A Lightweight ATmega-based
Application-Specific Instruction-Set Processor
for Elliptic Curve Cryptography

Erich Wenger

Graz University of Technology
Institute for Applied Information Processing and Communications
Inffeldgasse 16a, 8010 Graz, Austria
erich.wenger@iaik.tugraz.at

Abstract. It is inevitable that future Radio-Frequency Identification
(RFID) technology must support complex protocols and public-key cryp-
tography. In this paper, we present an Application-Specific Instruction-
Set Processor (ASIP) based on a clone of the ATmegal28 microprocessor.
A leakage-resilient, constant-runtime, and assembly-optimized software
implementation of an elliptic curve point multiplication, which outper-
forms related work, requires 9,230-34,928 kCycles or 681-2,576 ms for
standard conform elliptic curves (secp160ri, secp192ril, secp224ri, and
secp256rl). Because this is too slow for most applications, the micro-
processor has been equipped with a multiply-accumulate and a bit-serial
instruction-set extension. Therefore, the runtime has been reduced to
practically usable 96248 ms, while keeping the power below 1.1 mW,
and the area consumption between 19-27 kGE.

Keywords: ATmega, Elliptic Curve Cryptography, Instruction Set Ex-
tension, Application Specific Instruction-set Processor, Constant Run-
time.

1 Introduction

The future Internet of things will consist of embedded smart cards, wireless sen-
sor networks, and Radio-Frequency Identification (RFID) tags. Those devices
must be capable to communicate with other entities over an air interface and
must provide privacy and security capabilities. At Asiacrypt 2007, Serge Vau-
denay [20] showed that “...an RFID scheme that achieves narrow-strong privacy
... essentially needs public-key cryptography techniques.”

Among the three most popular public-key cryptographic systems (RSA, El-
Gamal, and ECC), Elliptic Curve Cryptography (ECC) is the least resource
demanding and most suitable for embedded systems. In the past ECC has been
well studied and standardized by SECG [2] and NIST [17]. One could also in-
vestigate non-standardized curves (e.g., by Gallant, Lambert, and Vanstone [7]
or Bernstein et al. [1]), but for open-loop systems one should stick to the given
standards. In this work we focus on the four prime-field based Weierstrass curves

2 Erich Wenger

CPU (An’thmetic] (Boolean]
Logic
Program Branch Interrupt Data
Memory - [Logic J [GPR J [Logic ! Memory

8-bit ! \ I bit-serial)
Multiplier | ! MuLACC } | Multiplier |

\ J \ J \ A

4 N\

/O Bus [Timer/ J[RS232 J
Counter

General External 1 Dedicated \
Purpose 10 Interrupts | | Modem |

\ v

Fig. 1. Schematic diagram of the used processing architecture.

secpl160-256r1 as those are already used for mainstream applications such as
TLS, IPSec, and SSH.

While public-key systems are very resource demanding, RFID tags must con-
sume little power, be cheap (have a small chip area) and support real-time ap-
plications (respond within a given time). The traditional approach, which will
pretty soon exceed its realms of possibility, is to equip the state machine of an
RFID tag with a dedicated hardware block doing public-key cryptography. A
more sophisticated solution is to base the design on a microprocessor, in par-
ticular on an Application-Specific Instruction-Set Processor (ASIP). An ASIP
unites the advantages of programmable microprocessors (flexibility, extendabil-
ity) with the advantages of dedicated hardware blocks (high-performance, low-
power). Therefore, dedicated hardware units can be avoided and the overall
hardware footprint decreases. In this paper, we transform a commercially avail-
able microprocessor into an ASIP targeting RFID and public-key cryptography.

For this paper, we base our design on the popular 8-bit Atmel ATmegal28
AVR processor. This processor comes with an extensive instruction set and a
dedicated hardware multiplier (important for prime-field arithmetic). The AT-
megal28 is used for a magnitude of applications and is supported by many
toolchains (e.g., avr-gcc, IAR, Crossworks). In Wenger et al. [21], we presented
‘Just Another AVR’ (JAAVR, see Figure 1), a feature-complete clone of the pop-
ular ATmegal28 which is written in VHDL and only requires 6,140 GE, making
it perfectly suitable for area-sensitive embedded designs. In [21], we equipped an
earlier version of JAAVR with a dedicated RFID modem, and evaluated ECC,
AES, and Grgstl. As expected, those results show that ECC is the dominating
component.

