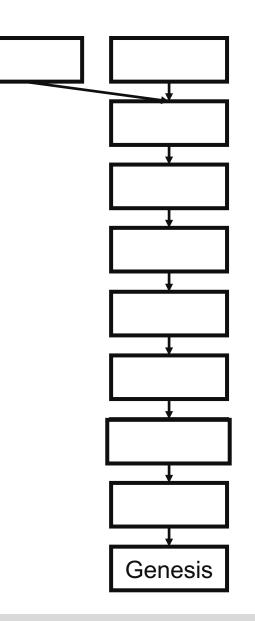


SCIENCE PASSION TECHNOLOGY

A Correctable Public Blockchain

Alexander Marsalek | <u>amarsalek@iaik.tugraz.at</u> Thomas Zefferer | <u>tzefferer@a-sit.at</u>


Institute of Applied Information Processing and Communications Graz University of Technology, Austria

06.08.2019

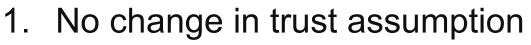
Background

- What are:
 - Miners
 - Transactions
 - Blocks
 - Proof-of-Work
 - Block rewards
 - Consensus algorithms

Public Blockchain – Key Features

- Transparency
- Integrity
- Censorship resistance
- Robustness
- Prevent fraud
- Eliminate TTP
- Immutability

LIAIK Main Goal


5

Create correctable blockchain that allows to correct erroneous data and to delete malicious data without changing the trust assumption!

Subgoals

6

- No special or trusted nodes
- No secret keys
- 2. Selective removal of data Make it inaccessible
- 3. Redaction based on distributed consensus
- 4. Accountability
- 5. Scalability
- 6. Robustness dynamic changes in miner set
- 7. Prevent centralization
- 8. Editing of money transactions

- 1. No change in trust assumption
- 2. Selective removal of data
 - Remove data from ledger
 - Making it inaccessible
- 3. Redaction based on distributed consensus
- 4. Accountability
- 5. Scalability
- 6. Robustness dynamic changes in miner set
- 7. Prevent centralization
- 8. Editing of money transactions

IIAIK

8

- 1. No change in trust assumption
- 2. Selective removal of data Make it inaccessible
- 3. Redaction based on distributed consensus
 - Majority decision
- 4. Accountability
- 5. Scalability
- 6. Robustness dynamic changes in miner set
- 7. Prevent centralization
- 8. Editing of money transactions

IIAIK

9

- 2. Selective removal of data Make it inaccessible
- 3. Redaction based on distributed consensus
- 4. Accountability
 - Changes must be replicable
- 5. Scalability
- 6. Robustness dynamic changes in miner set
- 7. Prevent centralization
- 8. Editing of money transactions

IIAIK

10

- 1. No change in trust assumption
- 2. Selective removal of data Make it inaccessible
- 3. Redaction based on distributed consensus
- 4. Accountability
- 5. Scalability
 - Must work independent from the number of miners
- 6. Robustness dynamic changes in miner set
- 7. Prevent centralization
- 8. Editing of money transactions

IIAIK

11

- 1. No change in trust assumption
- 2. Selective removal of data Make it inaccessible
- 3. Redaction based on distributed consensus
- 4. Accountability
- 5. Scalability
- 6. Robustness
 - Must be robust against changes in the miner set
- 7. Prevent centralization
- 8. Editing of money transactions

IIAIK

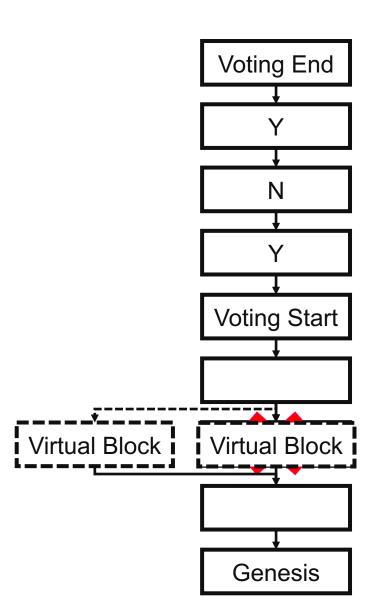
12

- 1. No change in trust assumption
- 2. Selective removal of data Make it inaccessible
- 3. Redaction based on distributed consensus
- 4. Accountability
- 5. Scalability
- 6. Robustness dynamic changes in miner set
- 7. Prevent centralization
 - No shared-key approach
 - Every miner should have power proportional to her computation power
- 8. Editing of money transactions

