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To Put the Cart Before the Horse...

Our main contribution is a known-plaintext key-recovery attack on the
block cipher JARVISwith a single plaintext-ciphertext pair.

Rounds Security level (bits) Attack complexity (log2#ops)

10 (JARVIS-128) 128 72
12 (JARVIS-192) 192 85
14 (JARVIS-256) 256 98

Practically verified up to 6 rounds of JARVIS

Extends to a preimage attack on the hash function FRIDAY
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Algebraic Cryptanalysis

Model a cryptographic primitive as a system of multivariate
polynomial equations

f1(x1, . . . , xn) = ⋯ = fk(x1, . . . , xn) = 0

in several variables x1, . . . , xn over some finite field FÐ→ In general,
result is a non-linear equation system

Solve the system (e.g. for a specific variable)Ð→ Several techniques
available. Gröbner bases are one of them.
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Solving Equation Systems with Gröbner Bases

Formally, a Gröbner basis is a special generating set for an ideal in a
multivariate polynomial ring

Informally, a Gröbner basis is a di�erent representation of an
equation systemwith the same solution set

Gröbner bases assist in solving systems of polynomial equations over
some (finite) field F

Used together with factorisation algorithms for univariate
polynomials
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MARVELlous

MARVELlous [AD18] is a family of cryptographic primitives,
comprising JARVIS (block cipher) and FRIDAY (hash function)

Designed to be e�icient in the STARK setting

“Algebraic” design that works with low-degree polynomials

The hash function FRIDAY is based on the block cipher JARVIS
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STARKs

STARK [BBH+18]
Scalable Transparent ARgument of Knowledge

General goal: Given a public function f , a private input x and a public
value y proof that f(x) = y without revealing x.

Features of STARKs

Arithmetisation-based

Use Merkle-trees

Ð→ requirement of dedicated hash-function designs for e�iciency
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JARVIS: the Design

JARVIS is similar to MiMC [AGR+16] and works entirely over F2n , with
n ∈ {128,160,192,256}

MiMC

si si+1

ki

x3

JARVIS

si si+1

ki

x−1 B−1 C

B,C are a�ine polynomials of degree 4 and B−1 the compositional
inverse of B.
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Key-Recovery Attack on JARVIS I

p x−1 B−1 C . . . x−1 B−1 C cJARVIS

k

k = k0

k1 kr

Goal: Given one plaintext p and corresponding ciphertext c = Ek(p)
recover the secret key k.

Idea: Relate consecutive rounds by low-degree polynomial relations!
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Key-Recovery Attack on JARVIS II

x−1 B−1 C

ki−1

x−1 B−1 C

ki

x−1 B−1 C

ki+1

xi−1 xi xi+1

Basic strategy

Introduce variables xi for intermediate states between B−1 and C in
each round

Relate each xi to the previous and next intermediate state xi−1 and xi+1
respectively
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Key-Recovery Attack on JARVIS III

