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Abstract—Many modern applications require users to manage
keys on their own devices, which, in case of device loss or failure,
may lead to serious consequences, e.g., losing access to their
Bitcoin wallet. These applications need a secure and user-friendly
strategy that protects users from losing keys while preserving
the keys’ confidentiality. Fortunately, password-protected secret
sharing (PPSS) can be used to design such a key-loss recovery
strategy: It enables users to split their keys into shares, to
distribute these shares across third parties and, if necessary, to
recover keys via password authentication. However, deploying
PPSS in a key-loss recovery strategy leaves the following practical
questions unanswered: Which third parties should a user pick
to diversify the trust? How can these third parties be recruited?
And: How can other applications benefit from such a strategy?

In this paper, we develop a framework for key-loss recovery,
which allows users to distribute shares in a hierarchy that is
aligned with relevant trust factors. As part of the framework, we
propose a management app that supports users in building and
managing hierarchical trust policies, and that offers its service to
other applications. To convince organizations to operate servers,
we implement our framework with a focus on server-side cost-
efficiency. We extend a PPSS scheme with hierarchical trust
policies, add efficient prevention of online guessing, and measure
the performance of the overall system at-scale on AWS. The cost
projection shows that deploying our framework is inexpensive:
40 organizations, each operating server resources for less than
$20, support 50 million users when splitting and recovering their
keys.

Index Terms—password-protected secret sharing; key-loss re-
covery; trust policy

I . I N T R O D U C T I O N

Storing keys on the user’s device is a common requirement
for security-related applications. Managing Cryptocurrency
wallets, end-to-end confidential data sharing in the cloud,
challenge-response authentication, and national electronic signa-
ture solutions are a few example applications that require client-
side key management. All these applications face the same
challenge: What if the device storing the user’s keys breaks,
is lost, or gets stolen? Such events are very likely to occur
in large user bases and can lead to disastrous consequences:
Users irretrievably lose their Bitcoins, their encrypted personal
data, or their ability to authenticate, etc. These consequences
need to be prevented with a proper key-loss recovery strategy.

Traditional Approaches. As keys are too large to remember,
traditional recovery approaches rely on a secure location, e.g.,
backing up the key material to a flash drive, or printing it as
QR code on a sheet of paper. However, will the user keep
the flash drive or QR code both secure and available for a

long time until recovery is finally needed? These security and
availability requirements for storage locations can be reduced
by adding a knowledge factor, e.g., by password-encrypting the
keys before storing them in the cloud. As human-memorizable
passwords have limited entropy, the confidentiality of encrypted
keys becomes questionable after a powerful cloud provider had
an extended period of time for offline guessing attacks.

Secret Sharing, introduced by Shamir [1], can be used to
split trust between third parties when recovering from key-loss:
The user splits her key into shares, distributes these shares to
trusted entities (e.g., family members), and, once needed, obtains
a sufficient number of shares to reconstruct her key. The key’s
confidentiality is protected as long as a sufficient number of
distinct parties stay honest. Password-Protected Secret Sharing
(PPSS) [2], [3] extends secret sharing with build-in password-
based authentication: The user supplies a password to the key
splitting process, and the recovery process succeeds only with
the same password. Trusted parties do not learn the password
and cannot impersonate the user. These properties make PPSS
a promising basis for key-loss recovery.
PPSS resembles the concept of Horcruxes from the Harry

Potter universe: Horcruxes are parts (shares) of a person’s
soul (key) that are stored in objects (third parties). After death
(device loss/failure), a Horcrux enables the resurrection of the
person (recovery) via a spell (password). Since Horcruxes are
considered the darkest of all magic, they are reserved for the
elites and not open to the public.

Challenges. Analogous to Horcruxes, PPSS is simply not ac-
cessible for a wide audience; to change this, the following gaps
need to be addressed: A number of trustworthy organizations
need to be convinced to operate PPSS servers, so that users
have sufficient options to choose a subset they trust. Reaching
a trust decision is also not trivial: Users need to understand
their decision and implications of future changes in the servers’
environment (e.g., new laws, company mergers, corruptions) for
a possibly large set of servers operated by various organizations.
Moreover, it is hard to convince users to go through such a
decision process again for each application they are using. In
the long term, users also need to be able to change who they
trust (e.g., when a party broke their trust) or their password
(e.g., because it leaked).

