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Abstract. In this paper we present a novel type of digital signatures, which we call blank
digital signatures. The basic idea behind this scheme is that an originator can define and
sign a message template, describing fixed parts of a message as well as multiple choices for
exchangeable parts of a message. One may think of a form with blank fields, where for such
fields the originator specifies all the allowed strings to choose from. Then, a proxy is given the
power to sign an instantiation of the template signed by the originator by using some secret
information. By an instantiation, the proxy commits to one allowed choice per blank field in
the template. The resulting message signature can be publicly verified under the originator’s
and the proxy’s signature verification keys. Thereby, no verifying party except the originator
and the proxy learn anything about the “unused” choices from the message template given a
message signature. Consequently, the template is hidden from verifiers.
We discuss several applications, provide a formal definition of blank digital signature schemes
and introduce a security model. Furthermore, we provide an efficient construction of such
a blank digital signature scheme from any secure digital signature scheme, pairing-friendly
elliptic curves and polynomial commitments, which we prove secure in our model. Finally, we
outline several open issues and extensions for future work.
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1 Changes to the AsiaCCS’13 Proceedings Version

– The construction of the BDSS has been greatly simplified. This makes the construction much
more intuitive, enhances the performance significantly, reduces the size of the public parameters
and allows the use of an indistinguishability notion for the privacy property.

– The privacy property has been restated to an indistinguishability style security game.
– This version incorporates full security proofs and uses explicit reductions in the security proofs

(whenever appropriate).

2 Introduction

Digital signatures provide the means to achieve source authentication and data integrity for digital
messages in a publicly verifiable way meaning that at signing time a signer commits himself to a
concrete message. In this paper, we propose the novel concept of a blank digital signature scheme.
Here, an originator can define and sign a message template, describing fixed parts of a message as
well as several choices for exchangeable parts of a message (one may think of a form with blank fields,
where for such fields the originator specifies all the allowed strings to choose from), for which he can
delegate signing permissions to a proxy. This proxy is given the power to sign template instantiations
of the template given by the originator by using some secret information. The resulting message
signature can be publicly verified under the originator’s and the proxy’s signature verification keys.
Thereby, no verifying party except the originator and the proxy learn anything about the “unused”
choices from the message template and, consequently, about the template when given a message

? This is a major revision of the version of the AsiaCCS’13 paper.



signature. In order to construct such a scheme it is helpful to look at existing variants of digital
signature schemes to figure out, whether they can be used to instantiate blank digital signatures.

Conventional digital signatures require the signer to be available during signature creation, e.g.,
when a contract is signed. To overcome this limitation, the concept of proxy signatures [14] has
been introduced. Basically, a proxy signature scheme allows an entity (the delegator) to delegate
his signing capabilities to another entity (the proxy) that can then construct signatures on behalf of
the delegator. This concept has seen a considerable amount of interest since then [5]. Surprisingly,
only quite recently a suitable security model for proxy signatures has been introduced [4], and been
extended to multi-level and identity-based proxy signature schemes later on [17]. Since in a practical
application, the delegator may not want to give the proxy the power to sign any message on behalf
of the signer, the delegation by warrant [14] approach was proposed. Here, a signed warrant is used
to describe the delegation. Thereby, any type of security policy may be included in the warrant to
describe the restrictions under which the delegation is valid. This approach seems to be particularly
attractive and received the most attention, since the designator can define a message space for which
he delegates his signing rights. In state of the art schemes [17,5], a warrant consists of the description
ω of the message space for which signing is being delegated, together with a “certificate”, which is
a signature on ω under the delegators private signing key. We are given a similar requirement and,
consequently, could ask whether proxy signatures can be used in this setting. In proxy signatures,
this warrant is an abstract description, which could, for instance, be a context-free grammar, a
regular expression, or as in [4], the description of a polynomial-time Turing machine computing the
characteristic function of all potential messages, i.e., given a message to decide, whether the message
is covered by ω or not. However, in proxy signatures the proxy is allowed to sign arbitrary messages
from this abstract message space with the downside that the verifier learns the entire message space.
Consequently, our requirement that the proxy can sign instantiations of a template without a verifier
learning the corresponding template can not be realized by using existing proxy signature schemes.

Conventional digital signature schemes do not allow alterations of a signed document without
invalidating the signature. Since it may be valuable to have the possibility to replace or remove
(specified) parts of a message after signature creation such that the original signature stays valid (and
no interaction with the original signer is required), redactable [19,11] as well as sanitizable signature
schemes [1] have been introduced. Signature schemes, which allow removal of content (replacement by
some special symbol ⊥) by any party are called redactable [19,11], while signature schemes allowing
(arbitrary) replacements of admissible parts by a designated party are called sanitizable signature
schemes [1], cf. [16] for a comparison. As in our setting, the proxy should be allowed to choose
from a list of predefined replacements for designated parts of the message, one could ask whether
redactable or sanitizable signatures can be used in this setting. Since in redactable signature schemes
any party is allowed to modify signed messages by removing message parts, such signature schemes
are obviously not compatible with our requirements. The original concept of sanitizable signatures [1]
allows designated sanitizers to replace designated parts of a message. However, here the sanitizer
does not have the role of a proxy meaning that it does not sign the modified message. Furthermore,
a sanitizer can replace the designated parts with arbitrary strings, which is clearly not meeting our
requirements. The concept of sanitizable signatures was later on extended to allow only permitted
replacements [13], yet, the Bloom filter [3] based construction does not meet cryptographic security
requirements and the cryptographic accumulator [2] based approach [13,7] allows to securely restrict
replacements. Yet, both approaches are not designed and also do not support the hiding of the set
of accumulated values (allowed replacements) and, thus, are not suitable for our construction.

To sum this up, our concept has more in common with proxy signatures than with sanitizable
signatures. This is due to our requirements that the signature of the originator is not publicly
verifiable as it is the case in sanitizable signatures and only instantiations can be publicly verified
as it is the case for proxy signatures.

2.1 Contribution

Since, however, none of the existing concepts covers all our requirements, we propose the novel
concept of a blank digital signature scheme. Here, an originator, i.e., the signer delegating signing



permissions, can define and sign a message template, describing fixed parts of a message as well as
several choices for exchangeable parts of a message. One may think of a form with blank fields, where
for such fields the originator specifies all the allowed strings to choose from. Then, a proxy is given
the power to sign template instantiations of the template given by the originator by using some
secret information. The resulting message signature can be publicly verified under the originator’s
and the proxy’s signature verification keys. Thereby, no verifying party except the originator and
the proxy learn anything about the “unused” choices from the message template and, consequently,
about the template given a message signature. Since this setting is quite different from the security
requirements of proxy signatures and sanitizable signatures, most importantly, the template should
be hidden from verifiers, we define a novel type of signature scheme along with a suitable security
model. Similar to proxy signatures and sanitizable signatures, we require a public key infrastructure
meaning that the originator and proxy are in possession of authentic signing keys. Moreover, since
we use polynomial commitments in our construction, we need the parameters to be generated by a
trusted third party.

