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Green Functions

Definition
A Green function G(x, y) for a linear differential operator L is given as the
distributional solution, unique modulo kern(L), to

Lxg(x,y) = 6X—y7

where §, is the Dirac Delta. Put differently, if we want to solve

we set

*|t follows that

Lu(x) :/f(Y)Lxg(Xv)/) dy:/f(y)5x—y dy = f(x).



Why Green Energy?

Theorem (C. Beltran, N. Corral, J. G. Criado Del Rey (2017))

Let (M, g) be a compact Riemannian manifold of dimension n > 1. Let G
be its normalized Green function for the Laplace-Beltrami operator, then
the unique probability measure j1 minimizing

//M G(x,y) du(x) du(y),

is the uniform measure \ (via normalized volume element) on M.
Moreover the minimizing point set for the Green energy interpreted as
counting measure converges weak-x to \.

*" Discrete and continuous Green energy on compact manifolds’. Journal
of Approximation Theory (2019).



One of our Main Results

Let

Ec(N) = inf G(aj, ak).

c(N) (s E 50(3)}.2 (0, )
J#k
Theorem (C. Beltran, DF (2019))
The discrete energy for the normalized Green function of the Laplace—
Beltrami operator on SO(3) satisfies for all N € N:
—3nl3NA3 L O(N) < E6(N),

and for N = C§2L)(1), the Gegenbauer polynomials of degree 2L, for L € N:

/
Ec(N) < —4 <i>4 "N 4 o).

*" Approximation to uniform distribution in SO(3)". arXiv (2019).



Other Results

Theorem (C. Beltran, DF (2019))
Fors € (0,3) and N = (*573) for L € N, we have

Er(N) < &aB(33% 3)N? + O(N'*<73).
If s € {1,2}, we have more information on the term O(N't5/3): It is

(3PN ON) and — & (37N + OV,

Theorem (C. Beltran, DF (2019))

Let N = (2L§" %) for L € N, then the Riesz 3-energy satisfies

2 [ 2. 21
g3y < NloaN) 37108 6) =% 1o o ns/310g(w)).

- 12V2« 12427

*" Approximation to uniform distribution in SO(3)". arXiv (2019).



SO(3)

Definition
The special orthogonal group SO(3) is the compact (Lie) group of 3 by 3
orthogonal matrices over R that represent rotations in R3, i.e. with

determinant equal to one.




SO(3)

Definition

The special orthogonal group SO(3) is the compact (Lie) group of 3 by 3
orthogonal matrices over R that represent rotations in R3, i.e. with
determinant equal to one.

Definition (Rotation Angle Distance)
For a, € SO(3), we set

w(a™'B) = arccos (Trace(a;ﬁ) — 1) .




S0(3)
Definition
The special orthogonal group SO(3) is the compact (Lie) group of 3 by 3

orthogonal matrices over R that represent rotations in R3, i.e. with
determinant equal to one.

Definition (Rotation Angle Distance)
For a, € SO(3), we set

w(a ' B) = arccos (Trace(a;lﬂ) — 1) :

Lemma
If f € LY( SO(3)) such that 3 f e LY([0,7]) with f(x) = f(w(x)), then

/80(3) f(x) du(x) = /f sin? dt




Fredholm Theory

Theorem

Given a compact Riemannian manifold (M, g), then a system of
orthonormal eigenfunctions {¢y}2° ; of the Laplacian on M with

corresponding eigenvalues {\}?2 ; forms a basis for the Hilbert space
L2(M); “the” Green function is given by

Gey) =Y ¢k(X))\¢k(Y)

k>1 ls

Reference?
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Lemma

The eigenvalues of A in SO(3) are Ay = ¢(¢ + 1) for £ > 0. Moreover, if
Hy is the eigenspace associated to Ay, then the dimension of Hy is

(2¢ + 1) and an orthonormal basis of Hy is given by \/2( + lDf;,’n where
—4 < m,n<¢ and D¢ are Wigner’s D—functions.

m,n




Lemma
The Green function for the Laplace-Beltrami operator on SO(3) is
il

/3)) _q

G(a,B) = (7 — w(a™'B)) cot (C‘J(QT

20 [




Enter Determinantal Point Processes

We will have for any measurable function ¥ : M x M — [0, o],
E[Z f(x,-,xj)} =
i#j

[ ) (Kntxx0nty ) = Keutx, ) ) du() du(y)
M

where H C L?(M) is any N—dimensional subspace in the set of
square—integrable functions and IC is the projection kernel onto H.



Let's Start Simple

A simple point process on a locally compact polish space A with
reference measure p is a positive Radon measure

X = Z(sxj-a
j=1

with x; # xs for j # s. One usually identifies x with a discrete subset of A.
The joint intensities of x w.r.t. u, if they exist, are functions
pk : N —[0,00) for k > 0, such that for pairwise disjoint {Ds}¥_; C A

k
E [H x(Ds)
s=1

and pi(y1,...,yk) =0 in case y; = ys for some j # s.