Our Contribution. In this paper, we propose a user-friendly
system for key-loss recovery that contributes to addressing
the above-mentioned challenges when deploying PPSS on a
large-scale in practice. Firstly, our generic framework supports



users in building and maintaining a trust policy. 1) We
propose to organize the trusted parties in a hierarchy along
trust-relevant factors to make the implications of changes more
understandable (e.g., when the law changes impacting multiple
parties). 2) We reduce the burden on users by introducing a
recommender system that suggests hierarchies of trustworthy
parties, which users review and adapt to their liking. 3) A
management app acts as the central point for users to maintain
their trust policies, while various other applications can be
connected to this management app to re-use its key recovery
capabilities. 4) For long-term usage, the framework enables
users to change their trust policy, password, or keys of connected
applications.

Secondly, in the implementation, we focus on addressing
the challenge of convincing organizations to operate a PPSS
server by instantiating our framework to showcase its cost-
efficiency. We 1) introduce the idea of hierarchical PPSS by
integrating compartmented secret sharing [4] with the PPSS
scheme by Abdalla et al. [5], 2) evaluate the performance
of this cryptographic mechanism, 3) describe a mechanism to
prevent online guessing with low input and storage requirements,
and 4) measure the costs of deploying the overall system. A
projection of the costs, based on our measurements, shows it
is very inexpensive to operate servers on a large scale: approx.
$700 is sufficient to deploy a 40-server setup that is capable
of handling 100 million split or recover operations, resulting
in less than $20 per participating organization.

I I . R E L AT E D W O R K

Password-Protected Secret Sharing, introduced by
Bagherzandi et al. [2], extends secret sharing by introducing
a password to authenticate the user without revealing this
password to the servers. Their scheme and initial work from
Camenisch et al. [3] rely on PKI not only during the split
but also recovery phase. In follow-up work, Camenisch et al.
remove the need for a PKI during the recovery phase [6], while
Yi et al. [7] improve performance. Jarecki et al. [8] introduce
the first robust PPSS, which enables a user to validate shares,
and therefore exclude corrupted shares. In their follow-up
work, Jarecki et al. [9], [10] further improve the efficiency of
their schemes at the cost of dropping robustness. Abdalla et
al. [5] improve upon [8] by replacing zero knowledge proofs
and reducing the computation effort to verify shares.

Recovery with Trust-Splitting. Brookner et al. [11] propose
key recovery by splitting the key into segments and storing each
segment at a server. Their approach requires that all servers
remain trusted and available, as losing one segment means
losing the entire key. Huang et al. [12] use Shamir’s secret
sharing and thereby only require a threshold of servers for
recovery. Souza et al. [13] additionally enable users to detect
corrupted shares via publicly verifiable secret sharing. However,
neither [12] nor [13] offer any means for authentication during
recovery, which is crucial to ensure that only authorized parties
obtain shares.

Recovery based on Password-Encryption. A user may
derive a wrapping-key from her password (e.g., PKDF2 [14],

scrypt [15]), use this key to wrap her actual key, and store
the wrapped key in the cloud. As increasing costs for the key
derivation propagate linearly to attackers, this approach only
offers weak protection against cloud attackers who can perform
long-term offline guessing attacks and have several orders of
magnitude more resources.

Recovery based on Biometry. Users may use biometric
cryptosystems (BCSs), such as fuzzy extractors [16] or biohash-
ing [17], to protect keys with their biometric templates (e.g.,
fingerprints). However, BCSs rely on helper data to generate
stable, high-entropy keys [18]. Such helper data cannot be
memorized, must be kept confidential to prevent information
leakage, and need to remain available for recovery, which brings
us again to our initial problem.

I I I . F R A M E W O R K T O R E C O V E R F R O M K E Y- L O S S

This section present our framework based on trust-splitting:
First, we discuss the factors on which the trust depends that
the user puts into a party and propose to organize the user’s
trust hierarchically along those factors. We then introduce a
recommender system that helps users with creating trust policies
and discuss incentives for organizations to offer PPSS servers.
Eventually, we present the framework’s architecture, its data
flow, and considerations for long-term usage.

A. Trust Factors

Our framework relies on splitting a recovery key between
many parties. The goal of the framework is to keep the recovery
key available, even if some shares are lost, and to protect the
key’s confidentiality, even if some parties turn against the user
by colluding. In this section, we discuss how internal and
external trust factors influence a party’s ability to keep shares
confidential and available. We distinguish parties by location
into local shares (stored by the user), social shares (handed to
friends/family), and remote shares (managed by organizations).

Internal Factors. A party’s trustworthiness to keep shares
available and confidential depends on the party’s motivation and
competence. For local shares, we expect users to be motivated
for their own benefit. Social share-holders are also expected to
be motivated in order to maintain the existing trust relationship.
However, as questioned in the introduction, both local and
social shares could get lost due to lack of competence or
dedication. For remote shares, we recommend users to derive
an organization’s motivation and competence from how the
organization handles its core business (e.g., the trust in banks
to handle our money). This relation also works in the other
way: By losing or leaking shares, an organization damages the
trust that was built for its core business. Therefore, users should
select organizations that rely on being trustworthy.