A Lightweight ATmega-based ASIP for ECC 3

Our Contribution. In this paper we present an JAAVR-based ASIP opti-
mized for ECC. First, we present new assembly optimized ATmega-compatible
runtime results in which we outperform related software implementations (in-
cluding our own in [21]). Second, we optimize the cycles-per-instruction (CPI) of
all load, store, and multiply instructions of JAAVR in order to achieve speedups
of 25-27 %. Third, we are the first to actually build an ATmegal28-compatible
processor with multiply-accumulate instruction-set extensions as ASIC. Previous
work was either simulated or only performed on FPGAs. Fourth, we are also the
first to build a tightly-coupled bit-serial multiplier as instruction-set extension
of JAAVR for prime-field based ECC. Utilizing all those techniques, we present
a 19kGE small design suitable for RFID and other real-time applications.

This paper is structured as follows: Section 2 elaborates some basic design
decisions. Section 3 discusses efficient software implementation techniques for
ECC. Sections 4-6 deal with the improvement of the CPI of JAAVR, the uti-
lization of a multiply-accumulate instruction, and the integration of a bit-serial
multiplier, respectively. Section 7 discusses the results in connection with related
work. Section 8 concludes the work. The most important results are gathered in
Table 2. They are discussed throughout the paper.

2 Basic Reasoning

For RFID applications, the runtime of an algorithm is important in two respects.
First, it must be sufficiently fast to support real-time applications. Second, by
having a fast implementation, one can reduce the clock frequency and therefore
reduce the power consumption. For a passively powered RFID tag, the power
consumption is of upmost importance. For a typical ISO-14443-compatible [13]
tag, we assume the following requirements. The clock should be an integer frac-
tion of 13.56 MHz, the maximum power consumption below 2 mW, and the max-
imum runtime for an ECC point multiplication is 100-500 ms. It should be noted
that all our hardware designs easily exceed this minimum clock frequency of
13.56 MHz.

Tools. For all of our implementations, we performed hardware synthesis
(Cadence RTL Compiler v08.10), power simulations (Cadence First Encounter
v08.10), and cycle-accurate post-synthesis and post-layout hardware simulations
(using NCSim v08.20). As process technology the UMC 130nm low-leakage
CMOS technology with Faraday design libraries in combination with area-efficient
single-port register-based RAM macros and Via-1 ROM macros is used. Previ-
ous experiments showed that synthesizing the program memory as standard logic
cells results in smaller (post synthesis) but less routable designs (post place-and-
route). A decreased cell density increases the size of the synthesized program
memory to a point where the available Via-1 ROM macro is effectively smaller.

Practical Security. When implementing cryptography, the designer must con-
sider practical attack scenarios such as timing, side-channel and fault attacks.
Regarding timing attacks, all assembly-optimized implementations perform the
point multiplication in constant runtime. Further, all implementations provide

4 Erich Wenger

Table 1. secp160rl point multiplication results using different multi-precision integer
multiplication methods: operand-scanning (OS), product-scanning (PS), hybrid, and
operand-caching (OC).

Impl. Point- Integer- Program-Memory Chip
Multiplication Multiplication Size Integer Mul. Area

[kCycles] [Cycles] [Bytes] (%] [GE]

OSin C 37,168 9,807 4,188 3 17,738
0S 17,607 5,505 12,110 62 23,540
PS looped 17,226 5,367 4,636 4 17,638
PS 13,546 4,035 9,860 54 21,701*
Hybrid 10,609 2,972 9,050 49 21,701*
oC 9,230 2,473 8,218 46 21,701*

@ Identical, because only certain discrete ROM macros are available.

a basic resistance against power-analysis attacks. The Montgomery ladder for-
mula by Hutter et al. [11] performs key-independent double-and-add operations.
With its requirement of 16 field multiplications and 17 field additions per key
bit, it is reasonably fast. The finite-field multiplication is used for multiplications
as well as for squarings. At the end of the Montgomery ladder, a y-coordinate-
recovery and a constant-runtime inversion based on exponentiation (Fermat’s
little theorem) are performed. For side channel and fault security we also per-
form projective point randomization [4] before (against side-channel attacks)
and point verification before and after (against fault attacks) the point multi-
plication. Because we did not perform practical power analysis attacks or fault
simulations, we do not claim to be side channel or fault secure, but we use al-
gorithms that improve resistance against those attacks. Thus all our results are
practically relevant.

3 The Baseline: Efficient Software Implementation

By choosing an 8-bit processor we start with a rather small but “arithmetically
speaking” slow processor. Our first not constant-time, plain-C implementation
showed excruciatingly-slow runtimes of 37-131 million cycles, 2.7-9.6 seconds
(@13.56 MHz). Thus optimizing the existing code in assembly is mandatory.
For all following comparisons we consider our C implementations as baseline. In
hardware it requires 16.9-19.5 kGE and 561-656 uW.