A naive approach to realize blank digital signatures is that the originator produces n signatures
for all n possible instantiations together with the public key of the proxy using a standard digital
signature scheme, whereas the proxy simply signs the originator’s signature for the chosen instanti-
ations. However, the number of signatures issued by the originator would then be O(n), which gets
impractical very soon with increasing number of choices in exchangeable parts. By using randomized
Merkle hash trees [15] as in redactable signatures, the number of signatures of the originator could
be reduced to O(1), whereas the signature of the proxy would then, however, be of size O(log n).
At first glance, this may seem attractive, yet in Section 6.3 we illustrate that this approach also
becomes soon impractical with an increasing number of choices. In our construction, the number of
signatures of the originator is O(1), whereas the size of both signatures, of the originator and the
proxy, are also O(1) and, in particular, very small and constant. Clearly, this is far more appealing
than the aforementioned naive approaches.

2.2 Outline

In Section 3, we sketch some application scenarios for blank digital signatures. Section 4 discusses
the mathematical and cryptographic preliminaries. Then, in Section 5 we introduce the notion of
blank digital signatures and the corresponding security model. A construction of a blank digital
signature scheme along with its security proof and a comparison to the naive approaches are given
in Section 6. Finally, Section 7 concludes the paper and lists open issues for future work.

3 Applications

Here, we sketch some application scenarios which we envision for this novel type of digital signatures.

Partially blank signed contracts: Suppose a person is willing to sign a contract under certain
predefined conditions, e.g., set of potential prices, range of possible contract dates, but is not able
to sign the contract in person. Then, this person can elegantly delegate this task to another semi-
trusted party, e.g., his attorney, by using blank digital signatures. The third party is then able to
conclude the contract on behalf of his client. The client can do so by defining a contract template
thereby leaving certain positions “blank”, i.e., defining certain potential choices for the position
without committing to one, and signing the template. Then, at a later point in time, the attorney is
able to “fill in the gaps” by choosing from predefined choices, whereas the original signature of the
client remains valid, and then signing the resulting contract as a proxy.

“Sanitizable” signatures: We may interpret exchangeable parts of message templates as replace-
ments (with a potentially empty string) and, thus, can achieve a scheme with similar capabilities,
but different meaning and strength as a non-interactive publicly accountable sanitizable signature



scheme [6]1, which supports controlled replacements [7,13]. Note that such a sanitizable signature
scheme does not yet exist. However, there are some key differences. In contrast to sanitizable signa-
tures, our template signature is not intended to be publicly verifiable, i.e., can only be verified by
the proxy and, thus, the originator does not commit to a concrete instantiation of the template. Fur-
thermore, in blank digital signatures, the allowed replacements are hidden, which is not supported
by sanitizable signatures allowing such replacements [7,13]. Consequently, blank digital signatures
may be seen as signature schemes supporting sanitizing capabilities, but are a different concept as
it is clear from the differences mentioned above.

4 Preliminaries

In this section we firstly provide an overview of required mathematical and cryptographic prelimi-
naries.

4.1 Mathematical Background

An elliptic curve over the finite field Fq is a plane, smooth curve described by the Weierstrass
equation:

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (1)

where a1, a2, a3, a4, a6 ∈ Fq. The set E(Fq) of points (x, y) ∈ F2q satisfying Equation (1) plus the
point at infinity ∞, which is the neutral element, forms an additive Abelian group, whereas the
group law is determined by the chord-and-tangent method [18].

Let G be a cyclic group and p be a divisor of its group order, then there exists a subgroup of
order p, which we subsequently denote by G[p].

Definition 1 (Bilinear Map). LetG1, G2 andGT be three cyclic groups of the same prime order p,
whereG1, G2 are additive groups andGT is a multiplicative group. We call the map e : G1×G2 → GT
a bilinear map or pairing, if the following conditions hold:

Bilinearity: For all P1, P2 ∈ G1 and P ′1, P
′
2 ∈ G2 we have:

– e(P1 + P2, P
′) = e(P1, P

′) · e(P2, P
′) for all P ′ ∈ G2,

– e(P, P ′1 + P ′2) = e(P, P ′1) · e(P, P ′2) for all P ∈ G1.

Non-degeneracy: If P is a generator of G1 and P ′ a generator of G2, then e(P, P ′) is a generator
of GT , i.e., e(P, P ′) 6= 1GT

.
Efficiently computable: e can be computed efficiently.

If G1 = G2, then e is called symmetric and asymmetric otherwise. The former type is also called
Type-1 pairing, whereas in case of the latter we distinguish between Type-2 and Type-3 pairings.
For Type-2 pairings there is an efficiently computable isomorphism Ψ : G2 → G1 [8] and for Type-3
pairings such an efficiently computable isomorphism does not exist. In our setting, G1 and G2 are
p-order elliptic curve group over Fq and GT = F∗qk [p], which is an order p subgroup of F∗qk . Note that

k, the so called embedding degree, is defined as k = min{` ∈ N : p | q` − 1}.
A function ε : N→ R+ is called negligible if for all c > 0 there is a k0 such that e(k) < 1/kc for

all k > k0. In the remainder of this paper, we use ε to denote such a negligible function.

Definition 2 (Discrete Logaritm Problem (DLP)). Let p be a prime of bitlength κ, G be a
group of order p and α ∈R Z∗p. Then, for every PPT adversary A

Pr (A(P, αP ) = α) = ε(κ).

1 In such a sanitizable signature scheme, when given a signature anybody can verify, whether a modification
has been conducted by the original signer or the sanitizer without interacting with any party.



If G is an elliptic curve group, we call the corresponding DLP elliptic curve discrete logarithm problem
(ECDLP).

Definition 3 (t-Strong Diffie Hellman Assumption (t-SDH)). Let p be a prime of bitlength
κ, G be a group of order p, α ∈R Z∗p and let (P, αP, α2P, . . . , αtP ) ∈ Gt+1 for some t > 0. Then, for
every PPT adversary A

Pr

(
A(P, αP, α2P, . . . , αtP ) =

(
c,

1

α+ c
P

))
= ε(κ)

for any c ∈ Zp \ {−α}.

4.2 Digital Signatures

Here, we briefly recall the definition of a standard digital signature scheme.

Definition 4 (Digital Signature Scheme). A digital signature scheme DSS is a tuple (DKeyGen,
DSign,DVerify) of polynomial-time algorithms:

DKeyGen(κ) : Is a key generation algorithm that takes as input a security parameter κ ∈ N and
outputs a private (signing) key dsk and a public (verification) key dpk.

DSign(M, dsk) : Is a (probabilistic) algorithm taking input a message M ∈ {0, 1}∗, a private key dsk
and outputs a signature σ.

DVerify(σ,M, dpk) : Is a deterministic algorithm taking input a signature σ, a message M ∈ {0, 1}∗,
a public key dpk and outputs a single bit b ∈ {true, false} indicating whether σ is a valid
signature for M .

Furthermore, we require the digital signature scheme to be correct, i.e., for all (dsk, dpk) ∈ KeyGen(κ)
and all M ∈ {0, 1}∗, DVerify(DSign(M, dsk),M, dpk) = true must hold. A digital signature scheme
is secure, if it is existentially unforgeable under adaptively chosen-message attacks (UF-CMA) [10].
Note that in practice, the sign and verify algorithms will typically use a hash function to map input
messages to constant size strings, which is also known as the hash-then-sign paradigm.

