
Fides: Unleashing the Full Potential of Remote Attestation

Bernd Prünster1,2 a, Gerald Palfinger1,2 b and Christian Kollmann3

1Institute of Applied Information Processing and Communications (IAIK), Graz University of Technology, Austria
2Secure Information Technology Center – Austria (A-SIT), Austria

3A-SIT Plus GmbH, Austria
{bernd.pruenster, gerald.palfinger}@iaik.tugraz.at, christian.kollmann@a-sit.at

Keywords: Trust, Remote Attestation, Mobile Applications, Android, Security.

Abstract: In connected mobile app settings, back-ends have no means to reliably verify the integrity of clients. For this
reason, services aimed at mobile users employ (unreliable) heuristics to establish trust. We tackle the issue of
mobile client trust on the Android platform by harnessing features of current Android devices and show how it is
now possible to remotely verify the integrity of mobile client applications at runtime. This makes it possible to
perform sensitive operations on devices outside a service operator’s control.
We present Fides, which improves the security properties of typical connected applications and foregoes
heuristics for determining a device’s state such as SafetyNet or root checks. At its core, our work is based on
the advancements of Android’s key attestation capabilities, which means that it does not impose a performance
penalty. Our concept is widely applicable in the real world and does not remain a purely academic thought
experiment. We demonstrate this by providing a light-weight, easy-to use library that is freely available as open
source software. We have verified that Fides even outperforms the security measures integrated into critical
applications like Google Pay.

1 INTRODUCTION

Establishing trust in remote clients is a common chal-
lenge. This work targets this issue in the mobile context
and presents a solution to remotely establish trust in
Android applications—something that has not been
reliably possible before and is not adverted even by
Google (Mayrhofer et al., 2019). We accomplish this
by leveraging the operating system’s key attestation
features and mapping it to trusted computing concepts.
As our main contribution, we demonstrate how An-
droid devices can be considered a trusted environment.
This makes it possible to perform sensitive tasks re-
motely and even outsource cryptographic operations
onto devices outside a service operator’s control—
without compromising security. Consequently, this
augments Android’s security model with comprehens-
ive trusted computing features. While remote attest-
ation has been possible on Android for some years,
its utility was rather limited: It was possible, for ex-
ample, to verify that cryptographic keys created by an
Android application were stored inside a trusted hard-
ware module. However, no reliable statement about the

a https://orcid.org/0000-0001-7902-0087
b https://orcid.org/0000-0001-6633-858X

integrity of the application performing this task and
the subsequent attestation could be made. As a con-
sequence, applications performing critical tasks could
be secretly modified to include malicious behaviour.
Using runtime code injection frameworks like Xposed1,
neither simple root checks nor Google’s own (rather
sophisticated) SafetyNet (AOSP, 2018) are able to de-
tect manipulations. In short, relying on such heuristics
does not effectively combat changes to the operating
system or to mobile applications.

Our contribution to this matter is twofold: We first
provide an extensive analysis of Android’s key attesta-
tion capabilities, discuss their implications for applica-
tion security and show how this maps to trusted com-
puting concepts. We then present Fides, a ready-to-use
solution utilising Android’s key attestation framework
to remotely establish trust in mobile client applica-
tions running in unmanaged environments. In contrast
to SafetyNet or other typical root checks, our concept
does not rely on heuristics but rather provides a defin-
itive statement about whether a device and a mobile
application running on it are uncompromised. In other
words: For the first time, it is now possible for service
operators to verify the state of mobile clients running

1https://repo.xposed.info/



in unmanaged environments in a reliable manner. This
even rules out modifications made by the legitimate
owner of a device. Most importantly, our approach is
widely applicable in the real world, ready-to-use in
production environments and does not impose a per-
formance penalty. In order to demonstrate the practic-
ability of our approach, we have made Fides’s source
code freely available on GitHub.2

The remainder of this paper is structured as fol-
lows: Section 2 provides the background on Android’s
security model and its hardware-backed keystore im-
plementation. Afterwards, Android’s attestation capab-
ilities ate discussed in Section 3. Section 4 then shows
how hardware-backed attestation can be used to re-
motely establish trust in applications running in un-
managed environment and describes how Fides imple-
ments this procedure. Having elaborated on our ap-
proach, Section 5 discusses how our system differs
from related work. Our work concludes with Section 6,
providing examples where Fides improves upon exist-
ing approaches used in real applications.

