

Algebraic Cryptanalysis of STARK-Friendly Designs: Application to MARVELlous and MiMC

Martin Albrecht - Carlos Cid - Lorenzo Grassi - Dmitry Khovratovich - Reinhard Lüftenegger

- Christian Rechberger - Markus Schofnegger

Asiacrypt 2019

[^0]
To Put the Cart Before the Horse...

Our main contribution is a known-plaintext key-recovery attack on the block cipher Jarvis with a single plaintext-ciphertext pair.

```
Rounds Security level (bits) Attack complexity ( }\mp@subsup{\operatorname{log}}{2}{}#\mathrm{ #ops)
10(JARVIS-128)
```

- Practically verified up to 6 rounds of JARVIS
- Extend's to a preimage attack on the hash function Friday

To Put the Cart Before the Horse...

Our main contribution is a known-plaintext key-recovery attack on the block cipher Jarvis with a single plaintext-ciphertext pair.

Rounds	Security level (bits)	Attack complexity ($\log _{2}$ \#ops)
10 (JaRvIS-128)	128	72
12 (Jarvis-192)	192	85
14 (JARVIS-256)	256	98

- Practically verified up to 6 rounds of JARVIS
- Extends to a preimage attack on the hash function Friday

Overview

Introduction

- Preliminaries
- The MARVELlous Design

Key-Recovery Attack on Jarvis

- Attack Idea
- Results

Algebraic Cryptanalysis

- Model a cryptographic primitive as a system of multivariate polynomial equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{k}\left(x_{1}, \ldots, x_{n}\right)=0
$$

in several variables x_{1}, \ldots, x_{n} over some finite field $\mathbb{F} \longrightarrow$ In general, result is a non-linear equation system

- Solve the system (e.g. for a specific variable) \longrightarrow Several techniques available. Gröbner bases are one of them.

Algebraic Cryptanalysis

- Model a cryptographic primitive as a system of multivariate polynomial equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{k}\left(x_{1}, \ldots, x_{n}\right)=0
$$

in several variables x_{1}, \ldots, x_{n} over some finite field $\mathbb{F} \longrightarrow$ In general, result is a non-linear equation system

- Solve the system (e.g. for a specific variable) \longrightarrow Several techniques available. Gröbner bases are one of them.

Solving Equation Systems with Gröbner Bases

- Formally, a Gröbner basis is a special generating set for an ideal in a multivariate polynomial ring
- Informally, a Gröbner basis is a different representation of an equation system with the same solution set
- Gröbner bases assist in solving systems of polynomial equations over some (finite) field \mathbb{F}
- Used together with factorisation algorithms for univariate polynomials

Solving Equation Systems with Gröbner Bases

- Formally, a Gröbner basis is a special generating set for an ideal in a multivariate polynomial ring
- Informally, a Gröbner basis is a different representation of an equation system with the same solution set
- Gröbner bases assist in solving systems of polynomial equations over some (finite) field \mathbb{F}
- Used together with factorisation algorithms for univariate polynomials

Solving Equation Systems with Gröbner Bases

- Formally, a Gröbner basis is a special generating set for an ideal in a multivariate polynomial ring
- Informally, a Gröbner basis is a different representation of an equation system with the same solution set
- Gröbner bases assist in solving systems of polynomial equations over some (finite) field \mathbb{F}
- Used together with factorisation algorithms for univariate polynomials

Solving Equation Systems with Gröbner Bases

- Formally, a Gröbner basis is a special generating set for an ideal in a multivariate polynomial ring
- Informally, a Gröbner basis is a different representation of an equation system with the same solution set
- Gröbner bases assist in solving systems of polynomial equations over some (finite) field \mathbb{F}
- Used together with factorisation algorithms for univariate polynomials

MARVELIous

- MARVELlous [AD18] is a family of cryptographic primitives, comprising Jarvis (block cipher) and Friday (hash function)
- Designed to be efficient in the STARK setting
- "Algebraic" design that works with low-degree polynomials
- The hash function Friday is based on the block cipher Jarvis