4.3 Polynomial Commitments

In [12], Kate et al. introduced the notion of constant-size polynomial commitments. The authors
present two distinct commitment schemes, whereas one is computationally hiding (PolyCommitDL)
and the other is unconditionally hiding (PolyCommitPed). For our scheme, we are using an uncon-
ditionally hiding and computationally binding variant of PolyCommitDL for monic polynomials. The
constructions of [12] use an algebraic property of polynomials f(X) ∈ Zp[X]. Namely, that (X − λ)
perfectly divides the polynomial f(X)− f(λ) for λ ∈ Zp: Now, we briefly present the PolyCommitDL

construction of [12].

Setup(κ, t): Pick two groups G,GT of the same prime order p (with p being a prime of bitlength
κ) having a symmetric pairing e : G×G→ GT such that the t-SDH assumption holds. Choose
two generators P ∈ G and α ∈R Z∗p and output ppk = (G,GT , p, e, P, αP, . . . , α

tP ) as well as
psk = α.

Commit(ppk, f(X)): Given f(X) ∈ Zp[X] with deg(f) ≤ t and compute the commitment C =
f(α)P ∈ G and output C.

Open(ppk, C, f(X)): Output f(X).
Verify(ppk, C, f(X)): Verify whether

C = f(α)P

holds and output true on success and false otherwise. 2

2 Subsequently, we use f(α)P as short-hand notation for
∑deg(f)
i=0 f (i)(αiP ), although f(α) as such can only

be evaluated in case of a trapdoor commitment, i.e., with α known.



CreateWit(ppk, f(X), γ): Compute φ(X) = f(X)−f(γ)
X−γ and Wγ = φ(α)P and output (γ, f(γ),Wγ).

VerifyWit(ppk, C, γ, f(γ),Wγ): Verify that f(γ) is the evaluation of unknown f at point γ. This is
done by checking whether

e(C, P ) = e(Wγ , αP − γP ) · e(f(γ)P, P )

holds. Output true on success and false otherwise.

A polynomial commitment scheme is secure if it is correct, polynomial binding, evaluation binding
and hiding (cf. [12]). The above scheme can be proven secure under the t-SDH assumption in G,
as long as t <

√
2κ. For the proof we refer the reader to [12]. Notice that α must remain unknown

to the committer (and thus the setup has to be run by a trusted third party), since, otherwise, it
would be a trapdoor commitment scheme.

Moreover, we note that we do not need the algorithms CreateWit and VerifyEval in our construc-
tion, since we do not need to prove valid evaluations of the polynomial f(X) without revealing the
polynomial itself.

5 Blank Digital Signatures

In this section we introduce the notion of blank digital signatures as well as the according secu-
rity model. As a prerequisite we first need to introduce representations and encodings for message
templates and template instantiations.

5.1 Template and Message Representation

In the following we introduce a representation for message templates. A message template T describes
all potential template instantiations that correspond to a single template. More formally, a message
template is defined as follows.

Definition 5 (Message Template). A message template T is a sequence of non-empty sets Ti =
{Mi1 , . . . ,Mil} of bitstrings Mij and uniquely identified by idT . If the size of Ti is one, then the set
Ti is called fixed element of T and exchangeable element otherwise. The set of all message templates
is denoted by T.

An exchangeable element Ti represents allowed substitutions, i.e., Ti can be replaced by any of its
elements Mij in order to obtain an instantiation of the template. Let n be the sequence length of
T , then n is called length of template T . Finally, with |T | we denote the size of template T , that is
|T | =

∑n
i=1 |Ti|.

Definition 6 (Template Instantation). A template instantiation M of some template T =
(Ti)

n
i=1 is derived from T as follows. For each 1 ≤ i ≤ n choose exactly one element Mi ∈ Ti

and set M = (Mi)
n
i=1. A template instantiation M is called valid, which we denote by M � T ,

if it represents choices that were intended by the originator of template T . Furthermore, we use
MT = {M :M� T } to denote the set of all possible template instantiations of a template T .

A message template T is called

– trivial if it does not contain any exchangeable elements. Note that this implies |T | = n, and
– minimal if no two fixed elements are adjacent.

The minimal property guarantees that the number of fixed elements is kept minimal. The complement
of the template instantiation M denoted as M is a sequence of sets of bitstrings and represents all
unused choices in the exchangeable elements, that is M = (Ti \ {Mi})ni=1 for an instantiation
M = (Mi)

n
i=1 of T = (Ti)

n
i=1.

Now, we give a short example to illustrate our concept.

Example 1. Let T = (T1, T2, T3) with



– T1 = {“I, hereby, declare to pay ”},
– T2 = {“100$”, “120$”, “150$”} and
– T3 = {“ for this tablet device.”}.

Here, T1 and T3 are fixed elements and T2 is an exchangeable element with three choices. A template
instantiation could, for instance, be

M = (“I, hereby, declare to pay ”, “120$”, “ for this tablet device.”).

The complement of template instantiation M is then M = (∅, {“100$”, “150$”}, ∅).

In the following, we define encodings of templates and template instantiations, for which we
use polynomials in the Euclidean ring Zp[X]. This allows us to perform polynomial division with
remainder, which is essential to our construction.

Definition 7 (Template Encoding). Let T =(Ti)
n
i=1 be a message template and H : {0, 1}∗ → Zp

be a full-domain cryptographic hash function. A template encoding function t : T→ Zp[X] is defined
as follows:

T 7→
n∏
i=1

∏
M∈Ti

(
X −H(M‖idT ‖i)

)
.

The evaluation t(T ) results in a so-called template encoding polynomial tT ∈ Zp[X] of degree |T |.

Note that the degree of the resulting polynomial needs to be bounded by
√

2κ, as otherwise the
security of the polynomial commitment scheme is no longer guaranteed. However, this has no impact
in practice, since the polynomial can only be created by a polynomial time algorithm.

Definition 8 (Message Encoding). Similar to Definition 7, a message encoding function mT :
MT → Zp[X] with respect to a message template T is defined as follows:

M 7→
n∏
i=1

(X −H(Mi‖idT ‖i)),

where M = (Mi)
n
i=1 is an instantiation of T = (Ti)

n
i=1. We call mM = mT (M) ∈ Zp[X] message

encoding polynomial. Furthermore, we define the complementary message encoding function mT :
MT → Zp[X]:

M 7→
n∏
i=1

∏
M∈(Ti\{Mi})

(
X −H(M‖idT ‖i)

)
.

We call mM = mT (M) = ( tT
mM

) ∈ Zp[X] the complementary message encoding polynomial of mM
with respect to template T .

In the following, we consider all polynomials to be expanded. To do so, we assume that an algorithm
Exp, which carries out the polynomial expansion, is applied implicitly to all polynomials.

Typically, a template instantiation M = (Mi)
n
i=1 � T will be mapped to a single bitstring M =

M1‖ . . . ‖Mn. We denote the mapping leading from M toM by λ(M, I) =M, where I = (|Mi|)ni=1

is a descriptional sequence holding the lengths of the n elements of M as given by template T .
For sake of simplicity, we consider all templates to be non-trivial as well as minimal and do not
differentiate between a template instantiation M and its corresponding bitstring M .

5.2 Blank Digital Signature Scheme

Now, we are able to formally define what we mean by a blank digital signature scheme.

Definition 9 (Blank Digital Signature Scheme). A blank digital signature scheme BDSS con-
sists of a tuple (KeyGen,Sign,VerifyT , Inst,VerifyM) of polynomial-time algorithms:



KeyGen(κ, t): This probabilistic algorithm gets the security parameter κ ∈ N and a value t ∈ N
specifying the maximum template size. It generates public parameters pp and returns them.