_ / k31 vi) daly) - dpalyi),
D1><...><Dk



Putting Determinant into Determinantal Point Processes
A simple point process is determinantal with kernel K, iff for every k € N
and all y;'s

Pk(Yla s 7yk) = det(lc(yjays)>

If the kernel is a projection kernel, then one speaks of a determinantal
projection process. Hence if

1<j,s<k

N
K(x,y) = Z@(X)(J@'(W

for some orthonormal system of ¢;'s, then

//ny du(y Z/WJ )P duly) =

It follows from the Macchi—Soshnikov theorem that a simple point
process with N points, associated to the projection on a finite subspace
exists in A.



[?-Norm of Gegenbauer Polynomials of Index 2

Lemma

The Gegenbauer polynomials C,(,2_)2(x) satisfy

1 o 1 2
/O(X —1)[ct (2) )]2dx:—2 . 1/0 [Un_l(X)]2 a1

8
_ _1(111(” )+7+Iog(4)) L

Lemma

The Gegenbauer polynomials C,(,2_)2(x) satisfy

n*  4n? -1

/0[(2) (] dx = 72 + = (w(n+%)+v+log(4))—35—2n2.




The Backbone of the Lower Bound

By Fredholm theory and some further details:

o0

g(OZ?ﬁ) =

/=1

20+1
o0+ 1)

Z/{25<cos (W(O‘;ﬂ))).

Next we define for 0 < t <« 1:

> 20+1 wlo-
G0, B) = S e st cos (15°2))),
/=1

Lemma (N. Elkies)
Fort >0 and o, B € SO(3), with o # 3 we have

G(a, B) = Gi(a, B) — t




Elkies Lemma in Action
Lemma (N. Elkies)
Fort >0 and o, B € SO(3), with o # 3 we have

G(a,B) > Ge(a, B) — t

For distinct points {aq,...,any} C SO(3):

N
> Glas, ) + N(N — 1)2t >~ Goe(as, o)
s#k s#k

S J4

S L 3T 33 e D, (oD o)

=—0 n=—/{ s#k



Elkies Lemma in Action

Lemma (N. Elkies)

Fort >0 and o, B € SO(3), with o # 3 we have
g(Oé,B) Z gt(aa/B) —t

For distinct points {aq,...,any} C SO(3):

N N
> Glas, ) + N(N — 1)2t >~ Goe(as, o)
s#k s#k

S J4

S L 3T 33 e D, (oD o)

=—0 n=—/{ s#k
o0 J4 N
20+1 _ .
7+ ( > e DL (o)
=1 m,n=—/{

k=1

2 N 5
- Z o l(tH1)-2t Dfn,n(ak)‘ )

k=1

14

Z Ze—f (£+1) 2t|p

m.n=—~¢ k=1

20 +1
(e+1)

2
(ak)‘ = —NGat(a, ).
I—1



Last Part of the Puzzle

After some lengthy calculation, we obtain

Gi(a,a) = 2ﬁ+ O(1);

and by choosing t = 2:\1@3:

Gae(a, @) = 2/7N5 + O(1).
Hence

N
> G(as,ai) = —39aN3 + O(N),
s#k

proving the lower bound.



Strong Maximum Principle for Manifolds

Remember

2041
0+1)

Gi(o, B) = i et Uzg(Cos (“’(0‘2_16))>.
—1

Theorem

Let (M, g) be an n-dimensional compact Riemannian manifold, not
necessarily connected, with or without boundary.
Suppose u € C3(M x (0, T))NC(M x [0, T]) for T > 0, satisfies

0
Agu(x,t) + EU(X, t) =0;
if the maximum or minimum is attained at (xo, tg) € M x (0, T], then

u(x, t) = u(xo, to) for all (x,t) € My, x [0, to].
The maximum/minimum is in particular attained at the boundary.




How to Prove Elkies Lemma |

Using the ONB, any smooth test function ¢ can be written as > \yppy. Set

u(a, t) =~ 0eGe(cr, B)6(5) du(B) = D e A (a),
“ /50(3) “ : ; was
obtaining, uniformly

“mwmﬂzdw—/wwﬂmdmm=M®—M-

t—0
For t > 0 fixed, we can interchange differentiation and integration yielding
Agu(a, t) + Oru(a, t) = 0.
By the strong maximum principle, we have for every t > O:

min u(a,t) > min  u(a,0).
ae SO(3) ae S0(3)



How to Prove Elkies Lemma I
The same PDE and estimates hold for

v(a,t) = u(a, t) + Xo.

If ¢ >0, then v(«, t) > 0 for all t > 0 by the maximum principle as
v(a,0) = ¢(a). Hence

u(a,t) = v(a,t) — Ao > —Xo for ¢ > 0.

We further set

o t) = N e o—t(e1)- Aee(a)
Howt)i= [ G800 ans) = Yo e D s

Differentiating term-wise for t > 0 yields

OZ(at) ==Y e N gy(a) = —u(a,t) < Ao for ¢ > 0.
/=1



How to Prove Elkies Lemma IlI

Finally, for fixed o let t > ¢ > 0, then

t
lim Z(a, t) — Z(cr, €) = lim / —u(a,t)dt < Ng-t

e—0 e—0

and thus, for all non-negative test functions ¢
[ (93 = 6(0.0)  £-1)6(8) du(s) <.
S0(3)

Since G(a, ) is continuous and locally integrable in 8 away of «, this
proves the lemma.
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