

Multiple Satellite Analysis of the Earth's Thermosphere and Interplanetary Magnetic Field Variations due to ICME/CIR events during 2003–2015

² Institute of Physics

University of Graz

S. Krauss, M. Temmer², S. Vennerstrom³

Institute of Geodesy Graz University of Technology

EGU General Assembly

Vienna, 2019-04-11

³ Technical University of Denmark, DTU Space, Division of Atmospheres and Astrophysics

Content of the study

Estimation of interplanetary coronal mass ejections (ICME) and co-rotating interaction regions (CIR) induced disturbances of the upper Earth atmosphere and the associated orbit decay rate of low Earth orbiting satellites (LEO)

Solar events during 2003 – 2015; covering 196 ICME and 195 CIR events

Satellites of interest: ACE & CHAMP and GRACE

Data basis:

- Magnetic field component B_z (measured at L1 by ACE)
- Accelerometer observations from CHAMP and GRACE
- Various geomagnetic indices (a-indices,kp, Dst, Sym-H, PC, AE)

ICME & CIR observations

Advanced Composition Explorer (ACE)

Study comprises 196 ICME and 195 CIR events occurred between 2003 - 2015

Analysis is based on solar wind flow speed (proton bulk speed) and in-situ measurements of the magnetic field component Bz; Level-2 data products, with a time resolution of 4 minutes.

Events: ICME catalogue by Richardson and Cane; CIR-list by Vennerstrom and Jian et al. (2011)

Compression regions of a CIR is less energetic but last longer than that from a ICME.

In-situ measurements – Earth's upper atmosphere

CHAllenging Minisatellite Payload (CHAMP)

Managed by GeoForschungsZentrum Potsdam (GFZ)

Mission duration: Juli 15, 2000 – September 19, 2010

Instrument of interest: Star-Accelerometer ($\pm 3 \times 10^{-9} \text{ ms}^{-2}$)

Gravity Recovery And Climate Experiment (GRACE)

Joint mission of NASA and the German Aerospace Center (DLR)

Mission duration: March 17, 2002 – October 27, 2017

Instrument of interest: SuperStar-Accelerometer ($\pm 1 \times 10^{-10} \text{ ms}^{-2}$)

(Source: Astrium GmbH)

(Source: DLR)

In-situ measurements – Earth's upper atmosphere

Observation

(Source: Astrium GmbH)

GRACE

(Source: DLR)

Single event analysis

<u>ICME</u>

Single event analysis

Overall statistics

Correlation Coefficient Between the Various Parameters and the Increase in Neutral Density $\Delta \rho_{490}$ (Column 2) as well as the B_z Component Measured by ACE (Column 3)—Time Period 2003–2015

	Δho_{490}	Bz
Δho_{490}	1.00	-0.89
B _z	-0.89	1.00
v _{max}	0.65	-0.60
Ε	-0.85	0.86
S	0.78	0.77
Dst index	-0.89	0.85
AE index	0.71	-0.73
a _a index	0.89	-0.87
a _m index	0.89	-0.88
a _p index	0.84	-0.83
k _p index	0.67	-0.75
PC _{north} index	0.80	-0.80
PCS _{south} index	0.76	-0.78
Sym-H index	-0.88	0.89

High correlations for most of the parameters

Not shown here:

• CHAMP vs. GRACE: cc = 0.97

Minor correlations for:

- ICME velocity
- auroral electrojet
- *kp index*

in accordance with Krauss et al. 2015 study of 104 ICME events and their impact on the thermosphere

Krauss et al. 2018

5

Comparison of ICME and CIR induced variations in the neutral mass density

Do CIR's fit into the ICME analysis ?

Comparison of ICME and CIR induced variations in the neutral mass density

Do CIR's fit into the ICME analysis ? Yes, fit pretty well in the overall picture.

Comparison of ICME and CIR induced variations in the neutral mass density

Is the statistical distribution from a CIR comparable with that of a ICME comprising a shock-sheath region ?

Comparison of ICME and CIR induced variations in the neutral mass density

Is the statistical distribution from a CIR comparable with that of a ICME comprising a shock-sheath region ? Yes it fits .

Satellite orbit decay

Depending on:

Current satellite altitude (CHAMP < GRACE)

Severity of the solar event (indicator Bz measurement)

Satellite orbit decay

Depending on:

Current satellite altitude (CHAMP < GRACE)

Severity of the solar event (indicator Bz measurement)

Next steps

- We may achieve a forecast (30-40min) of satellite orbit decays based on these statistical results
- Investigate the impact of cooling mechanism in the Earth's atmosphere
- Extend the analysis to further satellites at different altitudes (orbit information)

Next steps

- We may achieve a forecast (30-40min) of satellite orbit decays based on these statistical results
- Investigate the impact of cooling mechanism in the Earth's atmosphere
- Extend the analysis to further satellites at different altitudes (orbit information)

For further information

see:

Multiple Satellite Analysis of the Earth's Thermosphere and Interplanetary Magnetic Field Variations due to ICME/CIR events during 2003–2015, J. Geophys. Res., Space Physics 123, Krauss et al. (2018)

 Expert Service Groups on Solar & Heliosphere Weather (University of Graz) swe.uni-graz.at