2 BACKGROUND

This section provides an overview about the measures
Android implements to improve system security, how
it separates and vets applications, and which risks re-
main. In particular, we discuss hardware-based security
mechanisms present on Android and their implications
for mobile application security.

2.1 Android System Security

As Android has become the dominant mobile operating
system, the number of attacks have increased.3 To pro-
tect the operating system from these attacks, a myriad
of technologies have been implemented to secure the
platform. We refer to ‘The Android Platform Security
Model’ by Mayrhofer et al. (2019) for a full overview
of Android’s security architecture.

Android uses the concept of sandboxing to prevent
applications from accessing each others data–based
on features from the Linux kernel–such as assigning
a user ID (UID) to each application. Since Android
4.3, this separation is enhanced with the help of man-
datory access control (MAC) in the form of SELinux
(AOSP, 2019d). However, these mechanisms are all
enforced by software and can thus be circumvented.
To remedy this situation and keep secrets secure from

2https://github.com/a-sit-plus/android-attestation-demo
3https://www.gdatasoftware.com/blog/2018/11/31255-

cyber-attacks-on-android-devices-on-the-rise

a compromised operating system, Android has intro-
duced Trusty (AOSP, 2019e), a trusted execution en-
vironment (TEE). Although the TEE can be used to
execute tasks such as managing keys and perform-
ing cryptographic operations, it cannot run third-party
code.

To protect the system against persistent modifica-
tions, Android supports verified boot since version 4.4.
Verified boot validates the integrity of each stage in
the boot process with the help of trusted hardware (if
available on the device). Unless the bootloader of a
device has been unlocked to support booting arbitrary
system images, this ensures that none of the boot stages
have been tampered with.

2.2 Android Keystore Features

The Android Keystore System (AOSP, 2019a) offers
an interface to application developers to generate
and use cryptographic keys—both secret keys and
private/public key-pairs. Fig. 1 depicts an overview
of the different types of storage back-ends used by the
keystore. In case of a software-only backend, the ap-
plication processor is used to execute cryptographic
operations, while keys are stored on the main flash
memory. Sabt and Traoré (2016) have shown that no
security guarantees hold in practice on software-backed
keystores. On devices with trusted hardware, the hard-
ware can assist in securing key material. For this pur-
pose, a TEE is usually used to provide trusted storage
which is protected from attacks by both hardware and
software, but is usually implemented as part of the ap-
plication processor. With the advent of Android 9.0,
the operating system also supports so-called Strong-
Box hardware security modules (HSMs), which in-
clude their own CPU and memory, secure storage, a
true random-number generator, and further protections
against attacks (AOSP, 2019a). This component must
be “certified against the Secure IC Protection Profile
BSI-CC-PP-0084-2014 or evaluated by a nationally
accredited testing laboratory incorporating High at-
tack potential vulnerability assessment according to
the Common Criteria Application of Attack Potential
to Smartcards” (Google Inc., 2019, p. 128). In essence,
assurance levels of the hardware module conform to
those of smart card evaluations and offer comprehens-
ive protection of key material. Google “strongly recom-
mends” future devices to support StrongBox (Google
Inc., 2019, p. 128).

