ldots, y_{k}\right) \mathrm{d} \mu\left(y_{1}\right) \ldots \mathrm{d} \mu\left(y_{k}\right),
$$

and $\rho_{k}\left(y_{1}, \ldots, y_{k}\right)=0$ in case $y_{j}=y_{s}$ for some $j \neq s$.

Putting Determinant into Determinantal Point Processes

A simple point process is determinantal with kernel \mathcal{K}, iff for every $k \in \mathbb{N}$ and all y_{j} 's

$$
\rho_{k}\left(y_{1}, \ldots, y_{k}\right)=\operatorname{det}\left(\mathcal{K}\left(y_{j}, y_{s}\right)\right)_{1 \leq j, s \leq k}
$$

If the kernel is a projection kernel, then one speaks of a determinantal projection process. Hence if

$$
\mathcal{K}(x, y)=\sum_{j=1}^{N} \phi_{j}(x) \bar{\phi}_{j}(y)
$$

for some orthonormal system of ϕ_{j} 's, then

$$
\mathbb{E}[\chi(\Lambda)]=\int_{\Lambda} \mathcal{K}(y, y) \mathrm{d} \mu(y)=\sum_{j=1}^{N} \int_{\Lambda}\left|\phi_{j}(y)\right|^{2} \mathrm{~d} \mu(y)=N
$$

It follows from the Macchi-Soshnikov theorem that a simple point process with N points, associated to the projection on a finite subspace exists in Λ.

L^{2}-Norm of Gegenbauer Polynomials of Index 2

Lemma

The Gegenbauer polynomials $\mathcal{C}_{n-2}^{(2)}(x)$ satisfy

$$
\begin{aligned}
\int_{0}^{1}\left(x^{2}-1\right)\left[\mathcal{C}_{n-2}^{(2)}(x)\right]^{2} \mathrm{~d} x & =-\frac{2 n^{2}-1}{8} \int_{0}^{1}\left[\mathcal{U}_{n-1}(x)\right]^{2} \mathrm{~d} x+\frac{n^{2}}{8} \\
& =-\frac{2 n^{2}-1}{16}\left(\psi\left(n+\frac{1}{2}\right)+\gamma+\log (4)\right)+\frac{n^{2}}{8} .
\end{aligned}
$$

Lemma

The Gegenbauer polynomials $\mathcal{C}_{n-2}^{(2)}(x)$ satisfy

$$
\int_{0}^{1}\left[\mathcal{C}_{n-2}^{(2)}(x)\right]^{2} \mathrm{~d} x=\frac{n^{4}}{16}+\frac{4 n^{2}-1}{64}\left(\psi\left(n+\frac{1}{2}\right)+\gamma+\log (4)\right)-\frac{5}{32} n^{2} .
$$

The Backbone of the Lower Bound

By Fredholm theory and some further details:

$$
\mathcal{G}(\alpha, \beta)=\sum_{\ell=1}^{\infty} \frac{2 \ell+1}{\ell(\ell+1)} \mathcal{U}_{2 \ell}\left(\cos \left(\frac{\omega\left(\alpha^{-1} \beta\right)}{2}\right)\right) .
$$

Next we define for $0<t \ll 1$:

$$
\mathcal{G}_{t}(\alpha, \beta)=\sum_{\ell=1}^{\infty} e^{-\ell(\ell+1) t} \frac{2 \ell+1}{\ell(\ell+1)} \mathcal{U}_{2 \ell}\left(\cos \left(\frac{\omega\left(\alpha^{-1} \beta\right)}{2}\right)\right) .
$$

Lemma (N. Elkies)
For $t>0$ and $\alpha, \beta \in \mathcal{S O}(3)$, with $\alpha \neq \beta$ we have

$$
\mathcal{G}(\alpha, \beta) \geq \mathcal{G}_{t}(\alpha, \beta)-t
$$

Elkies Lemma in Action

Lemma (N. Elkies)

