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Abstract. In this work we address the complexity problem of the isogeometric Boundary
Element Method by proposing a collocation scheme for practical problems in linear elas-
ticity and the application of hierarchical matrices. For mixed boundary value problems,
a block system of matrices – similar to Galerkin formulations – is constructed allowing
an effective application of that matrix format. We introduce a strategy for the geometric
bisection of surfaces based on NURBS patches. The approximation of system matrices is
carried out by means of kernel interpolation. Numerical results are shown that prove the
success of the formulation.

1 INTRODUCTION

In the emerging field of isogeometric analysis, Boundary Element Methods (BEM)
have gained increasing interest. This is, because for analysis only surface descriptions
are required - and Computer Aided Geometric Design (CAD) models are based on such
a boundary description. Hence, with this combination the task of domain discretization
may be completely avoided. Still, this comes at a prize: the numerical effort of setting
up and solving the system of equations is computationally intensive, because the system
matrices are fully populated.

Over the last decades much effort has been spent to overcome this barrier. In con-
text of boundary integral techniques, the fast multipole method (FMM) [13], hierarchical
matrices (H-matrices) [5], the wavelet method [3] and fast Fourier transformation based
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methods [11] reduce the asymptotic numerical complexity significantly, to (almost) linear
behavior.

With respect to the analysis with BEM on CAD-surfaces, early reports on the usage
of non-uniform rational B-splines (NURBS) have been reported in [12, 17] in the context
of electric field equations. In the field of isogeometric analysis, the strategy was applied
in [2, 15] to practical problems of elasticity in two dimensions and in [10, 14] to three
dimensions. However, there are only few reports [8, 9, 16] of a successful application of
fast boundary element techniques in the context of isogeometric analysis.

In this work we present the application of the concept of H-matrices to an isogeometric
NURBS-based BEM formulation for problems in elasticity. For the geometric bisection
we utilize NURBS-features like knot insertion and the convex hull property. The approx-
imation of far-field matrix blocks is carried out by means of kernel interpolation [7].

2 ISOGEOMETRIC BOUNDARY ELEMENT METHOD

We consider a fixed elastic body subject to external loading. The elastic behavior in
terms of displacements u is described by partial differential equation

Lu(x) = − (λ+ 2µ)∇ · ∇u(x) + µ∇× (∇× u(x)) = 0 (1)

where L denotes the Lamé-Navier operator. For convenience, the boundary trace

Tru(x) = lim
x→y

u(x) = u(y) x ∈ Ω, y ∈ Γ (2)

and the conormal derivative

Tyu(x) = λ∇ · u(y)n(y) + 2µ∇u(y) · n(y) + µn(y)× (∇× u(y)) x ∈ Ω, y ∈ Γ (3)

are introduced. The normal n is defined to always point out of the considered domain.
The operator Tr maps displacements u(x) to boundary displacements u(y). Involving the
material law, the conormal derivative Ty maps u(x) to surface traction t(y). The boundary
can be split into a Neumann and a Dirichlet part such that Γ = ΓN ∪ ΓD and ΓN ∩ ΓD = 0.
This leads to the following boundary value problem (BVP): Find a displacement field u(x)
so that

Lu(x) = 0 ∀x ∈ Ω

Tyu(x) = t(y) = gN(y) ∀y ∈ ΓN

Tru(x) = u(y) = gD(y) ∀y ∈ ΓD.

(4)

Here, gN is the prescribed Neumann data in terms of surface tractions and gD represents
the prescribed Dirichlet data in terms of displacements.

2.1 Boundary Integral Equation

The BVP (4) can be stated in terms of an boundary integral equation

(C +K)u(x) = Vt(x) ∀x ∈ Γ (5)
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with the weakly singular single layer operator

(Vt)(x) =

∫
Γ

U(x, y)t(y) d sy ∀x,y ∈ Γ (6)

and the strongly singular double layer operator

(Ku)(x) =

∫
Γ

T(x, y)u(y) d sy ∀x,y ∈ Γ \Bε(x). (7)

In case of elasto-static problems U(x, y) is Kelvin’s fundamental solution for displacements
and T(x, y) = TyU(x, y) that for tractions [1]. In (7) the integral only exists as a Cauchy
principal value, where the radius rε of a sphere Bε around x is treated in a limiting process
rε → 0. The remainder of that process is an integral free term which is

Cu(x) = cu(x) ∀x ∈ Γ (8)

with c = 1/2 on smooth surfaces.