MARVELlous

- MARVELlous [AD18] is a family of cryptographic primitives, comprising Jarvis (block cipher) and Friday (hash function)
- Designed to be efficient in the STARK setting
-"Algebraic" design that works with low-degree polynomials
- The hash function Friday is based on the block cipher Jarvis

MARVELlous

- MARVELlous [AD18] is a family of cryptographic primitives, comprising Jarvis (block cipher) and Friday (hash function)
- Designed to be efficient in the STARK setting
- "Algebraic" design that works with low-degree polynomials
- The hash function Friday is based on the block cipher Jarvis

MARVELlous

- MARVELlous [AD18] is a family of cryptographic primitives, comprising Jarvis (block cipher) and Friday (hash function)
- Designed to be efficient in the STARK setting
- "Algebraic" design that works with low-degree polynomials
- The hash function Friday is based on the block cipher Jarvis

STARKs

> STARK $[\mathrm{BBH}+18]$
> Scalable Transparent ARgument of Knowledge

General goal: Given a public function f, a private input x and a public value y proof that $f(x)=y$ without revealing x.

Features of STARKs

- Arithmetisation-based
- Use Merkle-trees
\longrightarrow requirement of dedicated hash-function designs for efficiency

STARKs

STARK [BBH+18]
 Scalable Transparent ARgument of Knowledge

General goal: Given a public function f, a private input x and a public value y proof that $f(x)=y$ without revealing x.

Features of STARKs

- Arithmetisation-based
- Use Merkle-trees
\longrightarrow requirement of dedicated hash-function designs for efficiency

Jarvis: the Design

- Jarvis is similar to MiMC $[A G R+16]$ and works entirely over $\mathbb{F}_{2^{n}}$, with $n \in\{128,160,192,256\}$

MiMC

JARVIS

- B, C are affine polynomials of degree 4 and B^{-1} the compositional inverse of B.

Key-Recovery Attack on Jarvis I

Goal: Given one plaintext p and corresponding ciphertext $c=E_{k}(p)$ recover the secret key k.

Idea: Relate consecutive rounds by low-degree polynomial relations!

Key-Recovery Attack on Jarvis I

Goal: Given one plaintext p and corresponding ciphertext $c=E_{k}(p)$ recover the secret key k.

Idea: Relate consecutive rounds by low-degree polynomial relations!

Key-Recovery Attack on Jarvis II

Basic strategy

- Introduce variables x_{i} for intermediate states between B^{-1} and C in each round
- Relate each x_{i} to the previous and next intermediate state x_{i-1} and x_{i+1} respectively

Key-Recovery Attack on Jarvis II

Basic strategy

- Introduce variables x_{i} for intermediate states between B^{-1} and C in each round
- Relate each x_{i} to the previous and next intermediate state x_{i-1} and x_{i+1} respectively

Key-Recovery Attack on Jarvis II

Basic strategy

- Introduce variables x_{i} for intermediate states between B^{-1} and C in each round
- Relate each x_{i} to the previous and next intermediate state x_{i-1} and x_{i+1} respectively

Key-Recovery Attack on Jarvis III

Basic equations

Key-Recovery Attack on Jarvis III

Basic equations

$$
B\left(x_{i}\right)=\frac{1}{C\left(x_{i-1}\right)+k_{i-1}}
$$

Key-Recovery Attack on Jarvis III

Basic equations

$$
B\left(x_{i}\right)=\frac{1}{C\left(x_{i-1}\right)+k_{i-1}}
$$

Key-Recovery Attack on Jarvis III

Basic equations

$$
\begin{aligned}
& B\left(x_{i}\right)=\frac{1}{C\left(x_{i-1}\right)+k_{i-1}} \\
& C\left(x_{i}\right)=\frac{1}{B\left(x_{i+1}\right)}+k_{i}
\end{aligned}
$$

Key-Recovery Attack on Jarvis III

Basic equations

$$
\begin{aligned}
& B\left(x_{i}\right)=\frac{1}{C\left(x_{i-1}\right)+k_{i-1}} \\
& C\left(x_{i}\right)=\frac{1}{B\left(x_{i+1}\right)}+k_{i}
\end{aligned}
$$

Key-Recovery Attack on Jarvis IV

Idea for improvements: Only use every second intermediate state by finding affine polynomials B^{\prime}, C^{\prime} such that $B^{\prime} \circ B=C^{\prime} \circ C$!