Sign(T , pp, dskO, dpkP): This probabilistic algorithm takes a message template T , the public pa-
rameters pp, the originator’s signing key dskO, the proxy’s verification key dpkP and outputs a
template signature σT and a template dependent private key for the proxy skTP .

VerifyT (T , σT , pp, dpkO, skTP , dpkP): This deterministic algorithm takes a template T , its signature
σT , the public parameters pp, the originator’s signature verification key dpkO, the private key
of the proxy skTP , and the proxy’s verification key dpkP. It outputs a bit b ∈ {true, false}
indicating whether σT is a valid signature for T .

Inst(T ,M, σT , pp, sk
T
P , dskP): This probabilistic algorithm takes a template T , an instantiation M,

a template signature σT , the public parameters pp, the private key of the proxy skTP , the signing
key dskP of the proxy and outputs a message signature σM.

VerifyM(M, σM, pp, dpkP, dpkO): This deterministic algorithm takes a template instantiation M of
T , the signature σM, the public parameters pp, the signature verification key of the proxy dpkP,
and the signature verification key of the originator dpkO. It outputs a bit b ∈ {true, false}
indicating whether σM is a valid signature for M� T .

5.3 Security Definitions

In the following, we define the security properties a blank digital signature scheme needs to satisfy
in order to be secure. Therefore, we start with a brief overview of the required properties.

Correctness: The scheme must be correct in terms of signature correctness, signature soundness
and instantiation correctness, i.e., both template and message signatures are accepted when valid
and template signatures of the originator are binding.

Unforgeability: No entity without knowledge of the signing keys dskO, dskP and skTP should be able
to forge template or message signatures. This is analogous to the security of traditional digital
signatures.

Immutability: The proxy having access to skTP and dskP, when given a template signature σT for
template T should not be able to forge template or message signatures.

Privacy: No entity without knowledge of the signing keys dskO, dskP and skTP should be able to
determine elements of templates, which have not so far been revealed through instantiations.

Subsequently, the security definitions are discussed in more detail.

Correctness For a blank digital signature scheme the usual correctness properties are required to
hold, i.e., genuinely signed templates and message signatures are accepted. Furthermore, we require
template signatures to be sound, i.e., the originator commits to exactly one template by creating a
template signature.

Signature correctness: For any key pairs (dskO, dpkO) ∈ DKeyGen(κ) and (dskP, dpkP) ∈ DKeyGen(κ),
any BDSS parameters pp ∈ KeyGen(κ, t), any template T and any honestly computed template sig-
nature

σT = Sign(T , pp, dskO, dpkP),

we require that the verification

VerifyT (T , σT , pp, dpkO, skTP , dpkP) = true

holds.

Signature soundness: For any key pairs (dskO, dpkO) ∈ DKeyGen(κ) and (dskP, dpkP) ∈ DKeyGen(κ),
any BDSS parameters pp ∈ KeyGen(κ, t), any template T and any honestly computed template sig-
nature

σT = Sign(T , pp, dskO, dpkP),



we require that for any (skT
∗

P , T ∗) 6= (skTP , T ) the probability that the verification

VerifyT (T ∗, σT , pp, dpkO, skT
∗

P , dpkP) = true

holds is negligibly small as a function of the security parameter κ.

Instantiation correctness: For any key pairs (dskO, dpkO) ∈ DKeyGen(κ) and (dskP, dpkP) ∈
DKeyGen(κ), any BDSS parameters pp ∈ KeyGen(κ, t), any template T , any honestly computed sig-
nature σT and corresponding skTP such that

VerifyT (T , σT , pp, dpkO, skTP , dpkP) = true,

any honestly computed message signature

σM = Inst(T ,M, σT , pp, sk
T
P , dskP),

we require that the verification

VerifyM(M, σM, pp, dpkP, dpkO) = true

holds.

Definition 10 (Correctness). A BDSS is correct if it satisfies signature correctness, signature
soundness and instantiation correctness.

Unforgeability Unforgeability in the context of blank digital signatures resembles the notion of
(existential) unforgeability against adaptive chosen message attacks (UF-CMA) in classic digital
signature schemes. We adapt the classical notion to our setting in Game 1. Unforgeability is a
protection against attacks mounted by parties not having access to any secret information. Here,
the adversary obtains the public keys from the challenger in the setup phase. In the query phase, A
has access to two signing oracles, a template signing and a message signing oracle.

Definition 11 (Unforgeability). A BDSS is called unforgeable, if for any polynomial-time algo-
rithm A the probability of winning Game 1 is negligible as a function of security parameter κ.

Immutability Immutability guarantees that no malicious proxy can compute signatures for tem-
plates or template instantiations not intended by the signer. Immutability is similar to unforgeability,
but, in contrast to unforgeability, immutability deals with malicious insiders (proxies).

The immutability game, as stated in Game 2, differs only slightly from the unforgeability game.
Here, the adversary additionally obtains dskP from the challenger in the setup phase. In the query
phase, A has access to two signing oracles, where the template signing oracle additionally returns
the corresponding private key skTiP . In this game, A wins if he outputs valid forgeries of type T1,T2
or M1,M2b.

Definition 12 (Immutability). A BDSS is called immutable, if for any polynomial-time algorithm
A the probability of winning Game 2 is negligible as a function of security parameter κ.

Privacy Privacy captures that any verifier except for the originator and the proxy, which is given
a signature for a template instantiation M of a non-trivial template T , can not gain any informa-
tion about M and thereby learn about T . This means that even if all but one choice of a single
exchangeable element has been revealed no verifier should be able to gain complete knowledge of T .
This is formalized in Game 3.

Definition 13 (Privacy). A BDSS is called private, if for any polynomial-time algorithm A the
probability of winning Game 3 is negligibly close to 1/2 as a function of security parameter κ
and unconditionally private, if for any computationally unbounded algorithm A the probability of
winning Game 3 is 1/2.



Setup: The challenger C runs KeyGen(κ, t) to obtain pp. Furthermore, C runs DKeyGen(κ) of a secure
digital signature scheme twice to generate (dskO, dpkO) and (dskP, dpkP). It gives the adversary A the
resulting public parameters and keys pp, dpkO and dpkP and keeps the private keys dskO and dskP to
itself.

Query: The adversary A has access to a template signing oracle OT and access to a message signing oracle
OM. Both oracles are simulated by the challenger C.

– On receiving a template signing query Ti, C checks whether such a query has already been issued.
If so, C retrieves (Ti, skTiP , σTi) and returns σTi . Otherwise, C runs Sign(Ti, pp, dskO, dpkP), returns

σTi and stores the so obtained (Ti, skTiP , σTi).
– On receiving a message signing query (Ti,Mij ), C checks, whether a template signing query for Ti

has already been made and whether Mi,j � Ti. If not, C returns ⊥. Otherwise, C checks whether
the query (Ti,Mij ) has already been made. If so, C retrieves (Ti,Mij , σMij

) and returns σMij
.

If not, C retrieves (Ti, skTiP , σTi), runs Inst(Ti,Mij , σTi , pp, sk
Ti
P , dskP), returns σMij

and stores the

tuple (Ti,Mij , σMij
).