In addition to the protection against a comprom-
ised operating system, the hardware is able to enforce
access control to private (or symmetric) key material.
Authorisation to use the key may be bound to the al-
gorithmic parameters (the operation, padding schemes,



Figure 1: Different keystore back-ends; the key symbol depicts where the secret key is loaded during cryptographic operations.

digests, padding modes), temporal validity, or user au-
thentication. In addition, the system can enforce user
authentication on every key access using biometrics
(most commonly using a fingerprint), regardless of any
recently carried-out authentication procedure. Since
Android 7.0, biometric inputs have to be verified in-
side the TEE or on a chip with a secure channel to the
TEE (Google Inc., 2017).

The keystore system binds any key to the app that
requested its generation. Therefore, applications can
not access each other’s keys. To prevent attackers from
simply installing an unauthorised system image to cir-
cumvent these defences, all cryptographic material be-
comes inaccessible upon unlocking a devices boot-
loader. However, as shown by Cooijmans, Ruiter and
Poll (2014), an attacker may be able to use keys if they
gain root access to the Android system.

Android 7.0 introduced support for version binding
of key material (AOSP, 2019c). With this feature, the
keys are bound to the version of the operating system
and patch level and will become inaccessible if the
system is rolled back to an older software version.

2.3 Android Application Security

With the open nature and customisability of Android
comes a risk of malicious applications. A plethora of
different analysis approaches have been proposed to
detect these unwanted applications, utilising concepts
such as static and dynamic analysis; we refer to Sadeghi
et al. (2017) for an extensive overview on this subject.

One way malware vendors try to circumvent se-
curity measures is to repackage benign applications to
include malicious code and advertise these apps along-
side their original versions. This works because An-
droid allows users to install applications from sources
other than Google’s Play Store. Although each applic-
ation needs to be signed by its vendor and this signa-
ture is checked upon app installation and updates, this
only prevents updating an uncompromised application
to a repackaged one. Multiple mechanisms to detect
and hamper such repackaging attacks have been pro-
posed. Desnos and Gueguen (2011) detect repackaging
attempts by evaluating the similarity of applications,

Huang et al. (2013) provide an evaluation of detection
mechanisms on obfuscated programs, and Zhou, Zhang
and Jiang (2013) and Ren, Chen and Liu (2014) pro-
pose different watermarking techniques to improve the
detection of repackaged applications in.

With Google Play Protect4, a similar approach is
now deployed on the majority of Android devices. Still,
these methods are not designed to guard developers
against users modifying applications in their devices.
For example, Ziegler et al. (2018) have recently shown
that a mobile cryptocurrency miner can be modified to
produce virtually unlimited tokens by repackaging the
mining application to include malicious code.

To prevent such attacks, the application provider
needs a reliable attestation mechanism to establish
trust in devices running in unmanaged environments.
Google aims to provide this attestation through their
SafetyNet service using various software and hardware
information to validate the integrity of the device and
the invoking application (AOSP, 2018). In practice,
however, SafetyNet can be circumvented by certain
rooting providers, such as Magisk5. Although Magisk
requires an unlocked bootloader, it does not alter the
system partition to provide root access. We have veri-
fied that patching a device’s boot image using Ma-
gisk to obtain root access does not trip SafetyNet on
a Google Pixel 2 running Android 9.0 with the latest
security patches (April 2019 as of this writing). In con-
junction with the Xposed framework, this allows for
altering the control flow of programs at runtime and,
therefore, breaks any assumptions about the integrity
of applications.

Summing up, software-based attestation ap-
proaches do not provide adequate protection and
cannot be relied upon when it comes to outsourcing
sensitive data and critical computations to mobile
clients. The following section therefore presents an
analysis of Android’s hardware-based attestation
mechanisms and discusses device support.