The first (and most laborious) optimization we have performed is the re-
placement of all field operations with constant-runtime assembly functions. This
not only improves the runtime but also makes all timing attacks infeasible. The
field addition and subtraction operations have been unrolled and perform the
reduction without branches. For the field multiplications, we have taken advan-
tage of the standardized Mersenne-like primes to get branch-free code using only
addition and shift operations.

A Lightweight ATmega-based ASIP for ECC 5

The most time-consuming algorithm is the multi-precision integer multipli-
cation. Hutter and Wenger [12] did a thorough comparison between the School-
book’s operand-scanning (OS), Comba’s [3] product-scanning (PS), Gura et
al’s [9] hybrid and their own operand-caching (OC) multiplication methods.
We implemented unrolled and looped versions of those algorithms in assembly.
Table 1 shows that by doing so the runtimes of integer and point multiplica-
tions for secp160rl were improved by factors of 3.97 and 4.03, respectively. Our
fastest implementation, based on the operand-caching method, achieved a run-
time of 9,230 kCycles for a point multiplication. For comparison: Gura et al. [9],
Szczechowiak et al. [19], Wenger et al. [21], and Liu et al. [16] achieved runtimes
of 6,480 kCycles, 9,376 kCycles, 13,027 kCycles and 16,939 kCycles, respectively.
However, most of those implementations do not consider side-channel attacks.
For instance, Gura et al. used a Jacobian-based NAF point-multiplication for-
mula. For reference, we applied the same technique as Gura et al. and improved
their fastest implementation by 50 kCycles to 6,430 kCycles.

Apart from the expected runtime differences (OS > PS > Hybrid > OC),
unrolling the integer multiplication has a huge impact on the size of the program
code. Up to 62 % of the entries in the program memory are due to the unrolled
integer multiplication. Compared to the C implementation, the chip size of the
program memory increased by up to 76 %. Despite of that, assembly optimization
and ‘unrolling’ improved the area-time-product by a factor of up to 3.3, thus
establishing themselves as one of the most important optimization techniques.

The focus of this section was to perform software optimizations both appli-
cable to the ATmegal28 and JAAVR. In the next sections, we present hardware
optimization techniques that improve both the execution time as well as the
total hardware footprint.

4 Improving the CPU

Already during the design of JAAVR, we realized several avenues for optimiza-
tion potentials. It was necessary to artificially introduce NOP operations in order
to achieve identical cycles-per-instruction (CPI) counts compared to the original
ATmegal28. The most significant difference is that the ATmegal28 uses a two-
stage pipeline and JAAVR does not. So all we needed to improve the performance
of store and multiply operations was to deactivate the NOP operations.

Unlike our previous paper [21], we also optimized memory load operations.
For the cycle-accurate (CA) design, two cycles are needed to load data from
the synchronous data memory. During the first cycle the address is applied to
memory and during the second cycle the obtained data word is stored to a
general purpose registers (GPR).

In order to reduce the latency of all load operations, we decided to introduce
a pipelining structure. While the first cycle of the operation stays identical, the
second cycle is performed as part of the subsequent operation. As Figure 2 shows,
multiplexers before and after each general purpose register were added. MUX2
is used to update the next value stored within the GPR. MUXI1 overrides the

6 Erich Wenger

Previous

; MUX]1
i
]
i Arithmetic and
| Logic Unit
|

LA 2NN 2 2N 2 20

5 5 5 /' MUX2

e
B>R0O | > .. | >R31 | Next

Fig. 2. The multiplexers were added to reduce the necessary cycles per load instruction.

current contents within the GPR. Thus the ALU is working on an updated set
of GPR. The impact of the multiplexers on the critical path is hardly noticeable.

By switching JAAVR from the CA to the FAST mode, the following instruc-
tions improve: MUL*, ST, STD, PUSH, LD, LDD, POP, IJMP, RJMP, CBI, SBI (2 — 1),
RCALL, ICALL, LPM, ELPM (3 — 2), CALL, RET, and RETI (4 — 3). This increased
the size of JAAVR form 6,140 GE to 6,791 GE (by 10 %), while the runtime of the
fastest point multiplication improved by 26 %. Thus, the area-runtime product
improved by a factor of 1.31.