External Factors. Besides motivation and competence,
organizations also depend on external factors influenced by the
environment in which they operate: Firstly, the law may force
organizations to behave against their motivation, e.g., to disclose
sensitive information (c.f. PATRIOT-ACT [19]). To reduce
this risk, organizations from different legal frameworks should
be chosen. Secondly, within an industry sector, organizations



Fig. 1: Architecture and Data Flows Fig. 2: Example Trust Hierarchy

might be compelled to use the same industry-specific software,
procedures, or standards, which might affect multiple servers.
For example, bugs in a widely-used banking software might
allow an attacker to crash or even corrupt multiple servers.
Also, categorizing organizations by industry sectors helps users
to reason about trust aspects in the context of competition or
mergers.

Trust Hierarchy. To minimize exposure to a single trust
factor and its accompanied risk, we propose to diversify the
risk by selecting parties with diverse trust factor characteristics.
As shown in the template of Figure 2, users organize the
trust hierarchically along the described factors, which helps
to understand initial trust relationships and to comprehend the
impact of changes on the chosen trust policy. E.g., if a new
law is passed or an industry-specific software vulnerability is
discovered, a hierarchy visualizes which subtree is affected
and how much of the user’s trust policy remains (supposedly)
trustworthy. Of course, template for hierarchical trust splitting
may be simplified or extended to fit the users’ needs.

B. Supporting Users in Building Trust Policies

Requiring users to define complex trust hierarchies from
scratch represents a daunting task. To reduce the complexity
of this task, we propose recommender systems that offer trust
policies. Users may adapt these policies to their liking instead of
defining them from the ground up. Of course, recommenders
need to be trusted to some degree: They should not try to
manipulate their users with recommendations. As trust decisions
are very user-specific, users need to be able to specify which
recommender they want to use.

Recommender Types. Recommendations might be based on
1) random choices within a predefined shape of the hierarchy,
2) decisions of peers, e.g., what friends and family selected,
3) decisions of the whole user base, or 4) the knowledge of a
group of experts. As experts with a financial motivation might
experience a conflict of interests when organizations aim for
a good placement, voluntary experts without an agenda pose
less risk.

Community-Driven Recommendations. We propose to
adopt recommendations by a community of voluntary experts.

These experts may discuss and agree on recommendations
which contain: A hierarchical categorization of organizations,
trust scores for the individual organizations, and arguments
underpinning these suggestions to facilitate understanding for
users, e.g., based on the organizations’ technical descriptions,
certifications, and track record. As laws change, companies
merge, or news of breaches become public, etc., trust recommen-
dations change over time, which may prompt users to change
the distribution of their shares.

C. Server Recruitment
To enable users to split their data and trust among a set

of chosen servers, a sufficiently large pool of servers needs
to be available. Therefore, an important aspect is convincing
organizations to operate a server, which boils down to a trade-
off between effort and benefit.

Universality. To reduce complexities for servers as well as
users, we aim for a universal framework that can be applied to
a variety of use cases without application-specific changes. On
the one hand, organizations should only need to deploy a single
server without the need for application-specific configurations
and deployments, which would hinder adoption and increase
server-side effort. On the other hand, a universal system also
reduces the burden on users, requiring them to select trustworthy
services only once instead of for each application individually.

Incentives. While the common good may serve as sufficient
incentive for national institutions or non-profit organizations,
companies might require additional incentives, such as non-
intrusive advertising: Firstly, being able to market altruistic
motivations by helping users in recovering their lost key
material sheds a positive light on companies. Secondly, by
showing logos of the users’ trusted organizations during a
recovery process, users might feel grateful to these organizations
that helped to save them from disastrous data loss.

Effort. Of course, in contrast to the incentives, the effort
needs to be comparably low. Translated to our framework, this
means that the costs for the servers in terms of processing
time, as well as storage and traffic sizes, need to be as low
as possible. We refer to Section IV-D to underline that our
framework can be implemented very cost-efficiently for the
server-side.



D. Management App and Architecture

The architecture, shown in Figure 1, combines the previously
described aspects into the following main actors:

Management App. This client in the users’ domain en-
ables users to split and recover their keys via secret sharing
techniques. A PPSS scheme is used for remote servers, while
Shamir’s secret sharing with out-of-band authentication is more
convenient for local backups and the users’ social circle. To
facilitate adoption, the management app offers its key recovery
capabilities through an API to other third-party apps. Therefore,
users only need to interact with a single app to manage their
trust decisions. The management app also integrates with a
user-selected recommender to initially simplify the process of
defining a trust hierarchy and to subsequently get notified of
changes regarding the users’ trust decisions. Furthermore, the
management app also integrates with a user-specified cloud
storage to store protected data.

