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Abstract — Fine grained measurement of electrical en-
ergy consumption in commercial buildings is essential for
improved fault diagnosis and control with impact on the
overall operation as well as user comfort. An open system
architecture is presented for data collection, processing and
communication of measured energy patterns at the local
and aggregated level. The implementation is based on an
embedded development board with current and voltage
sensors, supported by open-source software and packages.
Suitable user and programmatic interfaces allow reliable
bidirectional connection to external automation equipment
and information systems. such as the Building Management
Systems (BMS). Recent advances in advanced algorithms
for time series pre-processing and data-driven modelling
allow good quality in situ predictions for the collected mea-
surements. A relevant example consists of neural network
based learning systems which are able to provide accurate
hour-ahead and day-ahead predictions that contribute to
reduction of peak demand with economic and environmental
impact. Integration of such platforms in higher-level Cyber-
Physical Energy Systems (CPES) is further discussed.
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I. INTRODUCTION

The Internet of Things (IoT) is composed of large
numbers of embedded computing devices with network
connectivity. These have enabled large scale granular
monitoring of the physical world in many types of ap-
plications. This leverages a significant increase in ca-
pabilities along with a decrease in size of electronic
components: microcontrollers, sensors, low-power radio
transceivers, along with a decrease in cost and energy
requirements. With regard to improved IoT-enabled in-
telligent systems, the devices provide high quality fine
grained data that can be process by advanced algorithms
for better control. Many learning algorithms are thus
able to gradually identify simple to complex patterns in
the measurement data streams, which are then leveraged
to forecast future behaviour of the observed systems
along with proper optimisation routines for their efficient
and economic operation. With increased constraints on
dependability, safety critical applications in the built en-

vironment, transportation and industry settings can be also
instrumented through IoT.

The implementation of IoT systems in the energy
field ranges from large scale deployments at the (smart)
grid level down to consumer-facing implementation for
commercial and residential units [1]. Of these, we are
interested in exploiting the benefits of fine grained mea-
surement, embedded learning and control for improving
the energy management in large commercial buildings.
For this scenario, small percentage gains in the accuracy
and response time of the consumption forecast can lead to
important savings for the building operator with positive
impact on the grid stability and enabling participation
of the building as a reliable entity in demand response
(DR) schemes, including decision support for renewables
integration [2].

The supporting IT infrastructure is currently being
built up [3] that enables integration between closed-
source proprietary Building Management Systems (BMS)
with open-source software modules and hardware designs.
Also, there is a large amount of good quality public
datasets which can be used to learn black-box models
of energy consumption patterns which can then be sub-
sequently transferred to particular buildings with limited
computational overhead for incremental training.

Main contributions of the work are listed next:

• development and enhancement of an embedded en-
ergy management system with the ability to run
based on open-source technology;

• experimental results for day-ahead and week-ahead
building energy forecasting, including anomaly de-
tection, using previously trained and validated au-
toregressive neural network architectures.

The rest of the paper is structured as follows. Section
2 discusses relevant related work for energy monitoring
and management devices for smart buildings. Section 3
presents the reference system architecture, based on a
commercial device with extensions to support on-line
learning methods for in situ forecasting of energy con-
sumption. Section 4 illustrates the prediction of building



energy consumption based on neural network learning
algorithms. The paper is concluded in Section 5 with out-
look on further experimental evaluation and deployment
of the system.

II. RELATED WORK

Several related works are reported which broadly frame
the current context and novelty of our contribution. [4]
presents a control application for an IoT energy meter in
a building. The authors describe in depth the physical real-
isation as well as the supported software primitives which
allow integration with a higher level Building Energy
Management System (BEMS). An alternative solution is
described by [5] which uses industrial PCs in conjunction
with commercial off-the-shelf energy meters, intercon-
nected through standardised communication buses, RS485
serial connection in this case. The supporting IT infras-
tructure including database server, web server and front-
end visualisation and energy management application is
also described. Other types of designs have been identified
in the recent scientific literature, both at the grid level
[6] or as small scale embedded sensor nodes for energy
measurements with low-cost, open-source components.
Many of such systems can be assembled into networks
of energy management devices at the neighbourhood
level [7] with the potential of economies of scale and
redundancy in the system design.

A user-driven domestic energy monitoring system is
described in [8]. The system designed is aimed at raising
awareness of end users by accurate reporting of energy
consumption trends and events. An 8% reduction in
consumption is achieved in the first week of deployment.
For industrial applications, a remote energy monitoring
unit design is provided by [9]. The unit is evaluated in a
manufacturing scenario on a pilot flexible assembly line
system for typical production energy optimisation in re-
lation to existing key performance indicators (KPIs). [10]
discusses the key aspects relating to feature engineering
of input data for energy prediction. Various types of auto-
encoder systems are evaluated to extract relevant features
from historic energy consumption data in an automated
fashion which automates and mitigates the challenge of
unique building characteristics and inherent consumption
variability. The potential which is highlighted aims at
bridging the gap between black-box neural network mod-
els and domain specialist acceptance of the predictions.