4https://www.android.com/play-protect/
5https://github.com/topjohnwu/Magisk



3 THE STATE OF ANDROID KEY
ATTESTATION

To remedy the shortcomings of software-based attesta-
tion approaches, recent Android versions rely on their
hardware-backed keystore implementation to provide
attestation capabilitie as follows: An application cre-
ates a non-exportable public-private key pair using An-
droid’s hardware-backed keystore implementation. The
keystore API then enables obtaining an attestation res-
ult which proves that this key was indeed created using
the dedicated cryptographic hardware. On a technical
level, this attestation result is implemented as an X.509
certificate extension: A certificate containing the previ-
ously generated public key is created and signed inside
the cryptographic hardware module using an attestation
signing key. We refer to this certificate as the attest-
ation certificate. This signing key, as well as a chain
of certificates (each signed by Google), are preloaded
onto the hardware module during the manufacturing
process. Google mandates that at least 100 000 devices
need to be provisioned before changing the attestation
key—to avoid tracking individual devices (Google Inc.,
2019). Furthermore, the root certificate of the chain is
published by Google.

3.1 Suitable Devices

All devices shipping with Android 8.0 or later that
include a fingerprint reader are required to feature
hardware-backed management of cryptographic mater-
ial using a TEE or HSM and must provide comprehens-
ive remote attestation capabilities. In addition, even
some entry-level devices without biometric sensors
such as the Nokia 16 match these specifications. Ac-
cording to a 2018 whitepaper, the FIDO Alliance ex-
pects ‘almost all coming Android mobile devices (8.0
or later)’ (FIDO Alliance, 2018) to support hardware-
based key attestation and even attests current Android
devices to fulfil all Level 2 FIDO Authenticator Cer-
tification requirements, arguing that current Android
devices can be considered to have effective defences
in place against large-scale attacks and operating sys-
tem compromise. Therefore, we consider such devices
robust and secure enough to outsource sensitive com-
putations to.

For the remainder of this paper, we assume a device
of this class is used. Android 8.0+ in general has a
market share of >38% (AOSP, 2019b), although only
some devices that originally shipped with an OS ver-
sion prior to 8.0 support all the features we require.
Without any openly available statistics on the num-
ber of suitable devices currently active, we rely on a

6https://www.nokia.com/phones/en us/nokia-1

conservatively estimated lower bound of 100 million
according to Prünster, Fasllija and Mocher (2019).

Before going into detail about the actual attestation
workflow, the next section summarises the information
contained in an attestation result.

3.2 Attested Information

The information that can be extracted from the attesta-
tion certificate provides a comprehensive assessment of
device, system, and application integrity. The following
attestation properties are relevant for our approach:

• Security level for the attestation; takes a value of
either software, TEE, or StrongBox

• Basic cryptographic properties of the attested key
itself, such as its public key (in case of a public-
private key pair)

• Whether user authentication (and the timeout after
a successful authentication) is required for all op-
erations involving the private (or secret) key

• Whether the key is rollback-resistant, meaning that
it will become inaccessible upon a system or boot-
loader downgrade

• Whether the device/bootloader is locked and will
only accept signed bootloader images

• Boot state according to the Verified Boot feature:

– Verified: Vendor-signed bootloader and system
– SelfSigned: Third-party-signed bootloader and

system
– Unverified: Freely modifiable boot chain
– (Failed: never used as part of an attestation res-

ult)

• OS version and the security patch level, the patch
level of the vendor image (since Android 9.0), and
the boot image (since Android 9.0)

• Application information: package name, version,
and digest of the package’s signature certificate

• The chain of certificates starting with the certific-
ate for the key attestation key, leading up to the
published root certificate (see Fig. 2)

• The challenge value provided when requesting an
attestation

By evaluating this information in a certain manner,
it is possible to establish trust in a remotely deployed
application running on an unmanaged Android device,
to the point where it can be considered a trusted en-
vironment. Although some values of the attestation
information are only software-enforced, the following
section argues how this aligns with trusted computing
concepts such that all values can be trusted.



Figure 2: Attestation chain of trust.

4 Fides – REMOTE ATTESTATION
AT WORK

Our solution targets mobile applications that are con-
nected to a back-end—the classic client-server model.
The following section introduces such an abstract sys-
tem model, that is kept as simple as possible for wide
applicability. We also introduce our security model and
discuss the underlying assumptions. We then illustrate
the attestation process that leads to a trusted state based
on this model.