IIAIK

13

- 1. No change in trust assumption
- 2. Selective removal of data Make it inaccessible
- 3. Redaction based on distributed consensus
- 4. Accountability
- 5. Scalability
- 6. Robustness dynamic changes in miner set
- 7. Prevent centralization
- 8. Editing of money transactions
 - It should be possible to remove malicious data, also from payment transaction



Idea

IIAIK

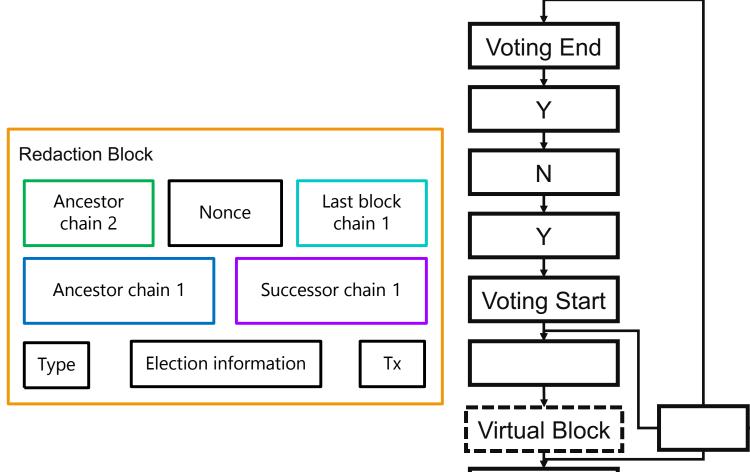
14

- Create election TX
- Miner validate TX against policy
- Voting starts
- Majority decides
- If won:
 - Replace block with virtual block
- Security?
 - Use second chain

Normal Block

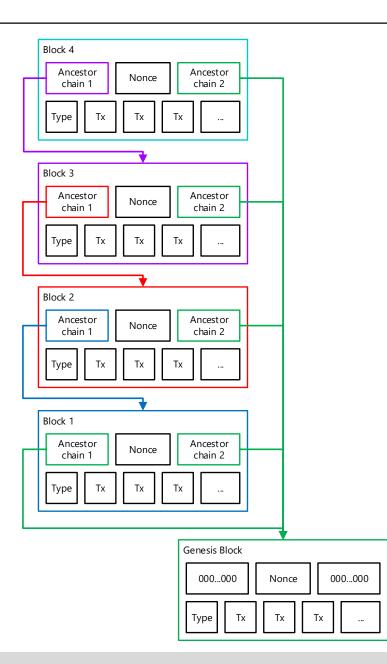
2 new fields

- Type
 - Normal block
 - Virtual block
- Ancestor chain 2
 - Points to last Redaction block

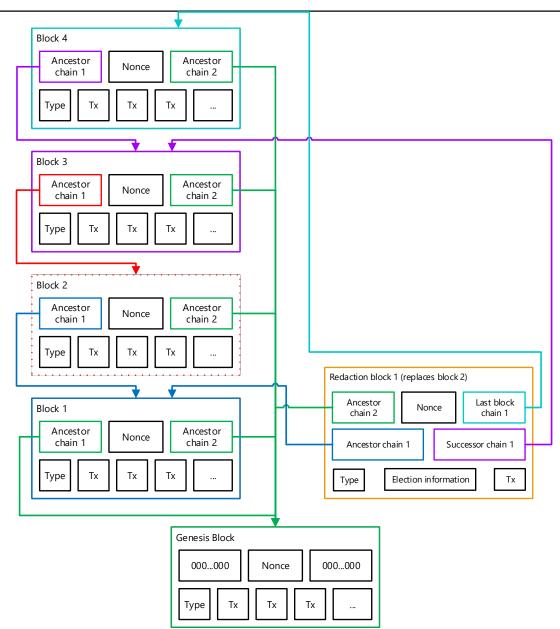

Normal Block										
	Ancestor chain 1			Nonce			Ancestor chain 2			
Ту	/pe	Тх		Tx		T:	x			