The current work is also complementary to the pre-
vious contributions in [11], [12], [13] where extensive
work has been carried out in deriving suitable black-box
models. The techniques which were investigated ranged
from conventional ARIMA system identification to neural
network algorithms. In the current situation we aim at
evaluating porting the algorithms on low-power embedded
platforms for in situ forecasting with support from an
external learning infrastructure.

III. SYSTEM ARCHITECTURE

An energy management system is designed to improve
the monitoring and control of energy-related usage, and
local generation if applicable, leading to an increase in
both energy and cost savings. Using an energy manage-
ment system, problems of collecting, transmitting, saving,
and controlling of the aggregate data in energy running
processes can be solved by using different technologies
such as smart meters, communication networks, software
applications, as well as cloud databases for data storage.

The electrical load system architecture for an electrical
power monitoring system is first discussed. Figure 1
presents a schematic diagram of the architecture of the
electrical system monitoring in which data is collected
from smart energy meter and displayed on web page.
The proposed system is suitable for data collection and
control the load. The monitoring system was installed
in a building within the university with the goal of
capturing aggregated loads that can be pre-processed and
then input into a learning algorithm for pattern detection
and forecasting.

The main components of the monitoring system are
identified and further presented.

• Voltage & Current Sensors - current transformers
(CT) sensors are used for measuring alternating
current and they are particularly useful for measuring
building electricity consumption. The sensors collect
energy consumption data of electrical appliances
every 10 seconds and send the data to the data
collector.

• The Smart Energy Meter is an embedded system
which incorporates a microcontroller in its imple-
mentation. The main purpose of the microcontroller
is to simplify the system design and provide flex-
ibility. The Smart Energy Meter that we used for
the architecture is called emonPi and is an open-
hardware Raspberry Pi 3 and also Arduino based
web-connected energy and environment monitor-
ing unit. EmonPi will collect electricity usage data
from CT sensors and transfer data wirelessly to
the main controller and a computer, cloud server
or tablet/mobile phone. The hardware architecture
of the emonPi consists of one AC Voltage Input
designed for a 9V AC power adapter, Arduino com-
patible ATmega328P, RJ45 connector for connecting
DS18B20 temperature sensors, IRQ pulse counting
sensor, and access to power and spare I/O including
analog and PWM, 433 MHz Radio send/receive
module, I2C LCD (16x2) with control push button,
Raspberry Pi Shutdown Button.

• Real-time data processing and data analysis -
interprets data and stores in cloud server detailed
overview of the energy consumption, interactive and
customized graphs that give visual access to instant
data. Also, using different analytical techniques, sev-
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Figure 1: System architecture for electrical load monitoring

eral benefits become possible, such as gaining insight
into individual equipment power use, identifying the
equipment that is operating unnecessarily, reducing
costs by eliminating unnecessary consumption or
generating cost savings from demand analyses.

IV. RESULTS WITH NEUTRAL NETWORK
FORECASTING OF ELECTRICAL LOADS

We present the reference neural network structure and
experimental results on a building energy dataset with day
ahead and week ahead prediction. The dataset contains
the energy consumption in three university buildings from
Zurich, Europe, over one year period. The sampling time
for this dataset is one hour and the dataset consists of
8.760 data points. The main argument for choosing these
buildings is that they allow a comparison between three
types of dominant energy usage patters: offices - denoted
as Building 1, classrooms - Building 2 and laboratories
- Building 3, with the same type of underlying model
structure for forecasting. The data is publicly available
using the Building Data Genome repository [14].

For training a prediction model we chose a standard
feed-forward Autoregressive Neural Network (NAR) with
a sigmoid transfer function in the hidden layers and a
linear transfer function in the output layer. The hidden
layers outputs are calculated using the equation 1 [15]:

z =

n∑
i=1

wixi + bi, (1)

where X : xi, i = 1 : n represents the input data set and
W : wi, i = 1 : n represents the weight set, bi represents
the bias values of the network.

The hidden layer outputs are fed into an activation
function to calculate the final value. The sigmoid function
in the hidden layers represents the activation function that
we use for our prediction models and is given by the
following relationship:

σ(z) =
1

1 + exp(−z)
(2)

The network has the following structure: 1 input layer,
4 hidden layers with 8, 8, 16 and 16 neurons, respec-
tively and 1 output layer with one neuron. The structure
was chosen based on a previous study where the best
performance for load forecasting in such buildings was
obtained and validated for this configuration [13].

For training the network the Levenberg - Marquardt
back-propagation learning algorithm (LMBP) was used.
LMBP algorithm is robust and one of the most widely
used optimization algorithms for neural network training
procedures. The algorithm represents a combination of
two methods: the gradient descent and the Gauss-Newton.
In literature is demonstrated that for networks that contain
up to a few hundred weights, the Levenberg-Marquardt
algorithm will have the fastest convergence.