After enabling those optimizations, JAAVR is still instruction-set compatible
with the original ATmegal28. So any (cryptographic) algorithm would benefit
from the improved instruction-timing. The next two sections are dedicated on
optimizing JAAVR for ECC using instruction-set extensions, transforming our
design into an ASIP.

5 The Power of the MULACC Command

When investigating the instructions used for the unrolled product-scanning multi-
precision multiplication, one can observe that there are four instructions, always
used in consecutive order: MUL, ADD, ADC, and ADC. The idea behind the multiply-
accumulate instruction-set extension is to combine those instructions into a sin-
gle MULACC command, as it has been done in related work.

Already in 2004, Grofischadl and Savag [8] used five custom instructions to
accelerate prime fields and binary extension fields on a MIPS32 core and gained
a speedup of about six for binary extension fields. In 2005, Eberle et al. [5]
presented multiply-accumulate instruction-set extensions for binary-extension
fields on an ATmegal28. They improved sect223r1 by a factor of 13.6, but did
not use ISE for prime fields as we do it in this paper.

A Lightweight ATmega-based ASIP for ECC 7

In fact, we used the MULACC instruction to improve the fastest multi-precision
multiplication formula: the operand-caching method. We are the first to com-
bine the operand caching method with an instruction-set extension. Like the
product-scanning method, this method uses the same sequence of instructions
as mentioned above. So, by combining the operand-caching multiplication, which
reduces the number of load and store operations, and the multiply-accumulate
instruction, which reduces the number of additions, we achieved a new speed
record: 631 cycles for a 160-bit integer multiplication.

There are two main challenges concerning the introduction of new instruc-
tions: First, most of the 2'¢ possibilities of the 16-bit instruction words are al-
ready assigned to existing instructions. Thus, the introduction of a new instruc-
tion would mean to modify existing instructions and being no longer compatible
with the original ATmegal28. Second, adapting the source code of avr-gcc,
avr-as, and avr-1d to add new instructions does not seem to be straightfor-
ward.

Our solution is to introduce a new, within the I/O memory mapped, register
that can switch the processor to a special operating mode. In this special op-
erating mode, certain existing instructions are reinterpreted. For this solution,
none of the avr-gcc tools had to be modified.

In order to improve the performance of the operand-caching multiplication,
we introduced two instructions: MULACC and ST_SHIFTACC. MULACC multiplies two
registers Rd and Rr and adds the result to the accumulator stored in R0-R2:
(R2,R1, R0) + (R2, R1,R0) + Rd x Rr. This operation can be performed 2%
times without the risk of an overflowing accumulator. This is more than the
required e = 10 accumulations performed within the operand-caching multi-
plication algorithm (e is a parameter to adjust the operand caching method,
see [12]). After e MULACC operations, ST_SHIFTACC is used to store the lowest
byte of the accumulator (ST RO, Z+) and shifts the accumulator by 8 bits to the
right (RO < R1, R1 + R2, R2 <+ 0). Because of those optimizations, we freed
up two registers that were used as temporary storage of the product. In order
not to waste them, we increased e from 10 to 11, which further decreased the
number of necessary load and store instructions.

By using those instruction-set extensions, a 160 x 160-bit multiplication can
be performed three times faster. It takes 631 cycles compared to 1,896 cycles.
A detailed decomposition of the used instructions can be found in Appendix A.
Further, the ISE had hardly any impact on the size of JAAVR. Only 257 GE
or 3.8% of additional logic had to be added. At the same time, the size of the
program memory decreased: from 11,807 GE to 8,202 GE (-31%). Adding all
those improvements together, the area-time product improved by a factor of 2.4.

A point multiplication in secp160r1 takes 3,268 kCycles. A profiling analysis
showed that 83.2% of the total runtime are spent on the field multiplications.
The optimized reduction algorithm for the secp160r1 prime 2160 —23! —1 utilizes
26.1% of the total runtime or a third of the field multiplication. Thus, any
further optimizations must not only consider the integer multiplication, but the
field multiplication as a whole. This is done in the following section.

8 Erich Wenger

Operand a Operand b

/_JH
|> RO-R28 | |> Extension | |>R29

n-bit MSB(R29)

l—bit‘ o <<
multiplication

[Zero] | Adder |—->| Reduce

n-bit | |

LA]

|> n-bit wide Work Register

|
Y

Fig. 3. The bit-serial multiplier is merged with the CPU.

6 Using a Dedicated digit-serial Multiplier

When investigating related work on ECC, one can either find ECC designs based
on an word-level multiplier (cf. [10,22]), as we used in the previous sections,
or designs based on a digit-serial multiplier (cf. [6]). A digit-serial multiplier
simultaneously operates on all digits of the multiplicand a, but only a single
digit b; of the multiplicand b.