For $t>0$ and $\alpha, \beta \in \mathcal{S O}(3)$, with $\alpha \neq \beta$ we have

$$
\mathcal{G}(\alpha, \beta) \geq \mathcal{G}_{t}(\alpha, \beta)-t
$$

For distinct points $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\} \subset \mathcal{S O}(3)$:

$$
\begin{aligned}
\sum_{s \neq k}^{N} \mathcal{G}\left(\alpha_{s}, \alpha_{k}\right) & +N(N-1) 2 t \geq \sum_{s \neq k}^{N} \mathcal{G}_{2 t}\left(\alpha_{s}, \alpha_{k}\right) \\
& =\sum_{\ell=1}^{\infty} \frac{2 \ell+1}{\ell(\ell+1)} \sum_{m=-\ell}^{\ell} \sum_{n=-\ell}^{\ell} \sum_{s \neq k}^{N} e^{-\ell(\ell+1) \cdot 2 t} \mathcal{D}_{m, n}^{\ell}\left(\alpha_{s}\right) \overline{\mathcal{D}_{m, n}^{\ell}\left(\alpha_{k}\right)}=
\end{aligned}
$$

Elkies Lemma in Action

Lemma (N. Elkies)

For $t>0$ and $\alpha, \beta \in \mathcal{S O}(3)$, with $\alpha \neq \beta$ we have

$$
\mathcal{G}(\alpha, \beta) \geq \mathcal{G}_{t}(\alpha, \beta)-t
$$

For distinct points $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\} \subset \mathcal{S O}(3)$:

$$
\begin{aligned}
\sum_{s \neq k}^{N} \mathcal{G}\left(\alpha_{s}, \alpha_{k}\right) & +N(N-1) 2 t \geq \sum_{s \neq k}^{N} \mathcal{G}_{2 t}\left(\alpha_{s}, \alpha_{k}\right) \\
& =\sum_{\ell=1}^{\infty} \frac{2 \ell+1}{\ell(\ell+1)} \sum_{m=-\ell}^{\ell} \sum_{n=-\ell}^{\ell} \sum_{s \neq k}^{N} e^{-\ell(\ell+1) \cdot 2 t} \mathcal{D}_{m, n}^{\ell}\left(\alpha_{s}\right) \overline{\mathcal{D}_{m, n}^{\ell}\left(\alpha_{k}\right)}=
\end{aligned}
$$

$$
\sum_{\ell=1}^{\infty} \frac{2 \ell+1}{\ell^{2}+\ell} \sum_{m, n=-\ell}^{\ell}\left(\left|\sum_{k=1}^{N} e^{-\ell(\ell+1) \cdot t} \mathcal{D}_{m, n}^{\ell}\left(\alpha_{k}\right)\right|^{2}-\sum_{k=1}^{N} e^{-\ell(\ell+1) \cdot 2 t}\left|\mathcal{D}_{m, n}^{\ell}\left(\alpha_{k}\right)\right|^{2}\right)
$$

$$
\geq-\sum_{\ell=1}^{\infty} \frac{2 \ell+1}{\ell(\ell+1)} \sum_{m, n=-\ell}^{\ell} \sum_{k=1}^{N} e^{-\ell(\ell+1) \cdot 2 t}\left|\mathcal{D}_{m, n}^{\ell}\left(\alpha_{k}\right)\right|^{2}=-N \mathcal{G}_{2 t}(\alpha, \alpha)
$$

Last Part of the Puzzle

After some lengthy calculation, we obtain

$$
\mathcal{G}_{t}(\alpha, \alpha)=2 \sqrt{\frac{\pi}{t}}+O(1)
$$

and by choosing $t=\frac{\sqrt[3]{\pi}}{2 N^{2 / 3}}$:

$$
\mathcal{G}_{2 t}(\alpha, \alpha)=2 \sqrt[3]{\pi} N^{\frac{1}{3}}+O(1)
$$

Hence

$$
\sum_{s \neq k}^{N} \mathcal{G}\left(\alpha_{s}, \alpha_{k}\right) \geq-3 \sqrt[3]{\pi} N^{\frac{4}{3}}+O(N)
$$

proving the lower bound.

Strong Maximum Principle for Manifolds

Remember

$$
\mathcal{G}_{t}(\alpha, \beta)=\sum_{\ell=1}^{\infty} e^{-\ell(\ell+1) t} \frac{2 \ell+1}{\ell(\ell+1)} \mathcal{U}_{2 \ell}\left(\cos \left(\frac{\omega\left(\alpha^{-1} \beta\right)}{2}\right)\right)
$$

Theorem

Let (M, g) be an n-dimensional compact Riemannian manifold, not necessarily connected, with or without boundary. Suppose $u \in \mathcal{C}_{1}^{2}(M \times(0, T)) \cap \mathcal{C}(M \times[0, T])$ for $T>0$, satisfies

$$
\Delta_{g} u(x, t)+\frac{\partial}{\partial t} u(x, t)=0 ;
$$

if the maximum or minimum is attained at $\left(x_{0}, t_{0}\right) \in M \times(0, T]$, then $u(x, t) \equiv u\left(x_{0}, t_{0}\right)$ for all $(x, t) \in M_{x_{0}} \times\left[0, t_{0}\right]$.
The maximum/minimum is in particular attained at the boundary.