PPSS Server. The PPSS server exposes the PPSS function-
ality via a network interface, while employing mechanisms to
prevent online attacks. A large number of these servers should
be deployed by a diverse set of trustworthy organizations.

Recommender. The recommender offers recommendations
on the trustworthiness of PPSS servers and organizes these
servers in a hierarchy. The community behind this service
substantiates their recommendations with arguments. Over time,
these recommendations change as new information becomes
available, e.g., regarding breaches of individual services or new
laws. The recommender pro-actively notifies the management
app of changes within the recommended hierarchy, so that
users can change their composition of shares according to the
new situation. Multiple communities may operate their own
recommenders to enable users to choose a community they
trust.

Cloud Storage. A cloud storage is integrated into the
management app to store auxiliary data (aux) independently
of the users’ devices, so that this data is available even if a
device is lost. The stored data include information needed to
perform the recovery process, such as the users’ hierarchy of
trusted parties, as well as encrypted keys. The resources for
this cloud storage are provisioned by the user and do not need
to be fully trusted, as the data stored on the cloud storage is
not sufficient to recover the users’ keys.

Data Flow. Protocol 1 gives details on the data flow. The
management app generates a recovery key (rk), splits this key,
and shares it with the user’s hierarchy of trusted parties, i.e.
local backup (loc), social circle (soc) and remote servers (rem).
If a user wants to protect an app key (ak) of an app (referred
by aid), she imports the app key into the management app,
encrypts it with the recovery key and uploads the encrypted
app key to the cloud storage. If recovery becomes necessary,
the user reconstructs the recovery key from her local backup,
social circle and trusted PPSS servers with her password, and
uses this recovery key to decrypt the app keys.

API

Protect(aid, ak)→ b:
if no recovery key was set up then

rk← Setup Recovery Key()
if no recovery key is cached locally then

rk← Recover Recovery Key()
return status bit b← Protect App Key(aid, ak, rk)

Recover(aid)→ ak:
if no recovery key is cached locally then

rk← Recover Recovery Key()
return ak← Recover App Key(aid, rk)

Internal Functions

Setup Recovery Key()→ rk:
Obtain password pw via user input
Obtain trust recommendation rec from recommender
Ask user to modify/accept rec, resulting in trust policy pol
Generate recovery key rk← SYM.KeyGen(1κ)
Generate random user id uid as identifier in requests
Split key to domains: (loc, soc, rem)← SS.Split(rk, pol)
Split remote share rem across remote servers:

aux← PPSS.Split(rem, pw, pol)
Store loc locally, send soc to social circle
Upload aux with (pol, uid) to user-selected cloud storage
return rk

Recover Recovery Key()→ rk:
Obtain password pw via user input
Download aux from user-selected cloud storage
Parse uid from aux as identifier in requests
Extract the user’s policy pol from aux
Recover the rem← PPSS.Recover(pw, pol)
Obtain local shares loc and social shares soc
return rk← SS.Recover(loc, soc, rem)

Protect App Key(aid, ak, rk)→ b:
Encrypt app key as eak← SYM.Enc(rk, ak)
Upload (aid, eak) to user-selected cloud storage
return 1 if process was successful, and 0 otherwise

Recover App Key(aid, rk)→ ak:
Download (aid, eak) from user-selected cloud storage
Decrypt and return app key ak← SYM.Dec(rk, eak)

Protocol 1: Functions of the Management App

E. Long-Term Usage

Apart from wisely-chosen security parameters for the em-
ployed cryptography, the proposed system’s security also de-
pends on how multiple actors handle their security-related
assets, such as server keys, app keys, the users’ passwords,
and recovery keys. In the long-term, it is reasonable to assume
that a PPSS server, a third party app, or even the user’s device
becomes corrupted or loses the user’s trust in another way.

Reasons to Change. 1) Server Composition: Various events
might prompt the user to change her policy on which PPSS
servers she deems trustworthy. For example, the user might
learn about legal changes, company mergers or data breaches
that might have a negative impact on her trusted servers or
the relation between those servers. Ideally, the recommender
notifies the user’s management app of relevant news, which
filters these notifications to only displays those, that are also
relevant to the user’s policy. With this information, the user



Change Recovery Key():
Obtain old rk from local cache or Recover Recovery Key()
Create new recovery key rk′ but reuse pw and pol with:

rk′ ← Setup Recovery Key()
Download all protected app keys eakaid from the cloud storage
Re-Encrypt keys: eak′aid ← SYM.Enc(rk′,SYM.Dec(rk, eakaid))
Reupload the updated app keys eak′aid

Change Trust Policy(pol′):
Run Change Recovery Key(), but when setting up the new rk′,
use the new pol′ instead of the previous pol

Change Password(pw′):
Run Change Recovery Key(), but when setting up the new rk′,
use the new pw′ instead of the previous pw

Change App Key(aid, ak′):
Obtain old rk from local cache or Recover Recovery Key()
Run Protect App Key(aid, ak′, rk), replacing the old eak with a
new eak′ at the cloud storage

Protocol 2: Maintenance via the Management App

may adjust her trust policy. 2) Password: Users might want to
change their password, for example, if the password was stolen.
3) App Keys: The keys of external apps might also become
corrupted, and therefore need to be replaced.