In this section we want to introduce the concept of a ‘tightly-coupled’ bit-
serial multiplier, which merges a bit-serial multiplier with the CPU. By reusing
existing registers, we were able to keep the impact on the total chip area to a
minimum and avoid unnecessary data transfers.

A block diagram of our bit-serial multiplier is depicted in Figure 3. Algo-
rithm 1 shows the pseudo-code to control it. An MSB-first multiplier is used
which accesses all b; starting with the most significant bit. The Z-register (R30,
R31) is used to address the memory, and R29 is used to store the byte containing
b;. During each cycle, R29 is shifted to the left using the LSL (Logic Shift Left)
instruction of JAAVR. At the same time the Work register is updated in the

A Lightweight ATmega-based ASIP for ECC 9

Algorithm 1 Pseudocode for the bit-serial multiplication.

: PUSH all call-saved registers.
LD operand a to RO-R28 and Extension.
Switch to ISE mode. (memory mapped config register)
Clear Work register.
for i from [§] — 1 to 0 do
LD R29, -Z (load b;, pre-decrement pointer register Z)
8 times: LSL R29 (triggers bit-serial multiplier)
end for
Store Work register.
: Switch back to normal mode.
: POP all call-saved registers.

—
2O XSOk @D

—

following manner: Work < (a x b; + Work < |b;|) (mod p). In each cycle the
most significant bit of R29 (b;) is multiplied with a, the product is added to a
shifted version of the n-bit! Work register, and the Work register is updated with
the reduced sum. After the last computation cycle, the product a x b (mod p)
is stored in the Work register. A modified store instruction (ST) is used to write
the Work register to memory, one byte at a time.

To reuse existing registers, a is stored in register RO to R28 and the Extension
register. For secp256r1, three IO-memory-mapped 8-bit Extension registers are
necessary. So for secp160-224r1 it was only necessary to add the Work register
and the combinatoric logic.

A field multiplication for secp160r1 takes 271 cycles. 9 x 20 = 180 cycles are
used by the digit-serial multiplication, 2 x 20 = 40 cycles are necessary for loading
operand a and storing the result, and 51 cycles are necessary to comply with the
C-calling convention (PUSH, POP, CALL, RET) and to switch between the normal
ATmegal28 compatible operation mode and the instruction-set-extension mode.

Compared to the original software implementations in C, a speedup between
30 (secp160r1l) and 44 (secp256rl) was achieved. The bit-serial approach is
also 2.3-3.7 times faster than the MULACC instruction-set extension. The size of
the program memory decreased significantly by 25 %—41 %. However, the size of
the CPU core increased by 61 %—107 %. 4,551 GE are required for the bit-serial
multiplier for secp160rl and 7,792 GE have to be added for secp256r1. The
question now is whether adding the bit-serial multiplier improves or worsens the
area-runtime product. In fact, it improves by a factor of 2.1-3.1, which makes
the tightly-coupled digit-serial multiplier (by far) the fastest, even though not
the smallest hardware implementation presented in this paper.

7 Results

The most important results of our implementations are summarized in Table 2
and have already been discussed in the previous sections. It contains figures that

! n relates to the number of bits needed to represent any value in F,,.

10 Erich Wenger

Table 2. Summary of all experiments. SARP stands for ‘scaled area-runtime product’.