Key-Recovery Attack on Jarvis V

Improved equations

Key-Recovery Attack on JARVIs V

Improved equations

$$
\frac{1}{C\left(x_{i-1}\right)+k_{i-1}}=
$$

Key-Recovery Attack on Jarvis V

Improved equations

$$
\frac{1}{C\left(x_{i-1}\right)+k_{i-1}}=B\left(x_{i}\right)
$$

Key-Recovery Attack on Jarvis V

Improved equations

$$
\frac{1}{C\left(x_{i-1}\right)+k_{i-1}}=B\left(x_{i}\right) \quad C\left(x_{i}\right)=
$$

Key-Recovery Attack on Jarvis V

Improved equations

$$
\frac{1}{C\left(x_{i-1}\right)+k_{i-1}}=B\left(x_{i}\right) \quad C\left(x_{i}\right)=\frac{1}{B\left(x_{i+1}\right)}+k_{i}
$$

Key-Recovery Attack on Jarvis V

Improved equations

$$
\frac{1}{C\left(x_{i-1}\right)+k_{i-1}}=B\left(x_{i}\right) \quad C\left(x_{i}\right)=\frac{1}{B\left(x_{i+1}\right)}+k_{i}
$$

Key-Recovery Attack on Jarvis V

Improved equations

$$
B^{\prime}\left(\frac{1}{C\left(x_{i-1}\right)+k_{i-1}}\right)=B^{\prime}\left(B\left(x_{i}\right)\right) \quad C\left(x_{i}\right)=\frac{1}{B\left(x_{i+1}\right)}+k_{i}
$$

Key-Recovery Attack on Jarvis V

Improved equations

$$
B^{\prime}\left(\frac{1}{C\left(x_{i-1}\right)+k_{i-1}}\right)=B^{\prime}\left(B\left(x_{i}\right)\right) \quad C^{\prime}\left(C\left(x_{i}\right)\right)=C^{\prime}\left(\frac{1}{B\left(x_{i+1}\right)}+k_{i}\right)
$$

Key-Recovery Attack on Jarvis V

Improved equations

$$
B^{\prime}\left(\frac{1}{C\left(x_{i-1}\right)+k_{i-1}}\right)=B^{\prime}\left(B\left(x_{i}\right)\right) \stackrel{!}{=} C^{\prime}\left(C\left(x_{i}\right)\right)=C^{\prime}\left(\frac{1}{B\left(x_{i+1}\right)}+k_{i}\right)
$$

Relation to Plaintext

Plaintext equation

Relation to Plaintext

Plaintext equation

$$
B^{\prime}\left(\frac{1}{p+k_{0}}\right)=C^{\prime}\left(\frac{1}{B\left(x_{2}\right)+k_{1}}\right)
$$

Relation to Ciphertext

Ciphertext equation

Relation to Ciphertext

Ciphertext equation

$$
C\left(x_{r}\right)+k_{r}=c
$$

Exploiting the Key Schedule

The first three round keys are given by
more generally and after simplifying each fraction we have for $1 \leq i \leq r$