2.2 Discretization with NURBS

In the context of isogeometric Boundary Element analysis, the geometry is discretised
by NURBS-patches

Γ = Γh =
E⋃
e=1

τe (9)

which are, in case of three dimensions (d = 3), surface patches. Note the equal sign for
the geometry description Γ and its discretization Γh as a unique feature: the geometry
error is zero and thus the subscript is dropped for the remainder of the text. The function

Xτ (r) : Rd−1 7→ Rd (10)

is a coordinate transformation mapping local coordinates r = (r1, . . . , rd−1)ᵀ of the refer-
ence NURBS patch to the global coordinates x = (x1, . . . , xd)

ᵀ in the Cartesian system.
B-splines form the basis of a mathematical description of the mapping (10) by means of

NURBS. Univariate B-splines are described by a knot vector Ξ = {r0, . . . , ri+p+1}, which is
a non-decreasing sequence of coordinates in the parametric space, and recursively defined
basis functions

Ni,p(r) =
r − ri
ri+p − ri

Ni,p−1(r) +
ri+p+1 − r
ri+p+1 − ri+1

Ni+1,p−1(r). (11)
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Here, p denotes the polynomial order of the B-spline and i defines the number of the knot
span [ri, ri+1). The initial constant basis functions are

Ni,0(r) =

{
1 if ri 6 r < ri+1

0 else.
(12)

NURBS are piece-wise rational functions

Ri,p(r) =
Ni,p(r)wi∑n
j=0Nj,p(r)wj

(13)

based on B-splines (11) weighted with wi. The basis functions Ni,p and Ri,p have local
support and are entirely defined by p + 2 knots. Multivariate basis functions are simply
defined by tensor products of (13). For surfaces they are defined by

Ri,j(r) =
d−1∏
n=1

Rn
in,jn(rn) (14)

with multi-indices for the knot span i = {i1, . . . , id−1} and for the order j = {p1, . . . , pd−1}
in each parametric direction.

Dropping the order-multi-index j, the geometrical mapping (10) is now expressed by

Xτ (r) = x(r) =
∑
i

Ri(r)pi (15)

in terms of NURBS functions and their corresponding control points p = (p1, . . . , pd)
ᵀ.

In addition, Cauchy data is discretised by the same methodology. Different to Lagrange
type basis functions, NURBS do not utilize the Kronecker delta property, hence physical
values u = (u1, . . . , ud)

ᵀ and t = (t1, . . . , td)
ᵀ are mapped to values in p, which are ũ and

t̃ marked by a tilde. Hence, the discretization is given by

u(x(r)) ≈ u(r) =
∑
i

ϕi(r)ũi ϕ ∈ Sh

t(x(r)) ≈ t(r) =
∑
i

ψi(r)t̃j ψ ∈ S−h
(16)

where ϕ and ψ are basis functions of type (14) and Sh denotes the space of basis functions,
which are at least C0-continuous. With respect to physics, we choose the Ansatz for the
tractions to be discontinuous at edges or corners. Hence, S−h is the space of discontinuous
basis functions which are taken where the surface description (15) exploits C0-continuity.
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2.3 System of Equations

By using collocation, the discretised boundary integral equation (5) is enforced at
distinct points. Each of these points are related to a basis function. The location of
collocation points is defined by the Greville abscissa [10] except for basis functions with
C−1 continuity. In that case, the collocation points are slightly indented in order to
avoid rank deficient system matrices. By splitting the boundary into a Neumann ΓN and
Dirichlet part ΓD and by separating known from unknown Cauchy data (16), a block
system of equations

x ∈ ΓD :
x ∈ ΓN :

(
VDD −KDN

VND −KNN

)(
t̃D
ũN

)
=

(
KDD −VDN

KND −VNN

)(
g̃D
g̃N

)
(17)

with the discrete forms of (6) and (7) is created (see [19]). As a consequence of us-
ing NURBS, it is possible to approximate known Cauchy data relatively coarsely and
differently to the unknown.

The first subscript of the system matrices in (17) denotes the location of collocation
point and the second the boundary of the involved NURBS patches. The entries of the
system matrices are

V[i, j] = (Vψj)(xi) and K[i, j] = ((C +K)ϕj) (xi) (18)

for the i-th collocation point and the j-th basis function. If the value of the basis function
is zero at the collocation point, the matrix entries are evaluated by means of standard
Gauss quadrature. For singular integrals regularisation schemes for numerical integration
are applied [1]. Once the matrix entries are calculated and the known Cauchy values
mapped to the control points, the system of equation may be solved by a block LU -
factorisation or by means of a direct or iterative Schur-complement solver [18].