All of these queries can be made adaptively.
Output: The adversary A outputs either a triple (T ∗, σT ∗ , skT

∗
P ) or a pair (M∗, σM∗). A wins if either

T1 VerifyT (T ∗, σTi , pp, dpkO, sk
Ti
P , dpkP) = true, where T ∗ is an unqueried template and skTiP , and σTi

correspond to one queried template Ti,
T2 VerifyT (T ∗, σT ∗ , pp, dpkO, skT

∗
P , dpkP) = true for some unqueried template T ∗ with corresponding

unqueried skT
∗

P , and σT ∗ ,
M1 VerifyM(M∗, σMij

, pp, dpkP, dpkO) = true, where M∗ 6= Mij is an unqueried message and σMij

corresponds to an already queried Mij � Ti, or
M2 VerifyM(M∗, σM∗ , pp, dpkP, dpkO) = true for some unqueried messageM∗ from template signature

σTi for some previously queried template Ti, such that either
(a) M� Ti, or
(b) M � Ti.

Game 1: Unforgeability Game

Security Now, we can define what constitutes a secure blank digital signature scheme.

Definition 14 (Security). We call a BDSS secure, if it is correct, unforgeable, immutable and
(unconditionally) private.

6 Construction

In this section we detail our construction and prove its security, i.e., we show that our presented
construction is correct, unforgeable, immutable and private.

6.1 Intuition

Before we present the detailed construction, we provide some intuition in order to make our design
choices comprehensible. As already noted, we use standard digital signatures, such as ECDSA [9],
as a building block assuming the respective signature keys to be available to every participant in an
authentic fashion. Note that this requires the availability of public key infrastructures, which are,
however, commonly used in practice today. In our construction, DSS signatures provide authenticity
of template and message signatures.

As already discussed in Section 5, we use polynomials to represent templates and template in-
stantiations. The intuition is that the originator commits to a template polynomial. By construction
every allowed template instantiation is represented by a message encoding polynomial that perfectly
divides the template polynomial. A proxy can now commit to a message polynomial, by comput-
ing and signing a commitment to the complementary message encoding polynomial. However, he
can not choose arbitrary divisors of the template polynomial, as the indexes of message elements



Setup: The challenger C runs KeyGen(κ, t) to obtain pp. Furthermore, C runs DKeyGen(κ) of a secure
digital signature scheme twice to generate (dskO, dpkO) and (dskP, dpkP). It gives the adversary A the
resulting public parameters and keys pp, dpkO and dpkP as well as dskP and keeps the private key dskO
to itself.

Query: The adversary A has access to a template signing oracle OT and access to a message signing oracle
OM. Both oracles are simulated by the challenger C.

– On receiving a template signing query Ti, C checks whether such a query has already been issued.
If so, C retrieves (Ti, skTiP , σTi) and returns (skTiP , σTi). Otherwise, C runs Sign(Ti, pp, dskO, dpkP),

returns (skTiP , σTi) and stores the so obtained (Ti, skTiP , σTi).
– On receiving a message signing query (Ti,Mij ), C checks, whether a template signing query for Ti

has already been made and whether Mi,j � Ti. If not, C returns ⊥. Otherwise, C checks whether
the query (Ti,Mij ) has already been made. If so, C retrieves (Ti,Mij , σMij

) and returns σMij
.

If not, C retrieves (Ti, skTiP , σTi), runs Inst(Ti,Mij , σTi , pp, sk
Ti
P , dskP), returns σMij

and stores the

tuple (Ti,Mij , σMij
).

All of these queries can be made adaptively.
Output: The adversary A outputs either a triple (T ∗, σT ∗ , skT

∗
P ) or a pair (M∗, σM∗). A wins if either

T1 VerifyT (T ∗, σTi , pp, dpkO, sk
Ti
P , dpkP) = true, where T ∗ is an unqueried template and skTiP , and σTi

correspond to one queried template Ti,
T2 VerifyT (T ∗, σT ∗ , pp, dpkO, skT

∗
P , dpkP) = true for some unqueried template T ∗ with corresponding

unqueried skT
∗

P , and σT ∗ ,
M1 VerifyM(M∗, σMij

, pp, dpkP, dpkO) = true, where M∗ 6= Mij is an unqueried message and σMij

corresponds to an already queried Mij � Ti, or
M2 VerifyM(M∗, σM∗ , pp, dpkP, dpkO) = true for some unqueried messageM∗ from template signature

σTi for some previously queried template Ti, such that
(b) M � Ti.

Game 2: Immutability Game

are incorporated into the encoding and the length of the message, i.e., the degree of the message
polynomial, is fixed by the originator.

In the verification, the verifier computes a commitment to the message polynomial and checks
whether the computed commitment and the commitment given by the proxy relate to the commit-
ment given by the originator. We need a trusted third party, as the originator should not know the
value α. Otherwise, he could exchange the template polynomial after signature generation for an-
other polynomial having the same evaluation at the point α. Note that in the context of polynomial
commitments the setup must always be run by a trusted third party, as otherwise these commit-
ments represent trapdoor commitments, i.e., the knowledge of α allows to open the commitment to
arbitrary polynomials.

We use polynomial commitments of the form C = ρ · f(α)P for some random value ρ ∈R Z∗p to
hide the committed polynomials. This provides unconditional hiding of unknown factors of f(X) as
long as ρ stays unknown.

6.2 Scheme

In Scheme 1, we present the detailed construction of our proposed BDSS. Moreover, in Protocol 1,
we illustrate a typical scenario for the interaction of the originator, the proxy and the verifier.

We note that Scheme 1 can easily be turned into a scheme using asymmetric pairings giving
flexibility in the choice of curves and pairings as well as improved efficiency. In case of Type-2 pairings
there are only minor modifications necessary, as there is an efficiently computable isomorphism
between G1 and G2, whereas in the Type-3 setting this comes at the costs of doubling the size of
pp. This is because the values αP, . . . , αtP ∈ G1 also need to be mapped to elements of group G2,
i.e., we need to put the additional points P ′, αP ′, . . . , αtP ′ ∈ G2 into pp, where P ′ is a generator of
G2.



Setup: The challenger C runs KeyGen(κ, t) to obtain pp. Furthermore, C runs DKeyGen(κ) of a secure
digital signature scheme twice to generate (dskO, dpkO) and (dskP, dpkP). It gives the adversary A the
resulting public parameters and keys pp, dpkO and dpkP and keeps the private keys dskO and dskP to
itself.

Query 1: The adversary A has access to a template signing oracle OT and access to a message signing
oracle OM. Both oracles are simulated by the challenger C.

– On receiving a template signing query Ti, C checks whether such a query has already been issued.
If so, C retrieves (Ti, skTiP , σTi) and returns (skTiP , σTi). Otherwise, C runs Sign(Ti, pp, dskO, dpkP),

returns (skTiP , σTi) and stores the so obtained (Ti, skTiP , σTi).
– On receiving a message signing query (Ti,Mij ), C checks, whether a template signing query for Ti

has already been made and whether Mi,j � Ti. If not, C returns ⊥. Otherwise, C checks whether
the query (Ti,Mij ) has already been made. If so, C retrieves (Ti,Mij , σMij

) and returns σMij
.