Operations. Protocol 2 details algorithms to change the
trust policy (e.g. upon notification from the recommender),
password, app keys and recovery key, to limit the consequences
of breaches. The design enables to pro-actively replace keys,
which reduces the risk of yet unknown breaches by limiting
the time-frame for attackers.

Additional External Means. Our proposed framework still
allows external applications to employ various other mech-
anisms that help in minimizing the consequences of stolen
keys. For example, these external applications may make use
of forward secrecy [20], [21] to protect the confidentiality of
previous messages even if the key is stolen, or updateable
encryption [22] to allow a semi-trusted entity to re-key existing
ciphetexts and therefore limit the time-frame for an attack.

I V. I M P L E M E N TAT I O N

This section discusses implementation details for our pro-
posed framework. While the framework uses Shamir’s secret
sharing for shares in the local and social domain, this section
focuses on integrating remote servers through a PPSS scheme.
As the guiding principle, we aim to minimize costs for the
servers, even if that requires moving computing and storage
efforts to the client-side. We argue that this is a reasonable
trade-off, as split and recovery processes occur infrequently
for individual users, who would rather be able to choose from
a multitude of trusted servers than conserve an insignificant
amount of resources. In the remainder of this section, we
explain how to share secrets with hierarchical policies and
integrate these policies into an adapted version of Abdalla et
al.’s PPSS scheme [5]. We further present a low-cost protection
mechanism that mitigates online guessing attacks. Eventually,
we evaluate the performance of our hierarchical PPSS and
measure deployment costs on Amazon Web Services (AWS).

A. Secret Sharing for Hierarchical Policies
To model the hierarchical structure of users’ trust policies,

we adapt the idea of compartmented secret sharing [4], so
that a sufficient number of shares from different hierarchically
organized compartments (i.e., groups of servers) need to be
recursively combined to reconstruct the secret. As described in
Section III-A, by mapping trust factors to groups, it becomes
easier for users to understand the implications when these
factors change (e.g. law change makes subtree untrustworthy).

Hierarchical Secret Sharing. For hierarchical secret sharing,
we apply Shamir’s work [1] recursively. The Split and Recover
algorithms are defined as follows:

The Split algorithm takes the description of a tree in the
form of threshold-size pairs (ti, ni) (that can be derived from
a trust policy) to build a corresponding tree of shares. Starting
from the root, the secret is split into multiple shares. These
individual shares are then further split into sub-shares to develop
the various subtrees according to the tree of threshold-size pairs.
The algorithm returns the sub-share values for leaf nodes.

To Recover, sub-share values of nodes with the same direct
parent according to the tree description are combined to
reconstruct the parent’s share. This process is performed
repeatedly from the leaves up until the root is reached and
therefore the initially shared secret value has been recovered.

In the remainder of this paper, we consider hierarchical secret
sharing only for trees where each node on the ith level has ni

children with a threshold ti. We denote secret sharing on such
a tree as (t1/n1, ..., tl/nl) hierarchical secret sharing.

Thresholds. Such (t1/n1,...,tl/nl) hierarchical secret sharing
does not have a single fixed threshold but rather a range, as
the ability to reconstruct depends on which parts of the tree
are available (or corrupted when considering the adversary).
This threshold lies between tmin=

∏
i≥1ti and tmax=S(1)+1,

where S(i) is the maximum number of servers that collude but
are still not able to reconstruct the subtree’s value on level i:

S(i) =

{
ti−1 on leaf level
(ti−1)·(

∏
j≥inj) + (ni−ti+1)·S(i+1) else

Such a threshold range favors users if diverse servers were
organized along trust factors as described in Section III-A: The
lower threshold enables users to reconstruct even if only tmin

servers are available. While an adversary may corrupt servers
randomly until reaching the threshold, for hierarchical secret
sharing it is significant which parts of the tree are corrupted.
Either the adversary tries to recursively corrupt a minimally
required set of servers or whole subtrees. If the user diversified
both servers and subtrees, corrupting enough servers to obtain
the secret becomes an expensive undertaking for any adversary.
The probability of an adversary to recover a key is 0 for tmin−1
corrupted servers and grows until 1 at tmax corrupted servers.