4.1 System and Security Model

Up until now we have assumed that an unlocked boot-
loader is required to modify the OS and/or inject code
into otherwise unmodified applications. In reality, how-
ever, exploitable vulnerabilities in the OS or bootloader
can arise. Still, the correctness of any target platform is
typically assumed by developers. We therefore assume
the hardware to be trusted and the system to operate as
intended, just as any application developer needs to rely
on the target platform’s functionality. Consequently,
we do not consider the requirement to trust hardware
manufacturers and the OS vendor a limitation, as this
has been a common trust model for decades. We con-
sequently assume Google’s root certificate of the at-
testation chain (see Fig. 2) to be trusted.

We do not, however, trust the user. In fact, we assume
a malicious user that is willing and able to unlock their
device and employ freely available tools such as Ma-
gisk and may even try to repackage the client applica-
tion for personal gain.

Our system model can be described using a client-
server use-case where the client is to be deployed on
hardware that falls into the class of suitable devices. We
assume the back-end to be controlled and thus trusted
by the service operator. We base the remainder of this
section on the following scenario:

• A service operator publishes a mobile client applic-
ation targeting Android 8.0+. This process may or
may not happen through Google’s Play Store.

• As every Android application is required to be
signed by its creator, the service operator signs the
client and records the digest of the signature certi-
ficate.

• Client-server connections are assumed to mandate
Transport Layer Security (TLS) using mutual au-
thentication.

The following section retraces the attestation steps
performed by modern Android smartphones to illus-
trate how it is practically possible to verify that an
unmodified client application is running on top of a
trusted operating system on real hardware.

4.2 Attestation Workflow

The following enumeration explains how an attestation
result is constructed based on Fig. 3 and elaborates on
the implications of this process.

1. When powering-on an Android device, the trusted
hardware module verifies the bootloader signature,
and logs whether an unmodified bootloader image
will be used to boot the system.

2. The bootloader subsequently verifies the signature
of the operating system image. Upon doing so, the
bootloader communicates the OS version and patch
level to the hardware.

3. The operating system verifies an application’s sig-
nature upon installation of the application, and re-
cords the metadata.

4. The application creates a public-private key pair
using the keystore API and requests it to be attested.

5. The operating system passes the software-based
values to the hardware, which combines them with
the hardware-enforced values to create an attesta-
tion result.

6. The hardware signs this attestation result using the
attestation key.



Figure 3: High-level structure of an attestation result.

Based on this workflow and the semantics of the
attestation values described in Section 3.2, it becomes
possible to establish trust in a mobile client application.
We illustrate this by applying this knowledge to our
system model as follows:

• Boot State: On devices with a locked bootloader
and a Verified boot state, we can safely assume that
only a vendor-supplied bootloader can be used to
subsequently boot only vendor-signed operating
system images (cf. Section 3.2). A system booted
into a locked, Verified state is therefore guaranteed
to uphold all aspects of the Android security model.
This rules out modifications to the base system such
as rooting.

• System Integrity: Since the system’s integrity is
verified by the hardware, the system software is
itself elevated to a trusted state. Consequently,
software-enforced attestation values provided by
the operating system can be considered trustworthy.

• Application Integrity: By comparing the digest of
the client application’s signature certificate con-
tained in the attestation result with the digest of the
signature certificate value recorded upon signing
it, the service operator can indisputably verify the
client’s integrity. This rules out undetected repack-
aging of client applications.

If the back-end in our scenario evaluates an attesta-
tion result accordingly, the integrity of clients can be
reliably determined. As a result, services can choose

to grant only fully-verified clients access and thus ex-
clude compromised devices. This aligns with estab-
lished trusted computing concepts, specifically trusted
hardware bootstrapping a trusted system capable of
remote attestation. While it may seem obvious in hind-
sight, utilising Android’s key attestation features like
this and the consequences this entails, have never been
explored before. Our system’s architecture, which does
precisely that, is introduced in the following section.