The update relationship is formulated as follows:

[JTWJ + λdiag(JTWJ)]hlm = JTW (y − ŷ) (3)

where the values of λ are normalized to the values
of JTWJ . This formulates a non-linear least squares
problem with the goal of finding the optimal weights W
that minimise the distance from the outcome across all
training examples.
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Figure 2: Predicted data - 1 day (Building 1)
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Figure 3: Predicted data - 1 week (Building 1)

Figure 2 and Figure 3 present two detailed plots with
the evolution of predicted data for Building 1 short term
load forecasting. The graphic illustrates also the absolute
percentage error (APE) interval over one day and one
week period of time. APE is calculated as:

APE = (real − predicted)/real ∗ 100 (4)

Figure 4 presents the correlation between active power,
blue plot, and the outside temperature, red plot. This can
offer useful information for building the forecast models
especially in climates where conditioning the indoor air
requires vast amounts of energy due to extreme outdoor-
indoor temperature differences.

Regarding the model performance analysis we used the
following metrics: Mean Absolute Error (MAE), Mean
Squares Error (MSE), Mean Absolute Percentage Error
(MAPE) and Mean Squared Percentage Error (MSPE).
The metrics are described by the following equations:
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Figure 4: Active energy vs. outside temperature data sets

MAE =

∑n
1 |Yt − Y pt|

n

MSE =

n∑
1

(Yt − Y pt)2

n

MAPE =
1

n

n∑
1

∣∣∣∣Yt − Y ptYt

∣∣∣∣ 100
MSPE =

1

n

n∑
1

(∣∣∣∣Yt − Y ptYt

∣∣∣∣ 100)2

(5)

where n represents the number of samples, Yt the actual
data and Y pt the predicted data.

Table I presents the obtained values of each criteria
for the three data sets. The first data set represents the
evolution of energy consumption for the office dominant
usage pattern, the second one is dominated by laboratory
spaces and the third by classroom usage. Analysing the
values of each error metric it can be easily noticed that
the performance of the network can be considered good
in terms of load forecasting for the first and third data
set with 0.83% and 1.56% respectively. In case of the
second data set the obtained error values are bigger, with
a MAPE of around 4%. We can attribute this to the
amplitude variations are steeper due to the classroom
consumption pattern. This can be addressed by increasing
the number of neurons in the hidden layers in a more
complex network structure that could better capture the
transitions in consumption from empty to full classes.

Table I: NAR forecasting performances

MAE MSE MAPE(%) MSPE(%)
Building1 0.8078 2.7618 0.8289 2.7226
Building2 2.7131 25.8681 4.0495 49.6436
Building3 0.9783 3.9365 1.5576 9.4545

Figures 5, 6 and 7 presents measured real data versus
predicted data over 30 day period for the three buildings



within a confidence interval CI defined by the following
formula:

CI =MA± 1.96 ∗ σ2 (6)

where MA is the moving average defined from the data
set by taking the arithmetic mean of subsequences of 24
terms which means one day period dataset. σ represents
the standard deviation of the sample:

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x̂)2 (7)

where, xi are the observed values of the data set,
x̂ is the mean value of the observations and N is the
number of observations in the data set. This results in
the 95% confidence interval presented in Figures 5-7. It
can be noticed that some values exceed the upper/lower
limit which can be considered anomalies as a mismatch
between the actual and predicted value. These prediction
inconsistencies can be leveraged in order to improve the
energy control strategies at the local level and contribute
to the overall balancing of the grid, by mitigating peaks.

Figure 5: Real vs. predicted data (Building 1) - 95%
confidence interval

All experiments of the current research has been
performed on a 3.4 GHz i7 quad core processor and
8GB RAM and for the software implementation it was
used Matlab. The integration with the embedded energy
management device is realised through bidirectional data
flows for updating the models based on newly collected
data and for obtaining the forecasts that are then used to
control energy intensive devices. A practical use case is
related to the limiting of chiller power during hot summer
days while accounting for user comfort decrease. Since
Python is becoming a popular programming language for
engineering and scientific applications and also because is
increasingly used for technical computing and statistical
learning for further research we intend to port to Python

Figure 6: Real vs. predicted data (Building 2) - 95%
confidence interval

Figure 7: Real vs. predicted data (Building 3) - 95%
confidence interval

and also from desktop PC to the embedded computing
module.

V. CONCLUSION

The paper presented the concept of an embedded en-
ergy management device with load forecasting capabil-
ities in large commercial buildings. The current design
allows real-time data acquisition of energy consumption
and, in connection with an external system for training
models of energy consumption on large databases, can
close the loop and partially control energy consumption
in accordance to user-specified objectives. The models can
also be used for tasks such as identifying certain top con-
sumers [16] or recurring patterns that enable intelligent
reduction of energy use. By moving the prediction closer
to the source the lag associated to hierarchical and cloud
levels of data processing and their cost can be mitigated.
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