B. Hierarchical PPSS
Next, we integrate hierarchical secret sharing with password

protection.
Basis. The modular construction by Abdalla et al. [5] serves

as basis for our hierarchical PPSS. Their scheme requires little



computation, communication, and storage costs, especially on
the server-side. On a high-level, their scheme uses an oblivious
pseudo-random function (OPRF) to generate a pseudo-random
value in a protocol between the user, applying her password,
and a server, employing its secret key, without revealing the
password or key material to the other side. Such pseudo-
random values from different servers are then used to encrypt
the individual shares. Considering efficiency, in Abdalla et
al.’s construction, each server only needs to evaluate a single
OPRF per split and recovery operation, which is a single
exponentiation when employing their One-More-Gap-Diffie-
Hellman-based PRF (OMGDH). Servers only need to store the
OPRF key pair, as the user encrypts the shares locally with the
OPRF output and uploads the ciphertexts to her cloud storage.

Robustness. Additionally, Abdalla et al. developed a robust
gap threshold secret sharing scheme (RGTSSS) and integrated
it into their PPSS to detect incorrect responses in the recovery
process, i.e. provide robustness. Unfortunately, applying this
robustness property directly to the individual hierarchy levels
gives attackers additional information which facilitates offline
password guessing. Corrupt servers who obtained the user’s
auxiliary data may use the robustness property to verify their
password guess: They check if the password guess resulted in
an OPRF output that decrypts the encrypted share to a correct
share.

Our framework does not rely on robustness as we assume
that a large number of users quickly report servers returning
incorrect responses, which are then flagged by the recommender.
Likely, only very few not-flagged servers return incorrect
responses, which allows users to identify an honest set of servers
within a limited number of tries.

Hierarchical PPSS. In Abdalla et al.’s PPSS scheme, we
replace the calls to RGTSSS’ Split and Recover with their non-
robust but hierarchical counterparts from Section IV-A. The
hierarchical shares are then encrypted/decrypted with the OPRF
results. The tree description in the form of threshold-size pairs
is needed to correctly combine the sub-shares, which we also
store within the data that is uploaded to the cloud storage.
We denote (t1/n1, ..., tl/nl) hierarchical PPSS analogously to
hierarchical secret sharing, and only consider likewise shaped
trees in the remainder of this paper.

Security. We need to ensure that combining hierarchical
secret sharing with password-protection does not assist attackers
in offline password guessing. Attackers must not be able to
check password guesses on subtrees-level by a group of less
than tmin colluding participants. Instead, we require that a
password guess can only be verified be recovering shares
along the whole tree, requiring at least tmin correct shares.
More precisely, an adversary must only succeed with negligible
probability at distinguishing between a set of tmin−1 random
values (incorrectly decrypted shares) and a set of correct shares.

We sketch why an adversary with less than tmin values (e.g.
from colluding servers) cannot exploit the hierarchical structure
for offline guessing attacks based on arguments from Shamir [1].
Firstly, the adversary must not be able to distinguish between a
single correct share and a same-size random value. Shares are

Server Device KeyGen Split Recover

AWS c5.xlarge 1.19 1.18 1.18
Google Pixel 2 5.51 5.45 5.44

TABLE I: Server Execution Times (in ms), independent of t,
n, or hierarchy

Client
Device

Abdalla’s Robust PPSS Our Hierarchical PPSS
t/n Split Recover ti/ni Split Recover

AWS
c5.xlarge

2/3 54 33 2/3 49 33
3/4 71 50 3/4 66 49
6/9 286 101 2⁄3, 2⁄3 148 99

29/36 3586 490 2⁄3, 2⁄3, 3⁄4 591 476

Google
Pixel 2

2/3 284 183 2/3 243 163
3/4 366 266 3/4 323 243
6/9 1334 541 2⁄3, 2⁄3 720 481

29/36 16965 2544 2⁄3, 2⁄3, 3⁄4 2862 2307

TABLE II: Client Execution Times (in ms)

generated by Shamir’s Split operation, where the coefficients
for a polynomial q(x) are chosen randomly before evaluating
q(xi)=yi as shares. Further assuming that only yi without
any further formatting is returned, a correct share cannot be
distinguished from a random value.

Secondly, considering the set of correct shares or random
values together, the adversary must not be able to distinguish
the sets by using the Recover operation. 1) Inputs and outputs
are from the same finite field. 2) There are no error cases.
Given any set of points with yi from the shares and distinct
xi, one and only one polynomial q(x) of degree ti−1 exists
that interpolates these points (i.e., where q(xi)=yi). Therefore,
for any set of inputs to Recover, there is a polynomial q with
an output value q(0) with no error cases. 3) The distribution
of recovered outputs is uniform. Given ti−1 points, for each
candidate value D′, an attacker can construct a polynomial q′

that interpolates all points and has q′(0)=D′ (i.e., recovers to
any value) with equal probability.