Due to the non-local fundamental solution U(x, y) the system matrices are fully pop-
ulated so that the numerical effort for storage and the matrix-vector-product is O(n2).
To overcome this non-optimal complexity we apply the concept of H-matrices to (17). In
the context of NURBS functions, this is explained in the following section.

3 HIERARCHICAL MATRICES

In terms of the described isogeometric BEM formulation, different approximation errors
have been introduced. Firstly, by the approximations introduced by discretization of
(5), where the residual is minimized in a finite number of collocation points, and by
the errors introduced evaluating integrals (18) numerically. Secondly, the approximation
of the Cauchy data (16). Finally, the residual of iterative solver is allowed to have a
certain tolerance. Consequently, it is reasonable to approximate the system of equations
(17) itself with a similar magnitude of error. This motivated the development of the
H-matrix technique by Hackbusch [5]. This matrix format provides linear complexity
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up to a logarithmic factor O(n logα n) in terms of storage and matrix operations. For
isogeometric problems of reasonable sizes the logarithmic term is acceptable.

The matrix approximation is based on the fact, that for asymptotically smooth integral
kernels matrix blocks of well separated variables x and y have low rank. Therefor, a
partition of the system matrices with respect to the geometry is needed. That is, indices
of matrix rows i ∈ I and columns j ∈ J are resorted such that their offset corresponds
somehow to their geometric distance. Naturally, the splitting is done block-wise and
categorised into near field and far field. For the latter type the variables are far away
from each other and hence, the matrix block is a candidate for approximation.

3.1 Geometric Bisection

Almost every fast summation method deploys a tree to represent the partition of ma-
trices with general structure. The cluster tree in context of H-matrices is a binary tree
and created by splitting the geometry recursively.

(a)
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Figure 1: (a) Characteristic points with local bounding boxes for collcation points Qi and the support
of a linear NURBS function Qj and (b) general binary-tree structure of a cluster tree T

As shown in Figure 1(a), the indices i and j are assigned to characteristic points xi and
yj with local axis parallel bounding boxes Qi and Qj. Row indices of the system matrices
in (17) correspond to collocation points. Therefore Qi reduces to the characteristic point.
In case of column indices, Qj defines a bounding box around the support of the NURBS
basis function. All indices are collected to the index sets I and J . A cluster is the union
of one or more indices of a set including additional information stored in a label. For each
set, a labeled binary cluster tree T is constructed. The nodes of the tree are clusters where
t00 denotes the root cluster and is labeled by all indices i.e. I, their associated positions
xi and their bounding boxes Qi. Furthermore, a cluster bounding box B`

t is created out
of all Qi which is then geometrically split once: t00 gets exactly two children - the clusters
t11 and t12. The superscript denotes the level ` in T . The splitting is continued recursively
until a stopping criterion

size(t) = #t ≤ nmin (19)
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is fulfilled which is characterized by the minimum leaf size nmin denoting the minimal
amount of indices in a cluster. In Figure 1(b) the general structure of a binary tree with
clusters is shown. If a cluster does not have any child, it is called a leaf. In that example
this is the case i.e. for t33. The same procedure is applied to column indices j resulting to
clusters s and a cluster tree TJ .

For different clustering strategies we refer to the textbook of Hackbusch [6]. In the
context of this work, it is suitable to use geometrically balanced clustering. Contrary
to clustering techniques in FMM, the overall bounding box of a cluster is shrunk to the
minimum possible size with respect to the geometry Qi and Qj of the cluster-indices.
However, to perform the clustering for column indices J a bounding box Qj for each
support of the NURBS functions needs to be constructed. This is done by means of
Bézier extraction and the convex hull property.