If not, C retrieves (Ti, skTiP , σTi), runs Inst(Ti,Mij , σTi , pp, sk
Ti
P , dskP), returns σMij

and stores the

tuple (Ti,Mij , σMij
).

All of these queries can be made adaptively.
Challenge: At some point A signals C that he is ready to be challenged by choosing two unqueried, distinct

templates T ′0 and T ′1 of sizes less than t, which are shaped in such a way that from both templates k equal
instantiationsM′1, . . . ,M′k can be derived, and sending them to C. Then, C signs these two templates,

stores the tuples (sk
T ′0
P , σT ′0 ), (sk

T ′1
P , σT ′1 ) and returns the corresponding template signatures σT ′0 and σT ′1

in a randomly permuted order to A.
Query 2: The adversary A is allowed to issue an arbitrary number of queries as in query phase 1, excluding

templates T ′0 and T ′1 .

– Additionally, A can send instantiation queries for M′l with 1 ≤ l ≤ k to an additional oracle O′M,
which is simulated by C. On receiving such a queryM′l, C checks whetherM′l � T ′0 andM′l � T ′1 .
If not, C return ⊥. Otherwise, C checks whether such a query has already been made. If so, C
retrieves (M′l, σM′0l , σM′1l ) and returns σM′0l

and σM′1l
in a randomly permuted order. If not, C

retrieves (sk
T ′b
P , σT ′

b
), runs Inst(T ′b ,M′bl , σT ′b , pp, sk

T ′b
P , dskP) for b = 0, 1, stores (M′l, σM′0l , σM′1l ) and

returns σM′0l
and σM′1l

in a randomly permuted order.

All of these queries can be made adaptively.
Output: The adversary A outputs (Tb, σTb′ ) and wins if b = b′.

Game 3: Privacy Game

6.3 Comparison to the Naive Approaches

Recall that the first naive approach given in Section 2.1 would require the originator to produce one
signature for every possible template instantiation. Let us look at the above example, where we have
20 fixed elements and 25 exchangeable elements with 5 choices each. Note that this is an absolutely
reasonable example, which is far from being overstated. Then, the originator would have to compute
525 ≈ 298 · 1015 signatures, which is obviously impractical.

The second naive approach we have mentioned is the use of Merkle hash trees to reduce the
number of signatures that need to be computed by the originator at the expense of higher computa-
tional costs and an increased size of the signature. This means that the originator needs to build a
complete binary tree, where the number of leaves equals the number of possible template instantia-
tions. Furthermore, each leaf would need to include a random string as additional input to the hash
function in order to hide the instantiations from a verifier as it is done in redactable signatures [11].
In our above example, the number of leaves would then be 525 ≈ 298 · 1015. In order to build the
hash tree, the originator would need to perform one hash evaluation per node in the tree. Note that
for a complete binary tree with n leaves there would be at most 2n − 1 nodes in the tree. For our
above example, this would yield at most 2 · 525 − 1 hash evaluations and the same number of PRF
evaluations to randomize the tree (see [11] for more details on how to compute the random strings
using a PRF). Although the verification of a signature for an instantiation in this construction would
be quite efficient, as it can be carried in logarithmic time in the number of possible instantiations,



KeyGen: On input (κ, t), choose an elliptic curve E(Fq) with a subgroup of large prime order p generated by
P ∈ E(Fq)[p], such that the bitlength of p is κ. Choose a pairing e : E(Fq)[p] × E(Fq)[p] → F∗qk [p] and
a full-domain cryptographic hash function H : {0, 1}∗ → Zp for use with the encoding functions. Pick
α ∈R Z∗p, compute (αP, . . . , αtP ) and output pp = (H,E(Fq), e, p, P, αP, . . . , αtP ).

Sign: Given T , pp, dskO and dpkP, where T is a template of size |T | = ` and length n with ` > n, this
algorithm picks a unique idT ∈R {0, 1}κ, computes tT = t(T ) ∈ Zp[X], picks a secret ρ ∈R Z∗p and
computes

C = e(ρ · tT (α)P, P ) and τ = DSign(idT ‖C‖n‖dpkP, dskO)

and returns the template signature σT = (idT , C, n, τ) as well as skTP = ρ.
VerifyT : Given T , σT , pp, dpkO, skTP and dpkP, where T is a template of size |T | = ` and length n with ` > n,

this algorithm checks whether |T | ≤ t. If not, it returns false. Otherwise, it computes tT = t(T ) and
checks whether

DVerify(τ, idT ‖C‖n‖dpkP, dpkO) = true ∧ e(ρ · tT (α)P, P ) = C.

If so, return true and false otherwise.
Inst: Given T ,M, σT , pp, sk

T
P and dskP, where T is a template of size |T | = ` and length n with ` > n, this

algorithm computes mM = mT (M) ∈ Zp[X]. Then, it computes

CM = ρ ·mM(α)P and µ = DSign(τ‖CM‖I, dskP).

It returns σM = (µ, CM, I, σT ).
VerifyM: Given M, σM = (µ, CM, I = (|Mi|)ni=1, σT ), pp, dpkP and dpkO this algorithm verifies whether

DVerify(τ, idT ‖C‖n‖dpkP, dpkO) = true ∧ DVerify(µ, τ‖CM‖I, dpkP) = true ∧

|I| = n ∧
n∑
i=1

|Mi| = |M|

On failure return false, otherwise evaluate mM = mT (M) and check whether

e(mM(α)P, CM) = C

On success return true and false otherwise.

Scheme 1: Blank Digital Signature Scheme

the Sign,VerifyT and Inst algorithms all require the computation of the full hash tree rendering this
approach impractical.

We emphasize that in our approach the signature size stays constant, regardless of the number of
possible template instantiations. This is due to the fact that the template polynomial, whose degree
grows only linearly in the template size, is mapped to a point on the curve, which is further mapped
to a field element and then hashed. Notice that in our construction, the computational effort is
independent of the number of potential template instantiation. Instead, it grows only linearly with
the template size, i.e., with the number and the cardinality of exchangeable elements and the number
of fixed elements.

6.4 Security

Subsequently, we investigate the security of our construction in the proposed security model by
considering all the required security properties.

Theorem 1. Assuming the existence of secure hash functions and that the t-SDH assumption holds
in E(Fq), Scheme 1 is correct with respect to Definition 10.

Proof. See Appendix A.1.

Theorem 2. Assuming the existence of secure hash functions and secure digital signature schemes
and that the t-SDH assumption holds in E(Fq), Scheme 1 is unforgeable with respect to Definition 11.



We assume that the originator as well as the proxy both own an authentic key pair for a secure digital
signature scheme (dskO, dpkO) and (dskP, dpkP), respectively.

SetupT: The trusted third party T chooses a suitable security parameter κ and a value t ∈ N representing
the maximum template length, runs KeyGen(κ, t) and publishes pp in an authentic fashion.

IssueO: O defines a message template T , runs Sign(T , pp, dskO, dpkP) and gives σT = (idT , C, n, τ) as well as
skTP to P.

IssueP: P runs VerifyT (T , σT , pp, dpkO, skTP , dpkP) to check whether σT is a valid signature for T is-
sued by O. On success, P, on behalf of O, defines a template instantiation M � T and runs
Inst(T ,M, σT , pp, sk

T
P , dskP) and publishes (M, σM).