Performance. We implemented our hierarchical PPSS based
on Abdalla et al.’s scheme [5] with their OMGDH-OPRF for
the Java platform with parameters chosen according to NIST’s
recommendation [23] for 128bit security. Our implementation
builds on the IAIK JCE1 and Archistar’s library [24]. Tables I
and II present our performance measurements, where the client
shares a 128bit AES key with n servers and reconstructs the key
on a subset of t servers. Note that the single-threaded implemen-
tation only makes use of one core during the benchmark. This
evaluation has been run on an AWS instance (c5.xlarge) as well
as a mobile phone (Google Pixel 2, Android 8). The presented
times are an average of 100 runs. As each server only evaluates
a single OPRF during Split and Recover, their computation
time is independent of the users’ choice of n and t. To give an
intuition on the performance, we also include measurements
of our implementation of Abdalla’s scheme, where we contrast
t in Abdalla’s robust scheme with tmax in our non-robust but
hierarchical scheme.

1https://jce.iaik.tugraz.at/

https://jce.iaik.tugraz.at/


C. Protection Against Online Guessing

PPSS schemes rely on mechanisms that make online guess-
ing attacks on the users’ passwords infeasible. We tackle the
challenge to implement a protection mechanism, that operates
on the little information available to the server-side, and has
low computation and storage requirements.

Per-User Keys. To limit online guessing attacks per user,
the server needs to be able to distinguish for which user any
given request is intended. User-binding can be achieved by
requiring an individual server-side private key for each user.
To reduce the needed storage resources, the server may derive
per-user private keys sk from a master key mk and a user-
provided identifier uid. For example, in the OMGDH-OPRF
from Abdalla et al. [5], the server derives the per-user private
key skuid ← mk+ uid, while users derive the respective public
keys pkuid ← pk · guid on their own. Users include their uid in
requests to enable the servers to identify which keys to use.

Windowed Request Limit. As the server does not learn
if the requester used the correct password in Abdalla et al.’s
construction, the server needs to solely rely on the user uid
sent in the requests and the time of receiving to prevent online
guessing. We employ a simple but effective mechanism: Only
a limited number of requests are accepted for an uid within a
server-side time window. Requests for an uid exceeding this
limit are blocked. The server maintains a table for the current
time window, associating user uids with a request counter.
Assuming 128bit for uid to prevent guessing and 8bit for the
counter, the server needs to store 132bit or 17byte per uid
requested in the time frame. The server resets the table after
the epoch to reset blocked uids and to free storage.

Denial of Service. Of course, request limits represent a
Denial of Service (DoS) threat for legitimate users, if attackers
are able to spend the users’ tries. To place a request on behalf
of a user, the attacker would need access to the respective uid,
which is randomly chosen by the user and stored at the cloud
storage. Therefore, the cloud storage may mount DoS attacks
on the PPSS servers, which is, however, unlikely as the cloud
storage could simply delete the user’s auxiliary data to prevent
her from reconstructing the recovery key. Other attackers would
need to guess the uid, which is only successful with negligible
probability if chosen from a sufficiently large space (128bit in
our case).

D. Cost Measurements and Projections

To evaluate the costs of operating a PPSS server, we de-
ployed our server-side implementation to an AWS instance and
measured costs for computation, communication, and storage
for a defined time window. By scaling the results obtained
within that time window, we are able to make projections
for an arbitrary number of sharing/recovering operations. We
chose AWS to create a link between resource requirements and
operational costs, but we recommend organizations to operate
PPSS servers on their own infrastructure to avoid introducing
a limited number of cloud service providers as risk for multiple
servers.

1 Server 40 Servers
Measured Scaled Price Total

Operations 5.23 M 100.00 M
Computation 1.00 h 31.89 days 0.194 $/h $148.49
Traffic Out 8.55 GB 6.09 TB 0.090 $/GB $548.47

Table Storage 88.84 MB 63.33 GB 0.100 $/GB $6.33
Static Storage 1.00 GB 40.00 GB 0.100 $/GB $4.00

$707.28

TABLE III: Measurements on a Single AWS c5.xlarge Instance
and Cost Projection for a 40-Server Setup

Test Setup. Our test setup consists of two AWS c5.xlarge
instances running Amazon Linux AMI 2018.03.0 that are
deployed in the same region. Firstly, the PPSS server exposes
the implemented cryptography through a Rapidoid v5.5.52

web server with Java 1.8. Secondly, the load generator makes
requests with wrk v4.1.03. As client operations are considerably
more costly than server operations, we avoid this bottleneck on
the load generator by generating request values from an identi-
cal distribution with a Lua script. These instances communicate
via TLS (tls ecdhe ecdsa with aes 128 gcm sha256) using
a self-signed certificate of a 256bit EC key.

