More Practical Single-Trace Attacks on the Number Theoretic Transform Peter Pessl, Robert Primas Graz University of Technology LATINCRYPT 2019. October 02 Power consumption trace of RSA decryption Single-trace attacks are still a prime threat! ## But RSA is old news anyway... - Lattice-based cryptography - promising post-quantum replacement - implementations: fast and constant time / control flow - Do we still need to worry about single-trace attacks' - no more instruction leakage - protection efforts towards differential (multi-trace) attacks ## But RSA is old news anyway... - Lattice-based cryptography - promising post-quantum replacement - implementations: fast and constant time / control flow - Do we still need to worry about single-trace attacks? - no more instruction leakage - protection efforts towards differential (multi-trace) attacks ## Previously: yes, but - Our previous work: single-trace attack on the NTT - Number Theoretic Transform, common in many lattice schemes - combine *template attacks* (device profiling) with *belief propagation* - but... - attacked variable-time implementation - lacktriangle large templating effort (pprox a million multivariate templates ## Previously: yes, but - Our previous work: single-trace attack on the NTT - Number Theoretic Transform, common in many lattice schemes - combine template attacks (device profiling) with belief propagation - but... - attacked variable-time implementation - large templating effort (\approx a million multivariate templates) ## Previously: yes, but - Our previous work: single-trace attack on the NTT - Number Theoretic Transform, common in many lattice schemes - combine *template attacks* (device profiling) with *belief propagation* - but... - attacked variable-time implementation - large templating effort (\approx a million multivariate templates) #### Can we do better? #### Our Contribution - Improve upon previous attack - several improvements to belief propagation in this context - change targets: encryption instead of decryption - Attack constant-time ASM-optimized Kyber implementation - massively reduced templating effort #### Our Contribution - Improve upon previous attack - several improvements to belief propagation in this context - change targets: encryption instead of decryption - Attack constant-time ASM-optimized Kyber implementation - massively reduced templating effort ### "Noisy ElGamal" with polynomials in $\mathbb{Z}_q[x]/\langle x^n+1\rangle$ Key Generation: generate small error polynomials s, e $$t = a \cdot s + e$$ $$pk = (a, t), sk = s$$ Encryption: generate small error polynomials r, e_1, e_2 $$c_1 = a \cdot r + e_1$$ $$c_2 = t \cdot r + e_2 + m$$ "Noisy ElGamal" with polynomials in $\mathbb{Z}_q[x]/\langle x^n+1\rangle$ Key Generation: generate small error polynomials s, e $$t = a \cdot s + e$$ pk = (a, t) , sk = s Encryption: generate small error polynomials r, e_1 , e_2 $$c_1 = a \cdot r + e_1$$ $$c_2 = t \cdot r + e_2 + m$$ "Noisy ElGamal" with polynomials in $\mathbb{Z}_q[x]/\langle x^n+1\rangle$ Key Generation: generate small error polynomials s, e $$t = a \cdot s + e$$ $$pk = (a, t), sk = s$$ Encryption: generate small *error polynomials* r, e_1 , e_2 $$c_1 = a \cdot r + e_1$$ $$c_2=t\cdot r+e_2+m$$ "Noisy ElGamal" with polynomials in $\mathbb{Z}_q[x]/\langle x^n+1\rangle$ Key Generation: generate small error polynomials s, e $$t = a \cdot s + e$$ $$pk = (a, t), sk = s$$ Encryption: generate small *error polynomials* r, e_1 , e_2 $$c_1 = a \cdot r + e_1$$ $$c_2=t\cdot r+e_2+m$$ #### Number Theoretic Transform - Naive polynomial multiplication: $\mathcal{O}(n^2)$ - Better: Number Theoretic Transform (NTT) - \approx FFT in $\mathbb{Z}_q[x]$, runtime $\mathcal{O}(n \log n)$ - **pointwise mult. of NTT-transformed:** $a \cdot b = INTT(NTT(a) \circ NTT(b))$ #### Number Theoretic Transform - Naive polynomial multiplication: $\mathcal{O}(n^2)$ - Better: Number Theoretic Transform (NTT) - \approx FFT in $\mathbb{Z}_q[x]$, runtime $\mathcal{O}(n \log n)$ - pointwise mult. of NTT-transformed: $a \cdot b = INTT(NTT(a) \circ NTT(b))$ ## Butterfly Butterfly = 2-coefficient NTT ## **Butterfly Network** #### Recover secret NTT input with: - Profile power consumption of mult - Match profiles (templates) for probability distribution #### Recover secret NTT input with: - Profile power consumption of mult - Match profiles (templates) for probability distribution #### Recover secret NTT input with: - Profile power consumption of mult. - Match profiles (templates) for probability distribution #### Recover secret NTT input with: - Profile power consumption of mult. - Match profiles (templates) for probability distribution #### Recover secret NTT input with: - Represent NTT with a graphical mode - Pass beliefs along edges and update - Repeat until convergence reached #### Recover secret NTT input with: - Represent NTT with a graphical mode - Pass beliefs along edges and update - Repeat until convergence reached #### Recover secret NTT input with: - Represent NTT with a graphical model - Pass beliefs along edges and update - Repeat until convergence reached #### Recover secret NTT input