4.3 Architecture

Fides consists of two components: a client-side lib-
rary and a server-side library. The major advantage of
Fides over other solutions is that it can be transparently
plugged into existing client-server applications as part
of connectivity establishment, also enforcing TLS with
mutual authentication. Provisioning of the server-side
certificate can be done in whichever way the service op-
erator sees fit. On the client, however, Fides mandates
the attestation result to be used as the client certificate
to authenticate to the back-end. This effectively ensures
that an authenticated channel is established between
client and server based on the cryptographic material
that has been attested. The following section outlines
how Fides executes the previously described attestation
process to establish trust in a mobile client.

4.4 Establishing Trust in Mobile Clients

Each time a client connects to the back-end, its level
of trust needs to be established. When a client first
connects to the back-end, Fides accomplishes this as
shown in Fig. 4:

1. The client announces its presence to the back-end
over a TLS connection (server-authenticated only).

2. The back-end generates a random challenge.

3. The challenge is sent to the client.

4. The client generates a key, feeds the challenge to
the hardware, obtains an attestation certificate, and
resets the TLS connection.

5. The client establishes a new TLS session (mutu-
ally authenticated) to the back-end, using the newly
generated key and the attestation certificate as cre-
dentials.

6. The back-end verifies the attestation result, con-
tained in the client’s TLS certificate.

7. The back-end matches the attestation result against
a policy (see below).

8. The back-end informs the client whether access is
granted or not.



Figure 4: Initial connection between client and back-end.

Subsequent connections only require steps 5–8 as
part of regular connectivity establishment between cli-
ent and server. Thus, Fides does not require invasive
changes to either client or server logic.
A client is considered trustworthy if its attestation res-
ult proves that (a) the client application itself has not
been modified, (b) that it is running on an unmodified
base system (c) whose integrity is verified by a trusted
hardware module. In reality however, trust is not bin-
ary, but is often modelled in a more granular manner.
Fides accomplishes this by providing the possibility to
match attestation results against policies, which specify
a trust level based on attestation values.

The most important property is the security level of
the attestation and keymaster implementation, which
takes a value of software, TEE, or HSM. As argued
before, a software-based attestation result is not con-
sidered trustworthy. An initial level of trust can thus be
assigned based on whether a TEE or an HSM is present
on a device. Further nuances of the level of trust can
be defined by interpreting the version of the operating
system and the security patch level.

5 RELATED WORK

Primarily utilised on the desktop, Intel’s Software
Guard Extensions (SGX) have been extensively dis-
cussed in literature: Compared to Android’s TEE im-
plementation, Intel’s SGX can be used to run arbitrary
applications in a separate, trusted part of the CPU (in-
side a so called secure enclave). SGX also features
remote attestation capabilities, although these require
contacting an Intel-run service. Initially, SGX was de-
signed to run only critical parts of an application in
the secure environment (Hoekstra et al., 2013). Since
then, various efforts have been made to allow unmodi-
fied legacy applications to work in the secure enclave.
Haven (Baumann, Peinado and Hunt, 2014) uses a
Windows-based library operating system inside the en-
clave to provide the functionality needed for full applic-

ation binaries. SCONE (Arnautov et al., 2016) is an ap-
proach allowing Docker containers to run inside SGX.
Graphene-SGX (Tsai, Porter and Vij, 2017) is a more
modular library OS based on Linux. PANOPLY (Shinde
et al., 2017) introduces micro-containers, which makes
it possible to split up applications into different con-
tainers, reducing the size of each unit.
These efforts show that there is a real demand for run-
ning complex, or even unmodified applications in a
trusted environment, although no unified solution ex-
ists. Achieving this goal is notoriously difficult because
(compared to modern mobile platforms like Android)
no comprehensive security concept that shields a sys-
tem from modifications is in place. Consequently, sig-
nificantly more effort is required to reach a state where
an application can be executed on a desktop system
in a trusted state due to the fundamental design dif-
ferences and security concepts compared to mobile
environments. Our approach, on the other hand, utilises
the security concept of modern Android versions to
its fullest and thus enables unmodified applications to
harness the platform’s complete software and hardware
feature set. With Android being the dominant mobile
end-user platform, Fides covers a wide area of practic-
ally relevant applications and is ready to use on a vast
amount of consumer devices. Moreover, the certificate-
based attestation process makes it possible to re-use
any PKI-library of choice, compared to the SGX re-
mote attestation workflow based on elaborate protocols,
always mandating a connection to an Intel-run service.