Results. Table III presents the measurements for a single
server over a one hour window as well as scaled costs for 100
million operations in a 40-server setup. As Split or Recover
require the same resources, we summarize these terms as
”operation”. The main cost factors are outgoing traffic at
$548.47 and computation at $148.86 when processing 100
million operations. Incoming traffic is free on AWS. Costs for
times, when too powerful machines are idle, are outside the
scope of our projection. Besides the constant storage size for
OS and server application (assumed to be 1GB per server),
a table for rate-limiting needs to be stored. Even if no table
entries are cleared in a month-long period, the overall monthly
storage costs are negligible. Apart from storage costs and idle
times, our results are independent of the timespan. The sum of
these operational costs, $707.66, is split among all participating
organizations. Assuming that each user splits and recovers her
key once to/from a trust hierarchy of 40 servers, this setup is
able to support 50 million users using 2 operations.

V. D I S C U S S I O N

Requirements for Recovery. In case a user needs to recover
her keys, e.g., on a new device after losing the old one, the
following is required: 1) The user needs to remember her
password. 2) The user needs to have access to the chosen
cloud storage. 3) A sufficient subset of trusted parties from
the user’s policy has to be available and honest. We assume
that these requirements are satisfied at the time of recovery,
as these requirements were the key aspects upon which users
selected the involved cloud storage and PPSS servers.

Trust. The user trusts the cloud storage and share holders to
not collude with each other. The cloud storage is trusted to store,

2https://www.rapidoid.org/
3https://github.com/wg/wrk

https://www.rapidoid.org/
https://github.com/wg/wrk


protect, hand out, and delete (if requested) the user’s auxiliary
information and encrypted keys. The user trusts that servers
protect their keys, prevent online guessing, and do not deny
service. Finally, the recommender is trusted not to manipulate
users with its recommendations.

Threats. Next, we discuss threats made possible if actors
violate the user’s trust or become corrupted.

For unauthorized key recovery, an attacker needs to obtain a
sufficient number of shares across the local, social, and remote
domain: between tmin and tmax depending on which parts of
the user’s hierarchy are affected. To obtain remote shares, the
attacker needs to mount a offline password guessing attack,
which requires access to the user’s encrypted shares on the
cloud storage, as well as, tmin to tmax corrupted servers within
the remote subtree.

For denial of service, an attacker has more options: The
attacker could prevent the user from obtaining her auxiliary
information (e.g., corrupting the user’s cloud storage and
deleting the data). Alternatively, attackers may try to guess
or learn the user’s uid, which allows them to lock the user
out by triggering the servers’ request limit. While guessing
the uid might not be feasible, learning it could be achieved
by corrupting the cloud storage or a PPSS server and reading
the uid from the users’ auxiliary data or incoming requests,
respectively. Secure channels between user’s client and actors
(e.g., TLS and honest DNS) protect the uid from eavesdropping.

Usability. All concepts that are based on splitting the users’
trust across multiple entities obviously face the challenge
that users need to decide on whom to trust. In framework
supports users by integrating user-selectable recommenders that
suggest hierarchical trust policies with arguments underpinning
their decisions. These recommendations may be adapted by
users to their liking. Such a recommender also notifies users
about changes that are relevant to their trust policies (e.g.,
legal changes), allowing them to revise the policy accordingly.
Furthermore, we strive to design a universal system, where users
only have to create their trust policy once, via the management
app, while third-party apps may integrate with the management
app’s API to make use of the key recovery mechanisms.

V I . C O N C L U S I O N

In this paper, we proposed a framework for key-loss recovery
based on PPSS, which makes it possible to rely on human-
memorizable passwords without being vulnerable to offline
guessing attacks. Our framework contributes to addressing
challenges when applying PPSS in practice, such as supporting
users to reach trust decisions and convincing organizations that
it is inexpensive to operate a PPSS server. In the framework,
a management app splits a key into shares and distributes
them locally (backup), socially (friends, family), and/or remotely
(servers). This app allows the user, with the help of community-
driven recommenders, to create and maintain hierarchically-
organized trust policies. We implemented and extended Abdalla
et al.’s PPSS scheme [5] to support hierarchical trust policies
and prevent online guessing. Finally, we evaluated the costs of
deploying our implementation on remote servers at large scale

and came to the conclusion that serving 100 million requests
(either split or recovery) would cost a consortium of 40 partners
less than $20 per partner.
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