Verify: Anybody in possession of the public keys can now take (M, σM) and run
VerifyM(M, σM, pp, dpkP, dpkO) to check whether σM is a valid signature for M issued by O
and P.

Protocol 1: Blank Digital Signature Protocol

Proof. See Appendix A.2.

Theorem 3. Assuming the existence of secure hash functions and secure digital signature schemes
and that the t-SDH assumption holds in E(Fq), Scheme 1 is immutable with respect to Definition 12.

Proof. See Appendix A.3.

Theorem 4. Scheme 1 is unconditionally private with respect to Definition 13.

Proof. See Appendix A.4.

Taking Theorem 1-Theorem 4 together, we obtain the following corollary.

Corollary 1. Scheme 1 is a secure BDSS.

7 Conclusions

In this paper we have introduced a new notion of digital signatures, namely so-called blank digital
signatures. We have provided the abstract scheme, a security model and a concrete construction of
such a scheme from any secure digital signature scheme, pairing-friendly elliptic curves and poly-
nomial commitments. Moreover, we have proven the security of our construction and have given
several use cases, such as delegated contract signing.

7.1 Future Work

Since blank digital signatures are a novel concept, there are several open issues for future work, which
we outline subsequently. One issue for future work is to get rid of the trusted third party for key
generation. Furthermore, it would be desirable to generalize the blank digital signature scheme and
its security model to multiple designated proxies, which seems to be straight-forward by inclusion
of multiple proxy signature verification keys into the template signature. However, in this naive
construction every proxy and every verifier can determine the set of designated proxies. This may
not be desirable in practice, whereas to achieve this goal does not seem to be that straight-forward.
Another issue is to find alternative designated constructions for blank signatures potentially without
relying on standard digital signature schemes. Additionally, it would be desirable to prove the security
of our construction under weaker assumptions and to impose further restrictions on allowed template
instantiations, i.e., to further limit the allowed combinations of choices over all exchangeable elements
of templates. Also, allowing blank fields, which can be substituted with arbitrary strings, would be
desirable. Finally, it may be interesting to investigate concepts applied in the construction of blank
digital signatures in the proxy signature setting.
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A Proofs

This section contains the proofs of Theorem 1-Theorem 4.



A.1 Proof of Theorem 1

We show the signature correctness and soundness as well as the instantiation correctness, where we
omit showing that the DSS verification as well as the signature verification and message signature
verification work, since they are clear from the construction.

What remains to show is the signature soundness. Note that for a given template signature σT for
template T the commitment C of the template encoding polynomial is fixed. Consequently, breaking
the signature soundness requires finding (skTP , T ) 6= (skT

∗

P , T ∗) such that C∗ = C.
This requires either collisions in the hash function H used in the encoding functions, finding

second preimages in H or breaking the polynomial binding of the construction. If an adversary A
is able to attack the latter case, then we can construct an efficient adversary B, which uses A to
solve the t-SDH problem in E(Fq). B gets input an instance (P, αP, . . . , αtP ) of the t-SDH problem.
Then B runs DKeyGen twice to produce DSS key pairs for the originator and the proxy, sets up the
public parameters pp = (H,E(Fq), e, p, P, αP, . . . , αtP ) and gives pp and the DSS key pairs to A. If
A is able to win the game by outputting a template signature σT to T as well as (skTP = ρ, T ) and
(skT

∗

P = ρ∗, T ∗) with (skTP , T ) 6= (skT
∗

P , T ∗) such that

VerifyT (T ∗, σT , pp, dpkO, skT
∗

P , dpkP) = true,

then
e(ρ · t(α)P, P ) = e(ρ∗ · t∗(α)P, P )

holds. This implies that

e(P, P )ρt(α) = e(P, P )ρ
∗t∗(α)

e(P, P )ρt(α)−ρ
∗t∗(α) = 1.

Hence, α is a root of the polynomial t′(X) = ρt(X)− ρ∗t∗(X). As factoring of t′(X) yields α, B can
efficiently obtain α and by choosing c ∈R Zp \ {−α}, B can output a solution (c, 1

α+c ) of the t-SDH
problem in E(Fq). ut

A.2 Proof of Theorem 2

The proof consists of two parts. The first part covers unforgeability of template signatures, whereas
the second part covers the unforgeability of message signatures. Both parts consist of two cases cov-
ering the reuse of queried signatures and existential forgeries of signatures, as detailed in Section 5.3.

In the following, let q and qi be the number of template queries and the number of instantiation
queries for template Ti with 1 ≤ i ≤ q issued by A.

Case T1. This case covers the infeasability of finding some T ∗ 6= Ti for all previously queried Ti
such that T ∗ verifies under some queried template signature σTi . If A was able to win the game by
finding - with non-negligible probability - a T ∗ 6= Ti for all 1 ≤ i ≤ q such that

Ci = e(ρ∗ · tT ∗(α)P, P ),

for some 1 ≤ i ≤ q, then A has found a template T ∗ 6= Ti with deg(tT ∗) ≤ t such that either

1. tTi(X) = tT ∗(X), or
2. tTi(X) 6= tT ∗(X) and tTi(α) = tT ∗(α)

holds. Note that both cases are disjoint.
In case one, A has found second preimages in H with non-negligible probability. More precisely,

skTP and σTi are fixed. If A is able to generate a T ∗ 6= Ti with tTi(X) = tT ∗(X) with non-negligible
probability, then it must have found second preimages in H with non-negligible probability for `i
roots of t(Ti), whereas the suffix of each preimage must be of the form idT ∗‖j and only the value of
M is arbitrary.



In the second case, A must have found T ∗ 6= Ti such that tTi(α) = tT ∗(α), i.e., the template
encoding polynomials need to have the same evaluation at the unknown point α, for some 1 ≤ i ≤ q.
Then we can construct an adversary B that breaks the t-SDH problem in E(Fq). The reduction
is identical to the reduction in the proof of signature soundness in Appendix A.1 with the only
exception that we have ρ∗ = ρi.

Case T2. This case covers the infeasability of computing a valid signature σT ∗ for some T ∗ giving
C∗, which differs from all previously queried template signatures. If A is able to win the game by
finding a pair (T ∗, σT ∗) 6= (Ti, σTi) for all 1 ≤ i ≤ q such that

DVerify(τ, idT ∗‖C∗‖n∗‖dpkP, dpkO) = true

then A must be able to forge signatures of the digital signature scheme DSS under dskO.

Case M1. This case covers the infeasability of finding some M∗ 6= Mij for all previously queried
Mij such that M∗ verifies under some issued message signature σMij

, i.e.,

VerifyM(M∗, σMij
, pp, dpkP, dpkO) = true.