Prünster, Fasllija and Mocher (2019) also work with
Android’s key attestation to increase the security prop-
erties of decentralised peer-to-peer networks. Their ap-
proach is tailored to defeat Sybil and eclipse attacks.
Nevertheless, the authors also argue that an Android
system can be trusted if certain properties are attested
by hardware. In effect, their approach reduces Android
phones to “not much more than a universally trusted
smartcard” (Prünster, Fasllija and Mocher, 2019). We,
however, aim to provide a more universal solution to
the problem of trusting mobile clients and therefore
provide a general extension to the current Android se-
curity model that is not bound to a specific system
architecture.

6 CONCLUSIONS

This work presented Fides, which solves the issue of
reliably establishing trust in Android clients running
in unmanaged environments. The proposed scheme
provides a real improvement over existing solutions
based on heuristics such as SafetyNet or root checks.
We have verified that a variety of applications pro-



cessing critical data (such as PayPal and even Google
Pay) do not notice system modifications performed
through Magisk (when enabling Magisk Hide and re-
packaging Magisk Manager), while Fides reliably de-
tects an unverified boot chain. As a consequence of
the verifiably unaltered system state, software-based
security features like SELinux can also be expected to
be working as intended.

In summary, it is now possible for service oper-
ators to establish trust in mobile clients and reliably
deny access to compromised instances, even in cases
where Google’s own protection mechanisms fail to do
so. In case exploits are an issue for certain sensitive
applications, Fides can be configured to only trust fully
patched devices (a property which cannot be spoofed
in software, since it is attested by the hardware). It is
therefore easily possible to trade off compatibility for
increased security. Our freely available libraries can
easily be integrated into the connectivity establishment
workflows of existing services, as it only relies on TLS.

REFERENCES

AOSP (17th Apr. 2018). Protecting against Security Threats
with SafetyNet. U R L: https://developer.android.com/
training/safetynet/ (visited on 11/01/2019).

AOSP (23rd Jan. 2019a). Android keystore system. U R L: ht
tps://developer.android.com/training/articles/keystore
(visited on 20/02/2019).

AOSP (7th May 2019b). Distribution dashboard. U R L: https:
//developer.android.com/about/dashboards/ (visited on
10/05/2019).

AOSP (2019c). Android Keystore - Version Binding. U R L:
https://source.android.com/security/keystore/version-
binding (visited on 20/02/2019).

AOSP (2019d). Security-Enhanced Linux in Android. U R L:
https://source.android.com/security/selinux/ (visited on
19/02/2019).

AOSP (2019e). Trusty TEE. U R L: https://source.android.
com/security/trusty/ (visited on 11/01/2019).

Arnautov, Sergei et al. (2016). ‘SCONE: Secure Linux Con-
tainers with Intel SGX’. In: OSDI 2016. USENIX Asso-
ciation, pp. 689–703.

Baumann, Andrew, Marcus Peinado and Galen C. Hunt
(2014). ‘Shielding Applications from an Untrusted Cloud
with Haven’. In: OSDI 2014. USENIX Association,
pp. 267–283.

Cooijmans, Tim, Joeri de Ruiter and Erik Poll (2014). ‘Ana-
lysis of Secure Key Storage Solutions on Android’. In:
Security and Privacy in Smartphones & Mobile Devices
– SPSM@CCS. ACM, pp. 11–20.