TU Graz

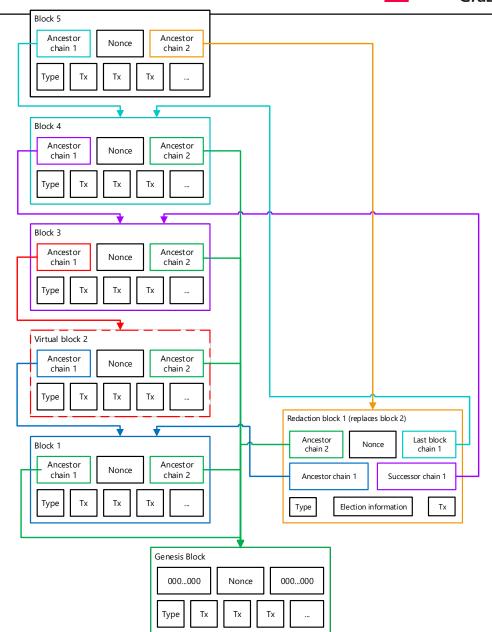
Genesis


Redaction Block

- Ancestor chain 2
- Last block chain 1
- Ancestor chain1
- Successor chain 1
- Election information
- All block in chain 2 are of this type



- Voting to decide which data to delete
- Virtual block replaces original block
- Second (linked) chain approves virtual block



- Voting to decide which data to delete
- Virtual block replaces original block
- Second (linked) chain approves virtual block

- Voting to decide which data to delete
- Virtual block replaces original block
- Second (linked) chain approves virtual block

Added Rules

IIAIK

21

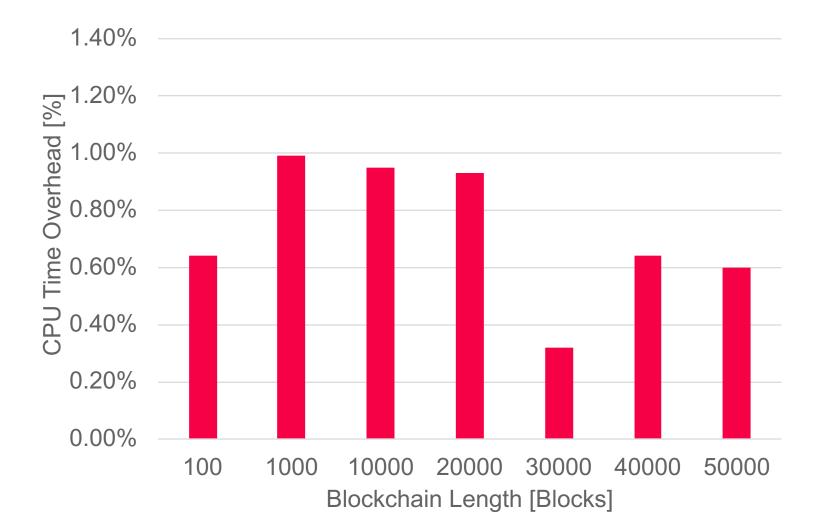
When voting is over

- Won: Next block must be a redaction block
- Lost: Next block must be a normal block

Normal blocks always reference last redaction block

Redaction blocks must build a valid chain

- All virtual blocks must be part of the main chain
- Virtual blocks are seen as having the hash of the block they replace


Evaluation

Evaluation Setup

- Different blockchain lengths
 - 100, 1000, 10k, 20k, 30k, 40k, 50k blocks
- 1% of blocks are being corrected

Alexander Marsalek 06.08.2019

LIAIK

24

Conclusions

- Approach allows to edit or remove data from public blockchain
- Deletion based on majority decision
 - Trust assumptions unchanged
- Only small performance overhead