How to Prove Elkies Lemma I

Using the ONB, any smooth test function ϕ can be written as $\sum \lambda_{\ell} \phi_{\ell}$. Set

$$
u(\alpha, t):=-\int_{\mathcal{S O}(3)} \partial_{t} \mathcal{G}_{t}(\alpha, \beta) \phi(\beta) \mathrm{d} \mu(\beta)=\sum_{\ell=1}^{\infty} e^{-\ell(\ell+1) \cdot t} \lambda_{\ell} \phi_{\ell}(\alpha)
$$

obtaining, uniformly

$$
\lim _{t \rightarrow 0} u(\alpha, t)=\phi(\alpha)-\int_{\mathcal{S O}(3)} \phi(\beta) \mathrm{d} \mu(\beta)=\phi(\alpha)-\lambda_{0}
$$

For $t>0$ fixed, we can interchange differentiation and integration yielding

$$
\Delta_{g} u(\alpha, t)+\partial_{t} u(\alpha, t)=0
$$

By the strong maximum principle, we have for every $t>0$:

$$
\min _{\alpha \in \mathcal{S O}(3)} u(\alpha, t) \geq \min _{\alpha \in \mathcal{S O}(3)} u(\alpha, 0)
$$

How to Prove Elkies Lemma II

The same PDE and estimates hold for

$$
v(\alpha, t)=u(\alpha, t)+\lambda_{0}
$$

If $\phi \geq 0$, then $v(\alpha, t) \geq 0$ for all $t>0$ by the maximum principle as $v(\alpha, 0)=\phi(\alpha)$. Hence

$$
u(\alpha, t)=v(\alpha, t)-\lambda_{0} \geq-\lambda_{0} \quad \text { for } \phi \geq 0
$$

We further set

$$
\mathcal{I}(\alpha, t):=\int_{\mathcal{S O}(3)} \mathcal{G}_{t}(\alpha, \beta) \phi(\beta) \mathrm{d} \mu(\beta)=\sum_{\ell=1}^{\infty} e^{-\ell(\ell+1) \cdot t} \frac{\lambda_{\ell} \phi_{\ell}(\alpha)}{\ell(\ell+1)}
$$

Differentiating term-wise for $t>0$ yields

$$
\partial_{t} \mathcal{I}(\alpha, t)=-\sum_{\ell=1}^{\infty} e^{-\ell(\ell+1) \cdot t} \lambda_{\ell} \phi_{\ell}(\alpha)=-u(\alpha, t) \leq \lambda_{0} \quad \text { for } \phi \geq 0
$$

How to Prove Elkies Lemma III

Finally, for fixed α let $t>\epsilon>0$, then

$$
\lim _{\epsilon \rightarrow 0} \mathcal{I}(\alpha, t)-\mathcal{I}(\alpha, \epsilon)=\lim _{\epsilon \rightarrow 0} \int_{\epsilon}^{t}-u(\alpha, t) \mathrm{d} t \leq \lambda_{0} \cdot t
$$

and thus, for all non-negative test functions ϕ

$$
\int_{\mathcal{S O}(3)}\left(\mathcal{G}_{t}(\alpha, \beta)-\mathcal{G}(\alpha, \beta)-t \cdot 1\right) \phi(\beta) \mathrm{d} \mu(\beta) \leq 0
$$

Since $\mathcal{G}(\alpha, \beta)$ is continuous and locally integrable in β away of α, this proves the lemma.

Thank You for Your Attention

娄
C. Beltrán, N. Corral and J. G. Criado Del Rey: Discrete and continuous Green energy on compact manifolds; Journal of Approximation Theory, Vol. 237 pp. 160-185 (2019).
R
C. Beltrán and D. Ferizović: Approximation to uniform distribution in $\mathrm{SO}(3)$; arXiv (2019).
T. Hangelbroek and D. Schmid: Surface Spline Approximation on SO(3); Appl. Comput. Harmon. Anal. Volume 31, Issue 2, 169-184 (2011).

