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Motivation 

The development of automated tools for data analysis is a growing importance in 

semiconductor manufacturing. For this purpose, especially analog wafer test data carry a high 

potential as they allow the expert to draw conclusions on both product performance and 

production process deviations even before individual devices violate specifications. More 

specifically, it is assumed that process deviations are identifiable by spatial patterns (e.g., lines, 

rings, etc.) on the analog wafermaps generated from these wafer test data.  

The target of this work is to support automated systems that cluster or classify wafermaps 

depending on the depicted process patterns. For this purpose, we propose a wafermap 

similarity measure that is based on empirical distributions extracted from the wafermaps. 

Description 

Suppose that each wafermap consists of n devices which are characterized by numerical 

features taking values in a finite set. We can thus represent each wafermap by a normalized 

histogram of these numerical features (cf. Santos et al., 2019, Sec. III.A), which can be 

interpreted as an empirical discrete probability distribution. Given that a pattern is sufficiently 

captured by these features, two wafermaps W1 and W2 are assumed to be similar to the extent 

to which their empirical probability distributions p1 and p2 are computed to be similar. We 

measure the similarity between discrete probability distributions (thus between wafermaps) 

using the Jensen-Shannon divergence (JSD) (Lin, 1991) 

𝐽𝑆𝐷(𝑊1,𝑊2):= 𝐻 (
𝑝1+𝑝2

2
) − 0.5𝐻(𝑝1) − 0.5𝐻(𝑝2), 

where H(p) is the entropy of the discrete distribution p (Cover & Thomas, 1991). The JSD is 

non-negative, where small values indicate that the two wafermaps are similar, and has been 

used for image processing applications in the past, e.g., (Gómez-Lopera et al, 2000). 

To meaningfully employ JSD as a measure of pattern similarity, one has to ensure that the 

empirical probability distribution of the device features in some sense represents the pattern. 

We utilize the feature extraction scheme proposed in (Santos et al., 2019) for analog 

wafermaps: In the first step, the wafer W is segmented into regions of interest R. Each device 

within these regions is represented by a feature obtained by comparing its measurement value 

to those of its neighbors. Finally, the empirical probability distribution of the wafer W is obtained 

by normalizing the histogram of these feature values by the number of devices |R| on the region 

of interest. 

We make two simplifications: First, we assume that outside the regions of interest, the 

empirical distribution of the extracted features is the same for all wafers. Second, we assume 

that the distributions within the regions of interest are vastly different from the distribution 

outside the regions of interest. Under these assumptions, it can be shown that for two 

wafermaps W1 and W2 with regions of interest R1 and R2 with empirical distributions r1 and r2, 

above equation is replaced by (Geiger, 2018, Obs. 4) 

𝐽𝑆𝐷(𝑊1,𝑊2) =
|𝑅1|+|𝑅2|

2𝑛
𝐻 (

|𝑅1|𝑟1+|𝑅2|𝑟2

|𝑅1|+|𝑅2|
) −

|𝑅1|

2𝑛
𝐻(𝑟1) −

|𝑅2|

2𝑛
𝐻(𝑟2) + 𝐽𝑆𝐷(|𝑅1|, |𝑅2|), 
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where the last term is the JSD between two Bernoulli distributions with parameters R1/n and 

R2/n, respectively. This simplification has the advantage that its computation requires only the 

size of the regions of interest and the distributions inside these regions, but not the distributions 

on the entire wafer. It therefore fits nicely into the feature extraction pipeline proposed in 

(Santos et al., 2019, Sec. III.A). 

Innovation 

The innovation in this work is the proposal of a similarity measure to compare analog 

wafermaps based on process patterns. Utilizing a previously proposed feature extraction 

pipeline, which was shown to preserve information about patterns, we obtain an empirical 

distribution as a representative for each wafermap. The JSD is justified as a similarity measure 

because of its role in bounding classification errors (Lin, 1991, Th. 4 & 5) and at the same time 

having desirable properties for the analysis of analog wafermaps: It allows distinguishing 

wafermaps with the same pattern occurring in different sizes (Geiger, 2018, Obs. 3), and its 

expression simplifies if the extracted features in the “normal” wafermap region differ 

significantly from those in the regions of interest (Geiger, 2018, Obs. 4). 

Results 

To illustrate the performance of our proposed similarity measure, we conducted an experiment 

with a synthetic wafer test dataset comprised of 1000 analog wafermaps1, each showing one 

of five commonly occurring process patterns, see Fig. 1. We utilized feature extraction pipeline 

from (Santos et al., 2019, Sec. III.A), with the exception that the 512-dimensional histograms 

were directly used, instead of performing a dimensionality reduction based on principal 

component analysis. The histograms were then normalized to empirical distributions. 

The wafermaps were finally clustered based on these distributions. To this end, we performed 

hierarchical agglomerative clustering into 6, 11, and 16 clusters, using the simplified JSD as a 

similarity measure. In each case, the cluster assignments of the wafermaps are compared to 

their ground truth patterns via confusion matrices. The results are presented in Tab. 1. 

One can observe that the proposed similarity measure yields good clustering results for the 

wafer test dataset given a sufficiently large number of clusters. Note that the proposed 

similarity measure discriminates patterns if the corresponding extracted features are distinct. 

For example, pattern 3 is a gradient over the entire wafer which can assume one out of eight 

different directions. The feature extraction method proposed in (Santos et al., 2019, Sec. III.A) 

yields features that are different for these directions, effectively splitting these wafermaps into 

multiple subclusters (see also (Santos et al., 2019, Fig. 1)). As one can see in Tab. 1(b), these 

eight directions show a stronger dissimilarity than, e.g., the features extracted from wafermaps 

with pattern 1 and pattern 4, which explains why the latter are put in the same cluster. (It was 

also observed in (Santos et al., 2019) that pattern 3 has a large intra-class variance.) This 

effect is even more pronounced in Tab. 1(a), where five of the six clusters are used for the 

different directions of pattern 3, while the remaining patterns are all put in one cluster. If the 

number of clusters increases, all patterns can be discriminated (see Tab. 1(c)). 

                                                
1 see https://zenodo.org/record/2542504 
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(a) Pattern 1 (b) Pattern 2 (c) Pattern 3 (d) Pattern 4 (e) Pattern 5 

Fig. 1: Five types of spatial patterns are simulated as prototypes for process pattern recognition. 

Pattern 1 depicts a strong area at the border of the wafer, Pattern 2 consists of a spot at arbitrary 

position on the wafer. Pattern 3 is a gradient with variable direction, while Pattern 4 is defined by two 

spots on opposite sides of the wafer. Pattern 5 is a crescent-shaped area on the right side of the 

wafer. 
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Tab. 1: Confusion matrices of clustering results using the presented similarity measure, compared 

to the ground truth of the wafermaps (= real underlying pattern). The number of clusters is limited to 

(a) 6 clusters, (b) 11 clusters, or (c) 16 clusters. The dataset contains five distinct patterns, each 

shown on 200 wafermaps in the test dataset. See text for details. 