Impl. Runtime|Program Data Area Requirement Power |Energy| Runtime|SARP
Memory JAAVR ROM RAM Total||@13.56 MHz @13.56 MHz
[kCycles]| [Bytes] [Bytes] kGE] [kGE] [kGE] [kGE] [uW] [ud] [ms]
secpl160ri
CAinC 37,168 4,188 418 6,140 7,744 3,855 17,738 561 1,539 2,741 225
CA 9,230 8,218 402 6,140 11,807 3,754 21,701 662 450 681 6.8
FAST 6,764 8,218 402 6,791 11,807 3,754 22,352 824 411 499 5.2
MULACC 3,268 5,688 402 7,048 8,202 3,754 19,004 850 205 241 2.1
bit-serial 1,298 4,286 350|| 11,341 7,744 3,452 22,537 1,013 97 96 1.0
secp192r1, NIST P-192
CAinC 55,365 3,916 483 6,140 6,505 4,233 16,877 640| 2,615 4,083 21.6
CA 15,093 10,070 462 6,140 11,807 4,107 22,054 677 753 1,113 7.7
FAST 11,101 10,070 462 6,791 11,807 4,107 22,705 832 681 819 5.8
MULACC 5,022 6,396 462 7,048 10,040 4,107 21,195 864 320 370 2.5
bit-serial 1,813 4,490 406|| 12,302 7,744 3,779 23,825 1,084 145 134 1.0
secp224ri, NIST P-224
CAinC 86,058 3,926 569 6,140 6,363 4,712 17,215 663| 4,208 6,346| 23.9
CA 23,213 12,374 526 6,140 15,484 4,485 26,109 689 1,179 1,712 9.8
FAST 17,114 12,374 526 6,791 15,484 4,485 26,760 843| 1,063 1,262 7.4
MULACC 7,537 7,404 526 7,048 10,040 4,485 21,573 848 472 556 2.6
bit-serial 2,469 4,808 466|| 13,237 7,744 4,132 25,113 1,032 188 182 1.0
secp256ri, NIST P-256
CAinC 130,695 5,604 645 6,140 8,202 5,165 19,506 656 6,320 9,638 27.8
CA 34,928 15,888 590 6,140 17,029 4,838 28,006 663| 1,707 2,576| 10.7
FAST 26,290 15,888 590 6,791 17,029 4,838 28,657 811| 1,572 1,939 8.2
MULACC 11,900 9,372 590 7,048 11,807 4,838 23,693 836 733 878 3.1
bit-serial 3,367 5,532 522 14,583 8,202 4,460 27,244 1,031 256 248 1.0

are characteristic for software and hardware implementations. Every row labeled
with cycle accuracy (CA) is applicable for an ATmegal28 as well as JAAVR.
Using a TCL-based simulation script, we measured the data-memory require-
ments (including stack) of all implementations. The bit-serial designs needs the
least data memory, because the memory for a temporary 2n-bit product was
saved. The RAM and ROM macros are chosen according to the data and pro-
gram memory requirements. Because those macros are only available in certain
sizes, not every difference measured in Bytes is reflected in the actual area of
the ROM macro (in gate equivalents).

7.1 Reached Goals

All targeted goals (< 2mW, < 500 ms @ 13.56 MHz) have been met. An exception
are the larger 224-bit and 256-bit elliptic curves which render the MULACC based
approach as too slow. The runtimes of 100-200 ms show that the clock frequency
can be decreased by factors of 2-4, which in turn would decrease the power
consumptions by a factor of 2—4.

7.2 Related Work

For a fair comparison with related work, it is important to not only consider
plain numbers (chip area, runtime, power), but also the provided features. We
distinguish whether a design is microprocessor-based (MCU), comes with a C-
compiler, considers side-channel attacks, or performs binary- or prime-field based

A Lightweight ATmega-based ASIP for ECC 11

Table 3. Comparison with related work.

Reference Runtime Area Characteristics
[kCycles] [GE]
ISE - secp160r1
Gura [9] 4,720 - ATmega-based
OC + MULACC 3,268 19,004 ATmega-based
Dedicated Hardware - secp160ri
bit-serial 1,298 22,537 ATmega-based
OC + MULACC 3,268 19,004 ATmega-based
Fiirbass [6] 362 19,000 ECDSA-like
Dedicated Hardware - secp192r1
Satoh [18] 4,165 29,655 ECC
bit-serial 1,813 23,825 ATmega-based
Fiirbass [6] 502 23,600 ECDSA-like
OC + MULACC 5,022 21,195 ATmega-based
Hutter [10] 859 19,115 ECDSA, MCU
Wenger [22] 1,377 11,686 ECDSA, MCU

ECC. One must also consider the used manufacturing technology, but this would
go beyond the scope of this paper.

A fair comparison with dedicated hardware designs is tough. While they
are optimized to the limit, they lack the rich set of features our ASIP pro-
vides. The ASIP is easily extendable and provides a compiler toolchain. Also our
microprocessor-based approach has not yet reached its limits (c.f. Appendix C),
but applying those ideas would make our design incompatible with a standard
ATmegal28. Table 3 summarizes the comparison with related work.

Fiirbass et al. [6], Hutter et al. [10], Satoh et al. [18], and Wenger et al. [22]
worked on dedicated prime-field based elliptic curve hardware designs. They
require 12-30 kGE of hardware and 362-4,165 kCycles of runtime. Although most
of their solutions are faster, it is important to notice that our solutions provide
sufficiently fast response times. Hutter et al. and Wenger et al. implemented
the full ECDSA signature algorithm and Fiirbass et al. implemented ECDSA
without a hash algorithm. The designs by Hutter et al. and Wenger et al. is micro
controller based, but does not provide a C-compiler. The designs by Fiirbass et
al. and Satoh et al. are not micro controller based, so it probably is easier to
adapt our designs for real-world scenarios.