Exploiting the Key Schedule

The first three round keys are given by

$$
k_{1}=\frac{1}{k_{0}}+c_{0}, \quad k_{2}=\frac{1}{k_{1}}+c_{1}=\frac{1}{\frac{1}{k_{0}}+c_{0}}+c_{1},
$$

more generally and after simplifying each fraction we have for $1 \leq i \leq r$

Exploiting the Key Schedule

The first three round keys are given by

$$
k_{1}=\frac{1}{k_{0}}+c_{0}, \quad k_{2}=\frac{1}{k_{1}}+c_{1}
$$

more generally and after simplifying each fraction we have for $1 \leq i \leq r$

Exploiting the Key Schedule

The first three round keys are given by

$$
k_{1}=\frac{1}{k_{0}}+c_{0}, \quad k_{2}=\frac{1}{k_{1}}+c_{1}=\frac{1}{\frac{1}{k_{0}}+c_{0}}+c_{1},
$$

more generally and after simplifying each fraction we have for $1 \leq i \leq r$

Exploiting the Key Schedule

The first three round keys are given by

$$
k_{1}=\frac{1}{k_{0}}+c_{0}, \quad k_{2}=\frac{1}{k_{1}}+c_{1}=\frac{1}{\frac{1}{k_{0}}+c_{0}}+c_{1}, \quad k_{3}=\frac{1}{k_{2}}+c_{2}
$$

more generally and after simplifying each fraction we have for $1 \leq i \leq r$

Exploiting the Key Schedule

The first three round keys are given by

$$
k_{1}=\frac{1}{k_{0}}+c_{0}, \quad k_{2}=\frac{1}{k_{1}}+c_{1}=\frac{1}{\frac{1}{k_{0}}+c_{0}}+c_{1}, \quad k_{3}=\frac{1}{k_{2}}+c_{2}=\frac{1}{\frac{1}{\frac{1}{k_{0}}+c_{0}}+c_{1}} ;
$$

more generally and after simplifying each fraction we have for $1 \leq i \leq r$

$$
k_{i}=\frac{\alpha_{i} \cdot k_{0}+\beta_{i}}{\gamma_{i} \cdot k_{0}+\delta_{i}} \quad\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} \in \mathbb{F}_{2^{n}}\right)
$$

Final Equation System for Jarvis

- Variables
- $\frac{r}{2}$ variables for the intermediate states $x_{2}, x_{4}, \ldots, x_{r}$
- 1 variable k_{0} for the keys
- Equations
- $\frac{r}{2}$ - 1 equations for relating every second intermediate state
- 2 equations for relating the plaintext p to x_{2} and the ciphertext c to
\longrightarrow Solve this system with the help of Gröbner bases!

Final Equation System for Jarvis

- Variables
- $\frac{r}{2}$ variables for the intermediate states $x_{2}, x_{4}, \ldots, x_{r}$
- 1 variable k_{0} for the keys
- Equations
- $\frac{r}{2}-1$ equations for relating every second intermediate state
- 2 equations for relating the plaintext p to x_{2} and the ciphertext c to
\longrightarrow Solve this system with the help of Gröbner bases!

Final Equation System for Jarvis

- Variables
- $\frac{r}{2}$ variables for the intermediate states $x_{2}, x_{4}, \ldots, x_{r}$
- 1 variable k_{0} for the keys
- Equations
- $\frac{r}{2}-1$ equations for relating every second intermediate state
- 2 equations for relating the plaintext p to x_{2} and the ciphertext c to

Solve this system with the help of Gröbner bases!

Final Equation System for Jarvis

- Variables
- $\frac{r}{2}$ variables for the intermediate states $x_{2}, x_{4}, \ldots, x_{r}$
- 1 variable k_{0} for the keys
- Equations
- $\frac{r}{2}$ - 1 equations for relating every second intermediate state
- 2 equations for relating the plaintext p to x_{2} and the ciphertext c to x_{r}
\longrightarrow Solve this system with the help of Gröbner bases!

Final Equation System for Jarvis

- Variables
- $\frac{r}{2}$ variables for the intermediate states $x_{2}, x_{4}, \ldots, x_{r}$
- 1 variable k_{0} for the keys
- Equations
- $\frac{r}{2}$ - 1 equations for relating every second intermediate state
- 2 equations for relating the plaintext p to x_{2} and the ciphertext c to x_{r}
\longrightarrow Solve this system with the help of Gröbner bases!