In particular, in order to win the game, A must be able to find M∗ such that either

1. mMij
(X) = mM∗(X), or

2. mMij
(X) 6= mM∗(X) and mMij

(α) = mM∗(α)

holds. Note that both cases are disjoint.
In the first case, A needs to find - with non-negligible probability - anM∗ 6=Mij for all 1 ≤ i ≤ q

and 1 ≤ j ≤ qi such that

|M∗| = |Mij | ∧ deg(mM∗) = n ∧ e(CM∗ , CMij
) = Ci

for some 1 ≤ i ≤ q and 1 ≤ j ≤ qi. Since all values in the verification relation are fixed due to µ,
the only way for A to output anM∗ that passes the signature verification for an existing signature,
is to find an M∗ such that mM∗(X) = mMij

(X) and |M∗| = |Mij |. A can do so by computing

second preimages in H, i.e.,
H(M∗l ‖idTi‖l) = H(Mijl

‖idTi‖l)

for all n roots of the polynomial mMij
, whereas the suffix of each preimage must be of the form

idTi‖l and only the value of M∗l is arbitrary.
In the second case, we show that if A is able to come up with such a forgery, then we can construct

an adversary B against the t-SDH assumption in E(Fq). Adversary B works as follows. B obtains an
instance (P, αP, . . . , αtP ) to the t-SDH problem in E(Fq), sets pp = (H,E(Fq), e, p, P, αP, . . . , αtP )
and gives pp and the DSS public keys of the originator and proxy to A. When A wins the game by
delivering such a forged M∗, we know that:

e(CM∗ , CMij
) = e(CMij

, CMij
)

e(CM∗ − CMij
, CMij

) = 1

As CMij
6= O with overwhelming probability, it follows that:

mM∗(α)P = mMij
(α)P

mM∗(α)P −mMij
(α)P = O

Consequently, α is a root of the polynomial mM∗(X)−mMij
(X) ∈ Zp[X]. By factoring this poly-

nomial, B can efficiently obtain α and solve the instance of the the t-SDH problem in E(Fq) given
by pp by choosing c ∈ Zp \ {−α} and outputting (c, 1

α+cP ).



Case M2. This case covers the infeasability of computing a valid signature σM∗ for someM∗, which
differs from all previously queried signatures. A needs to find a pair (M∗, σM∗) 6= (Mij , σMij

) for

all 1 ≤ i ≤ q and 1 ≤ j ≤ qi such that

VerifyM(M∗, σM∗ , pp, dpkP, dpkO) = true.

In both cases M2a and M2b, this implies that A is able to forge DSS signatures under dskP. ut

A.3 Proof of Theorem 3

Case T1. The proof for this case is analogous to the proof in Appendix A.2 with the exception that
A knows the proxy private keys corresponding to all templates. Therefore, the reduction is identical
to the one in the proof of signatures soundness in Appendix A.1.

Case T2. The proof for this case is analogous to the one in Appendix A.2, since A has exactly the
same knowledge as in the previous proof.

Case M1. The proof for this case is analogous to the proof in Appendix A.2.

Case M2b. This case covers the infeasability of existentially forging signatures for messages, which
are not instantiations of a template.

Firstly, we show that if A is able to find an M∗ such that M∗ � Ti for all 1 ≤ i ≤ q and
σM∗ 6= σMij

for all 1 ≤ j ≤ qi and

VerifyM∗(M∗, σM∗ , pp, dpkP, dpkO) = true,

then we can construct an efficient adversary B against the t-SDH assumption in E(Fq). Finding
such an M∗ implies that A has found a polynomial mM∗ such that mM∗ does not perfectly divide
tTi , i.e., tTi = mM∗ ·mM∗ + ξ with ξ 6= 0.

Adversary B works as follows. B obtains an instance (P, αP, . . . , αtP ) to the t-SDH problem
in E(Fq), sets pp = (H,E(Fq), e, p, P, αP ) and gives pp and the respective DSS keys to A. B sim-
ulates A’s queries as in the original game. If A wins the game by returning (M∗ = M0, σM∗ =
(µ∗, CM∗ , I∗ = (|M∗i |)ni=1, σTi), Ti), then B computes mM∗ = mTi(M∗) and tTi = t(Ti). As we have

e(CM∗ , CM∗) = C,

CM∗ must have the form CM∗ = ρi(mM∗(α) + ξ(α)
mM∗ (α)

)P . By dividing tTi(X) through mM∗(X), B

obtains mM∗(X) and ξ(X). From this B can compute mM∗(α)P . Since B knows ρi from the query
phase, it can now compute

ρ−1i CM∗ −mM∗(α)P =
ξ(α)

mM∗(α)
P.

As deg(tTi) = 1 and deg(mM∗) = 1, we have deg(ξ) = 0, i.e., ξ(X) = ω ∈ Z∗p. Therefore, we obtain

ξ(α)

mM∗(α)
P =

ω

α−H(M0‖idT ‖1)
P

and B can now compute

1

ω

ω

α−H(M0‖idT ‖1)
P =

1

α−H(M0‖idT ‖1)
P

which gives a solution (−H(M0‖idT ‖1), 1
α−H(M0‖idT ‖1)P ) to the t-SDH problem in E(Fq). It is

immediate that the success probability of B is only negligibly smaller than that of A, due to the
possibility that it could happen that α = H(M0‖idT ‖1), and the time required is only a small
constant larger than that of B.

Secondly, another strategy, A can follow is to use non-intended perfect divisors of tTi , i.e., con-
structing an M∗ such that deg(mM∗) 6= n and/or the elements of M∗ are not consecutive with
respect to the order defined by template Ti. However, the degree n of all valid message polynomials
as well as the index values i in the message encoding are fixed by the originator. Thus, the verifica-
tion can never be satisfied. In the latter case, A would additionally be required to compute second
preimages for at least one of the unintended factors. ut



A.4 Proof of Theorem 4

The strategy for this proof is as follows. When receiving the template signatures for the challenged
templates T ′0 and T ′1 , there is no a priori link between the templates and their signatures as they are
returned in a randomly permuted order. Since the template ids are randomly chosen, both templates
are of the same length n and the proxy public keys are equal, all boils down to deciding correspon-
dence between templates and signatures by inspecting the commitments C′0 and C′1 contained in the
template signatures σT ′0 and σT ′1 . Analogously, all values in the message signatures of an instantia-
tionM′l, except for the commitments to the complementary message polynomials and the comprised
template signatures, are identical. Latter allows the linking of queried message and template sig-
natures and constructing two lists of commitments (C′0, C′M′01

, . . . , C′M′0k
) and (C′1, C′M′11

, . . . , C′M′1k
),

where we assume w.l.o.g that A has queried all k instantiations. Consequently, the only strategy A
can follow to gain an advantage over guessing, is to base its decision upon these two lists. What
remains to show is that A has no advantage in winning the game, when using this information, which
means that A’s success probability for winning the game is exactly 1/2. We do so by showing that
all elements in the above two lists unconditionally hide the respective encoding polynomials.

Let T be a template allowing s instantiations and C = e(ρ · tT (α)P, P ) be the commitment to
its template encoding polynomial. W.l.o.g. we assume that let s − 1 message signatures have been
issued and the corresponding commitments to the complementary message encoding polynomials
CM1

, . . . , CMs−1
are known. Nevertheless, this implies that one monomial factor (X − γ) in the

template encoding polynomial of T remains unknown. It also implies that (X − γ) is an unknown
factor of all complementary message encoding polynomials in the commitments CMi

= ρ ·mMi
(α)P

for i = 1, . . . , s− 1. The only unkown values in C (and in all other commitments), for which we
demand C 6= O, are ρ and γ. For all these commitments, there are, however, exactly p−1 valid pairs
(γ, ρ) ∈ (Z∗p)2. Consequently, all these commitments unconditionally hide the encoding polynomials.
(Note that also in case of a constrained set of a < p possible values for γ - which would for instance
be the case if we are dealing with a constrained message space - the hiding is still unconditional, as
there are a equally likely pairs of possible values.) ut