Most comparable to this paper are the works of Gura et al. [9], Kumar
and Paar [15], and Koschuch et al. [14]. Gura et al. added simulated ISE to
an AVR processor, but achieved slower runtimes results. Kumar and Paar used
the ATSTK94 FPSLIC demonstration board to extend an AVR, processor with
a bit-serial multiplier extension for binary extension fields. They however have
not applied their methodology to prime fields and do not provide results for
an ASIC. Koschuch et al. synthesized an 8051-compatible microprocessor and
equipped it with a hardware accelerator for binary extension fields. In total, they

12 Erich Wenger

needed 29kGE and 1.2 MCycles. Even though we use prime fields, our results
are smaller and approximately of similar speed.

8 Conclusion

After our thorough analysis of instruction-set extensions for ECC, the following
conclusions can be drawn: First, if the area footprint is most important (e.g., for
RFID) our MULACC-based ASIP is the best choice. The chip area is on par with
related work and reasonable response times of less than 370 ms are achievable.
Second, for applications such as wireless sensor networks or embedded smart
cards, the tightly-coupled bit-serial ASIP approach is most suitable. It provides
the best energy efficiency and the best area-time product. Third, the design
space for ECC implementations is huge: the ratios between the best and the
worst implementation across all tested elliptic curves in the categories of area-
runtime product, runtime, and energy are 87:1, 101:1, and 65:1, respectively. Our
results show that the figures vary by up to two orders of magnitude across the
hardware/software design space, which gives a designer a multitude of options
to fine-tune a design for a given set of requirements.

Acknowledgements

The author wants to thank Thomas Plos for the support during the creation of
this paper. This work has been supported by the Austrian Science Fund (FWF)
under grant number TRP 251-N23 (Realizing a Secure Internet of Things -
ReSIT).

References

1. D. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards
Curves. In AFRICACRYPT, volume 5023 of LNCS, pages 389-405, 2008.

2. Certicom Research. Standards for Efficient Cryptography, SEC 2: Recommended
Elliptic Curve Domain Parameters, Version 1.0, 2000.

3. P. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems Journal,
29(4):526-538, October 1990.

4. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In C. K. Ko¢ and C. Paar, editors, CHES, volume 1717 of LNCS,
pages 292-302. Springer, 1999.

5. H. Eberle, A. Wander, N. Gura, S. Chang-Shantz, and V. Gupta. Architectural
Extensions for Elliptic Curve Cryptography over GF(2™) on 8-bit Microproces-
sors. In International Conference on Application-specific Systems, Architectures
and Processors, pages 343-349. IEEE Computer Society, July 2005.

6. F. Firbass and J. Wolkerstorfer. ECC Processor with Low Die Size for RFID
Applications. In Proceedings of 2007 IEEE International Symposium on Circuits
and Systems. IEEE, IEEE, May 2007.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A Lightweight ATmega-based ASIP for ECC 13

R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster Point Multiplication on
Elliptic Curves with Efficient Endomorphisms. In CRYPTO, LNCS, pages 190—
200, 2001.

J. Grof3schddl and E. Savas. Instruction Set Extensions for Fast Arithmetic in
Finite Fields GF(p) and GF(2™). In CHES, pages 133-147, 2004.

N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing Elliptic
Curve Cryptography and RSA on 8-Bit CPUs. In M. Joye and J.-J. Quisquater,
editors, CHES, volume 3156 of LNCS, pages 119-132. Springer, 2004.

M. Hutter, M. Feldhofer, and T. Plos. An ECDSA Processor for RFID Authenti-
cation. In RFIDSec, pages 189-202, 2010.

M. Hutter, M. Joye, and Y. Sierra. Memory-Constrained Implementations of Ellip-
tic Curve Cryptography in Co-Z Coordinate Representation. In AFRICACRYPT,
volume 6737 of LNCS, pages 170-187, 2011.

M. Hutter and E. Wenger. Fast Multi-Precision Multiplication for Public-Key
Cryptography on Embedded Microprocessors. In B. P. und Tsuyoshi Takagi, editor,
CHES, volume 6917 of LNCS, pages 459-474. Springer, 2011.

International Organization for Standardization (ISO). ISO/IEC 14443-3: Identifi-
cation Cards - Contactless Integrated Circuit(s) Cards - Proximity Cards - Part3:
Initialization and Anticollision, 2001.