Attack complexity

Complexity estimates for Gröbner basis computation:

Rounds	Complexity Jarvis $\left(\log _{2}\right.$ \#ops)	Complexity Friday $\left(\log _{2}\right.$ \#ops)
6	45	34
8	58	47
10 (JARVIS-128)	72	59
12 (JARVIS-192)	85	72
14 (JARVIS-256)	98	85
16	112	97
18	125	110
20	138	123

Practical Results

Attack on Jarvis and Friday working over $\mathbb{F}_{2^{128}}$ implemented using SAGE v8.6 with MAGMA v2.20-5 (using one core only).

Most of the time, our attacks performed substantially better in practice than the complexity estimates suggest.

Practical Results

Attack on JARvIS and Fridar working over $\mathbb{F}_{2^{128}}$ implemented using SAGE v8.6 with Magma v2.20-5 (using one core only).

Rounds	Jarvis		Friday	
	Complex. ($\log _{2} \# o p s$)	Time	Complex. ($\log _{2} \# o p s$)	Time
3	20	0.3 s	19	3.6 s
4	31	9.4 s	22	0.5 s
5	34	14.9 min	32	36.5 s
6	45	27.8 h	34	34.9 min

Most of the time, our attacks performed substantially better in practice than the complexity estimates suggest.

Conclusion

The main reason why MARVELlous is less secure than claimed is

- the particular usage of two low-degree polynomials as affine layer,
- together with finite field inversion as non-linear layer.

MiMC is immune against the presented attack strategy because

- factoring the univariate polynomial is prohibitively expensive;
- although the polynomials representing MiMC are already a Gröbner basis.

Conclusion

The main reason why MARVELlous is less secure than claimed is

- the particular usage of two low-degree polynomials as affine layer,
- together with finite field inversion as non-linear layer.

MiMC is immune against the presented attack strategy because

- factoring the univariate polynomial is prohibitively expensive;
- although the polynomials representing MiMC are already a Gröbner basis.

Outlook

Other Designs: GMiMC [AGP+19], Starkad\&Poseidon [GKK+19] (based on Hades [GLR+19]), Vision\&Rescue [AABS+19]

Ongoing Competition: STARK-friendly Hash-Challenge
https://starkware.co/hash-challenge/

Questions?

References I

[AABS+19] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, et al. Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols. Cryptology ePrint Archive, Report 2019/426. https://eprint.iacr.org/2019/426. 2019 (cit. on p. 58).
[AD18] Tomer Ashur and Siemen Dhooghe. MARVELlous: a STARK-Friendly Family of Cryptographic Primitives. Cryptology ePrint Archive, Report 2018/1098. https://eprint.iacr.org/2018/1098. 2018 (cit. on pp. 11-14).
[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, et al. Feistel Structures for MPC, and More. ESORICS 2019: 24th European Symposium on Research in Computer Security. https://eprint.iacr.org/2019/397. 2019 (cit. on p. 58).
[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, et al. MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity. ASIACRYPT 2016, Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. Springer, Heidelberg, Dec. 2016, pp. 191-219. DOI: 10.1007/978-3-662-53887-6_7 (cit. on p. 17).

References II

[BBH+18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, et al. Scalable, transparent, and post-quantum secure computational integrity. IACR Cryptology ePrint Archive 2018 (2018), p. 46 (cit. on pp. 15, 16).
[GKK+19] Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, et al. Starkad and Poseidon: New Hash Functions for Zero Knowledge Proof Systems. Cryptology ePrint Archive, Report 2019/458. https://eprint.iacr.org/2019/458. 2019 (cit. on p. 58).
[GLR+19] Lorenzo Grassi, Reinhard Lueftenegger, Christian Rechberger, et al. On a Generalization of Substitution-Permutation Networks: The HADES Design Strategy. Cryptology ePrint Archive, Report 2019/1107. https://eprint.iacr.org/2019/1107. 2019 (cit. on p. 58).

[^0]: > www.iaik.tugraz.at