Desnos, Anthony and Geoffroy Gueguen (2011). ‘Android:
From Reversing to Decompilation’. In: Proc. of Black
Hat Abu Dhabi, pp. 1–24.

FIDO Alliance (June 2018). Hardware-backed Keystore
Authenticators (HKA) on Android 8.0 or Later Mo-
bile Devices. U R L: https : / / fidoalliance . org / wp -

content / uploads / Hardware - backed Keystore White
Paper June2018.pdf (visited on 14/01/2019).

Google Inc. (18th Apr. 2017). Android 7.0 Compatibility
Definition. U R L: https://source.android.com/compatibili
ty/7.0/android-7.0-cdd.pdf (visited on 20/02/2019).

Google Inc. (8th Feb. 2019). Android 9.0 Compatibil-
ity Definition. U R L: https : / / source . android . com /
compatibility / 9 / android - 9 - cdd . pdf (visited on
20/02/2019).

Hoekstra, Matthew et al. (2013). ‘Using innovative instruc-
tions to create trustworthy software solutions’. In: Work-
shop on Hardware and Architectural Support for Security
and Privacy – HASP. ACM, p. 11.

Huang, Heqing et al. (2013). ‘A Framework for Evaluating
Mobile App Repackaging Detection Algorithms’. In:
Trust and Trustworthy Computing. Ed. by Michael Huth
et al. Berlin, Heidelberg: Springer, pp. 169–186.

Mayrhofer, René et al. (2019). ‘The Android Platform Se-
curity Model’. In: CoRR abs/1904.05572. arXiv: 1904.
05572. U R L: http://arxiv.org/abs/1904.05572.

Prünster, Bernd, Edona Fasllija and Dominik Mocher (July
2019). ‘Master of Puppets: Trusting Silicon in the Fight
for Practical Security in Fully Decentralised Peer-to-
Peer Networks’. In: 16th International Conference on
Security and Cryptography. SciTePress. U R L: https :
//graz.pure.elsevier.com/en/publications/master- of-
puppets-trusting-silicon-in-the-fight-for-practical-sec.
In press.

Ren, Chuangang, Kai Chen and Peng Liu (2014). ‘Droid-
marking: Resilient SoftwareWatermarking for Impeding
Android Application Repackaging’. In: 29th ACM/IEEE
international conference on Automated software engin-
eering, pp. 635–646.

Sabt, Mohamed and Jacques Traoré (2016). ‘Breaking into
the keystore: A practical forgery attack against Android
keystore’. In: European Symposium on Research in Com-
puter Security. Springer, pp. 531–548.

Sadeghi, Alireza et al. (2017). ‘A Taxonomy and Qualitative
Comparison of Program Analysis Techniques for Secur-
ity Assessment of Android Software’. In: IEEE Trans.
Software Eng. 43, pp. 492–530.

Shinde, Shweta et al. (2017). ‘Panoply: Low-TCB Linux
Applications With SGX Enclaves’. In: Network and Dis-
tributed System Security Symposium – NDSS 2017. The
Internet Society.

Tsai, Chia-che, Donald E. Porter and Mona Vij (2017).
‘Graphene-SGX: A Practical Library OS for Unmodified
Applications on SGX’. In: USENIX Annual Technical
Conference 2017. USENIX Association, pp. 645–658.

Zhou, Wu, Xinwen Zhang and Xuxian Jiang (2013). ‘Ap-
pInk: Watermarking Android Apps for Repackaging De-
terrence’. In: Proceedings of the 8th ACM SIGSAC sym-
posium on Information, computer and communications
security - ASIA CCS ’13. New York, USA: ACM Press.

Ziegler, Dominik et al. (July 2018). ‘Spoof-of-Work: Eval-
uating Device Authorisation in Mobile Mining Pro-
cesses’. In: 15th International Conference on Security
and Cryptography. Vol. 2: SECRYPT. Portugal: SciTe-
Press, pp. 380–387.