M. Koschuch, J. Lechner, A. Weitzer, J. Grofschddl, A. Szekely, S. Tillich, and
J. Wolkerstorfer. Hardware/Software Co-design of Elliptic Curve Cryptography
on an 8051 Microcontroller. In CHES, 2006.

S. Kumar and C. Paar. Reconfigurable Instruction Set Extension for Enabling
ECC on an 8-Bit Processor. In Field Programmable Logic and Application, volume
3203 of LNCS, pages 586—-595, 2004.

A. Liu and P. Ning. TinyECC: A Configurable Library for Elliptic Curve Cryptog-
raphy in Wireless Sensor Networks. In International Conference on Information
Processing in Sensor Networks, pages 245-256, 2008.

National Institute of Standards and Technology (NIST). FIPS-186-3: Digital Sig-
nature Standard (DSS), 2009.

A. Satoh and K. Takano. A Scalable Dual-Field Elliptic Curve Cryptographic
Processor. IEEE Transactions on Computers, 52:449-460, 2003.

P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab. NanoECC:
Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. In Wireless
Sensor Networks, LNCS, pages 305-320. Springer, 2008.

S. Vaudenay. On Privacy Models for RFID. In ASIACRYPT, LNCS, pages 68—87,
2007.

E. Wenger, T. Baier, and J. Feichtner. JAAVR: Introducing the Next Generation
of Security-Enabled RFID Tags. In DSD, pages 640—647, 2012.

E. Wenger, M. Feldhofer, and N. Felber. Low-Resource Hardware Design of an
Elliptic Curve Processor for Contactless Devices. In WISA, pages 92-106, 2010.

14 Erich Wenger

A Decomposition of Instructions

Table 4 shows the decomposition of used instructions for performing a 160 x 160-
bit multiplication with and without instruction-set extension. Using the ISE, the
necessary additions were nearly eliminated.

Table 4. Decomposition of the number of cycles per type of instruction necessary for
a 160 x 160-bit multiplication.

Instruction CA FAST ISE
MUL 800 400 0
MULACC 0 0 400
LD 160 80 76
ST 120 60 0
ST_SHIFTACC 0 0 58
ADC 820 820 18
ADD 420 420 18
CLR 63 63 4
PUSH 36 18 18
POP 36 18 18
Others 18 17 21
Total 2,473 1,896 631

B Runtimes of Finite-Field Operations

The runtimes of all finite-field operations for secp160r1 are presented in Table 5.
Especially the comparable slow finite-field multiplication greatly profited from
the performed optimizations. Because the inversion is based on an exponenti-
ation, the speedup of the inversion is a direct reflection of the speedup of the
multiplication. Using the bit-serial multiplier, the ratio between additions and
multiplications is only 1.5. This needs to be taken in concern when a method or
formula for the point multiplication is chosen.

Table 5. Runtimes of finite-field operations for secp160r1.

Operation CA FAST ISE bit-serial
Addition 291 176 176 176
Subtraction 291 176 176 176
Multiplication 3,024 2,249 984 271

Inversion 519,217 386,368 170,053 48,130

A Lightweight ATmega-based ASIP for ECC 15

C The Limits

In this paper we concentrated on delivering sufficiently fast and power-aware
ASIPs for future RFID technology. We sticked to modifying the processing core
and only optimized the finite-field operations in assembly language. However, if
you want to make our design into an actual product, further optimizations need
to be considered.

Constants consume space within the program and data memory. At startup
they are loaded from the program memory and stored to the data memory.
If one would add a memory-mapped table within the data memory bus, one
could significantly reduce the size of the necessary RAM macro. The RAM
macro could be shrunken by at least seven times 160-bit = 140 bytes.

Memory Management is currently performed by the compiler by reserving
memory on the stack. If the whole source code would be written in assembly,
unnecessary and redundant data memory entries could be avoided.

Processor Features that are not needed for ECC could be removed. E.g. the
I/O bus is mapped within the data memory, or MOVW instructions are not
needed for the finite-field operations. Removing those feature would decrease
the size of JAAVR by 420 GE.

Processor Instructions that are not needed for ECC could be removed. For
instance the FMUL* and MULS* multiplier instructions are not needed for an
ECC point multiplication.

Program Memory is currently synthesized as Via-1 ROM macros. Using smaller
ROM macros would significantly decrease the size of the program memory.
Because the program memory is the largest part of the presented design,
decreasing its size has a significant impact on the total chip area.