si−1 x−1 B−1
xi−1 C

ki−1

x−1 B−1
xi C

ki

x−1 B−1
xi+1 C

ki+1

si+1

Basic equations
B(xi) =

1
C(xi−1) + ki−1

C(xi) =
1

B(xi+1)
+ ki

10 / 23



Key-Recovery Attack on JARVIS III

si−1 x−1 B−1
xi−1 C

ki−1

x−1 B−1
xi C

ki

x−1 B−1
xi+1 C

ki+1

si+1

Basic equations
B(xi) =

1
C(xi−1) + ki−1

C(xi) =
1

B(xi+1)
+ ki

10 / 23



Key-Recovery Attack on JARVIS III

si−1 x−1 B−1
xi−1 C

ki−1

x−1 B−1
xi C

ki

x−1 B−1
xi+1 C

ki+1

si+1

Basic equations
B(xi) =

1
C(xi−1) + ki−1

C(xi) =
1

B(xi+1)
+ ki

10 / 23



Key-Recovery Attack on JARVIS III

si−1 x−1 B−1
xi−1 C

ki−1

x−1 B−1
xi C

ki

x−1 B−1
xi+1 C

ki+1

si+1

Basic equations
B(xi) =

1
C(xi−1) + ki−1

C(xi) =
1

B(xi+1)
+ ki

10 / 23



Key-Recovery Attack on JARVIS III

si−1 x−1 B−1
xi−1 C

ki−1

x−1 B−1
xi C

ki

x−1 B−1
xi+1 C

ki+1

si+1

Basic equations
B(xi) =

1
C(xi−1) + ki−1

C(xi) =
1

B(xi+1)
+ ki

10 / 23



Key-Recovery Attack on JARVIS IV

x−1 B−1
xi−1 C

ki−1

x−1 B−1
xi C

ki

x−1 B−1
xi+1 C

ki+1

Idea for improvements: Only use every second intermediate state by
finding a�ine polynomials B′, C′ such that B′ ○ B = C′ ○ C!
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Key-Recovery Attack on JARVIS V

x−1 B−1
xi−1 C

ki−1

x−1 B−1
xi C

ki

x−1 B−1
xi+1 C

ki+1

Improved equations

B′ (
1

C(xi−1) + ki−1
) = B′(B(xi))

!
= C′(C(xi)) = C′ (

1
B(xi+1)

+ ki)
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Relation to Plaintext

p x−1 B−1
x1 C x−1 B−1

x2 C

k2k0 k1

Plaintext equation

B′ (
1

p + k0
) = C′ (

1
B(x2) + k1

)
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Relation to Ciphertext

kr−1

x−1 B−1
xr C c

kr

Ciphertext equation
C(xr) + kr = c
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Exploiting the Key Schedule

k0 x−1

c0
k1 x−1

c1
k2 x−1

c2

k3

The first three round keys are given by

k1 =
1
k0
+ c0, k2 =

1
k1
+ c1 =

1
1
k0 + c0

+ c1, k3 =
1
k2
+ c2 =

1
1

1
k0
+c0

+ c1
;

more generally and a�er simplifying each fraction we have for 1 ≤ i ≤ r

ki =
αi ⋅ k0 + βi
γi ⋅ k0 + δi

(αi, βi, γi, δi ∈ F2n).
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Final Equation System for JARVIS

Variables

r
2 variables for the intermediate states x2, x4, . . . , xr
1 variable k0 for the keys

Equations

r
2 − 1 equations for relating every second intermediate state

2 equations for relating the plaintext p to x2 and the ciphertext c to
xr

Ð→ Solve this systemwith the help of Gröbner bases!
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Attack complexity

Complexity estimates for Gröbner basis computation:

Rounds Complexity Jarvis Complexity Friday
(log2#ops) (log2#ops)

6 45 34
8 58 47

10 (JARVIS-128) 72 59
12 (JARVIS-192) 85 72
14 (JARVIS-256) 98 85

16 112 97
18 125 110
20 138 123
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Practical Results

Attack on JARVIS and FRIDAYworking over F2128 implemented using SAGE
v8.6 withMAGMA v2.20-5 (using one core only).

JARVIS FRIDAY
Rounds Complex. Time Complex. Time

(log2#ops) (log2#ops)

3 20 0.3 s 19 3.6 s
4 31 9.4 s 22 0.5 s
5 34 14.9 min 32 36.5 s
6 45 27.8 h 34 34.9 min

Most of the time, our attacks performed substantially better in practice
than the complexity estimates suggest.
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Conclusion

Themain reason why MARVELlous is less secure than claimed is

the particular usage of two low-degree polynomials as a�ine layer,

together with finite field inversion as non-linear layer.

MiMC is immune against the presented attack strategy because

factoring the univariate polynomial is prohibitively expensive;

although the polynomials representing MiMC are already a Gröbner
basis.
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Outlook

Other Designs: GMiMC [AGP+19], Starkad&Poseidon [GKK+19] (based on
Hades [GLR+19]), Vision&Rescue [AABS+19]

Ongoing Competition: STARK-friendly Hash-Challenge

https://starkware.co/hash-challenge/
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Questions?
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