with: - Represent NTT with a graphical model - Pass beliefs along edges and update - Repeat until convergence reached #### Recover secret NTT input with: - Represent NTT with a graphical model - Pass beliefs along edges and update - Repeat until convergence reached #### Recover secret NTT input with: - Represent NTT with a graphical model - Pass beliefs along edges and update - Repeat until convergence reached #### Recover secret NTT input with: - Represent NTT with a graphical model - Pass beliefs along edges and update - Repeat until convergence reached #### Recover secret NTT input with: - Represent NTT with a graphical model - Pass beliefs along edges and update - Repeat until convergence reached #### Recover secret NTT input with: - Represent NTT with a graphical model - Pass beliefs along edges and update - Repeat until convergence reached ## Practicality? - Evaluation on non-constant-time implementation - timing information not needed per se - ...but still aids attacks - Requires powerful attacker - lacktriangleright pprox 1 million input combinations for modular multiplication - each one requires multivariate template - ... very high templating effort ## Practicality? - Evaluation on non-constant-time implementation - timing information not needed per se - ...but still aids attacks - Requires powerful attacker - lacktriangleright pprox 1 million input combinations for modular multiplication - each one requires multivariate template - ...very high templating effort ## **Decreased Templating Effort** # **Decreased Templating Effort** # Previously Target multiplication 1 million multivariate templates # **Decreased Templating Effort** #### Previously Target multiplication 1 million multivariate templates # Now \hat{x}_0 \hat{x}_0 \hat{x}_0 \hat{x}_1 Target memory loads and stores 14 univariate Hamming-weight templates # Are we done? #### Are we done? # Decryption $$m \approx c_2 - \text{INTI}(\text{NTI}(s) \circ \text{NTI}(c_1))$$ Recover INTT input, compute s INTT input: $[0, q - 1]^n$ #### Encryption $$c_1 = \text{INTT}(\text{NTT}(a) \circ \text{NTT}(r)) + e_1$$ Recover r , compute $m \approx c_2 - t \cdot r$ r is small: e.g., $[-2, 2]^n$ # Decryption $$m \approx c_2 - \text{INTT}(\text{NTT}(s) \circ \text{NTT}(c_1))$$ Recover INTT input, compute s INTT input: $[0, q-1]^n$ #### Encryption ``` c_1 = \text{INTT}(\text{NTT}(a) \circ \text{NTT}(r)) + e_1 Recover r, compute m \approx c_2 - t \cdot r r is small: e.g., [-2, 2]^n ``` #### Decryption $m \approx c_2 - \text{INTT}(\text{NTT}(s) \circ \text{NTT}(c_1))$ Recover INTT input, compute sINTT input: $[0, q-1]^n$ #### Encryption $c_1 = \text{INTT}(\text{NTT}(a) \circ \text{NTT}(r)) + e_1$ Recover r, compute $m \approx c_2 - t \cdot r$ r is small: e.g., $[-2, 2]^n$ # Decryption $$m \approx c_2 - \text{INTT}(\text{NTT}(s) \circ \text{NTT}(c_1))$$ Recover INTT input, compute s INTT input: $[0, q - 1]^n$ #### Encryption $$c_1 = \text{INTT}(\text{NTT}(a) \circ \text{NTT}(r)) + e_1$$ Recover r , compute $m \approx c_2 - t \cdot r$ r is small: e.g., $[-2, 2]^n$ Attack simulations already work, but we can do better... - $X_1 \rightarrow X_0$ - $X_0 \rightarrow X_1$ - Positive feedback loop - overconfidence, non-covergence - short loop, deterministic operations - $X_1 \rightarrow X_0$ - $X_0 \rightarrow X_1$ - Positive feedback loop - overconfidence, non-covergence - short loop, deterministic operations - $X_1 \rightarrow X_0$ - $X_0 \rightarrow X_1$ - Positive feedback loop - overconfidence, non-covergence - short loop, deterministic operations - $X_1 \rightarrow X_0$ - $X_0 \rightarrow X_1$ - Positive feedback loop - overconfidence, non-covergence - short loop, deterministic operations # **Butterfly Factors** # **Butterfly Factors** # **Butterfly Factors** # Still... NTT with 4 coefficients # Still... NTT with 4 coefficients # Still... NTT with 4 coefficients Still, shortest loops eliminated #### Attack Simulations - Leakage simulations - Hamming-weight with Gaussian noise - Tripling of σ^2 (SNR) # Attacking a Real Device #### Power Analysis of an ARM Cortex M4 - ASM-optimized constant-time Kyber - Profiling: 213 univariate HW templates - Attack: matching and run BP - Lattice reduction for error correction - Overall success rate: 95% # More Results - Analyzed masking countermeasure - adaptation required - attacks still possible, but at much lower noise - Analysis of implementation techniques - lazy reductions, larger input ranges - reflect implementation techniques in graph #### More Results - Analyzed masking countermeasure - adaptation required - attacks still possible, but at much lower noise - Analysis of implementation techniques - lazy reductions, larger input ranges - reflect implementation techniques in graph #### More Results - Analyzed masking countermeasure - adaptation required - attacks still possible, but at much lower noise - Analysis of implementation techniques - lazy reductions, larger input ranges - reflect implementation techniques in graph # More Practical Single-Trace Attacks on the Number Theoretic Transform Peter Pessl, Robert Primas Graz University of Technology LATINCRYPT 2019. October 02