In our approach we generate an accumulated knot vector ΞH = Ξu ∪ Ξt which is
determined by the individual approximation of the fields u and t. For a cubic curve, the
following process is depicted in Figure 2 exemplary. A Bézier extraction is performed
by means of knot insertions in ΞH until C0-continuity is reached. The resulting control
points (blue) represent a convex hull of the NURBS curve. Hence, for each basis function
ϕ or ψ a bounding box Q of their support is generated easily by taking these control
points. For instance, the dashed box in Figure 2 depicts the Q1 for the first basis function
of the description of t or u.
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R1,3

Q1

Figure 2: Bézier extraction (blue) of a cubic NURBS curve described by the accumulated knot vector
ΞH . The dashed box Q1 denotes the bounding box of the support for the first cubic NURBS-function
R1,3 (red)

The structure of a H-matrix is then defined by the block cluster TI×J and its nodes
b = t × s. These nodes are constructed for each t and s in the same level where an
admissibility condition

min(diam(Bt), diam(Bs)) ≤ ηdist(Bt, Bs) (20)
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is determined and stored. If (20) is fulfilled, the corresponding matrix block Mb is related
to the far field and therefor, a candidate for approximation. The block cluster tree is now
a quad tree and the basis for the partitioned H-matrix. An example for the level-wise
definition of the matrix structure is depicted in Figure 3. Here, green matrix blocks denote
the far field. For red matrix blocks the level in TI×J is increased as long as the leaf level
in t or s is reached. Finally, the remaining red blocks not fulfilling (20) define the far
field. Near field matrix blocks are evaluated with standard BEM techniques whereas far
field matrix blocks are subject to approximation. One possibility for that is explained in
the upcoming section.
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Figure 3: Matrix partition into blocks defined by the block cluster tree TI×J in up to level ` = 3

3.2 Matrix Approximation

Since the fundamental solution U(x, y) is asymptotically smooth, it is possible to
separate the variables x and y to approximate the integrals (6) and (7). Usually, such
approximations stem from Taylor or multipole expansion as well as spherical harmonics.
To avoid higher order derivatives of the kernel function, we use the concept of kernel
interpolation introduced to H-matrices by Hackbusch and Börm [7].

The fundamental solution is now interpolated by means of Lagrange polynomials

U(x, y) ≈
k∑
ν=1

k∑
µ=1

Lν(x)U(x̄ν, ȳµ)Lµ(y) (21)

with k support points defined on each of the d-dimensional bounding boxes Bt for x and
Bs for y. The interpolation functions Lν and Lµ are represented by the tensor product
of the Lagrange polynomials in one dimension. To get the best approximation quality
for the integral kernel, roots of Chebyshev polynomials of the first kind are chosen for
the support points. The interpolated kernel is then taken for the representation of single
layer operator V leading to

Vt(x) ≈
k∑
ν=1

k∑
µ=1

Lν(x)U(x̄ν, ȳµ)

∫
Γ

Lµ(y)t(y) d sy. (22)
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As a consequence, the boundary integral in (22) depends only on y and is determined by
Lagrange polynomials and the traction representation. After discretization, the resulting
low rank approximation of an admissible matrix block Mb is given by its outer product
form

Mb ≈ Rk = A · S ·BT A ∈ Rr×k, S ∈ Rk×k, B ∈ Rc×k. (23)

The number of support points k denote the rank of the matrices of which the entries are
given by

A[i, ν] = Lν(xi), S[ν, µ] = U`(x̄ν, ȳµ) and B[j, µ] =

∫
Γe

Lµ(y)ϕj(y) d sy. (24)

Contrary to the quadratic storage requirement rc of Mb, the requirements for Rk are
only k(r + c+ k) which is much smaller if k � min(r, c). Similar holds for the numerical
effort of a matrix-vector product. This property is the key point for the overall reduced
complexity of H-matrices.

Special care has to be taken if the integral kernel depends on normal derivatives like
the fundamental solution T(x, y) = TyU(x, y) for the double layer operator (7). In that
case, the conormal derivative (3) is shifted to the Lagrange polynomial. The interpolated
double layer potential becomes

Ku(x) ≈
k∑
ν=1

k∑
µ=1

Lν(x)U(x̄ν, ȳµ)

∫
Γ

TyLµ(y)u(y) d sy.

It is remarkable that for both, the discrete single layer and double layer potentials, the
kernel evaluations and evaluation of Lν at the collocation points xi stay the same. So do
the matrices A and S. The matrix B is now defined by

B[j, µ] =

∫
Γe

TyLµ(y)ϕj(y) d sy. (25)

For the Laplace problem TyLµ(y) = ∇Lµ(y) · n holds but it can be envisaged that the
implementation of the conormal derivative for elastostatic problems (3) is not a straight-
forward task. Details on the traction operator applied to the Lagrange polynomials are
given in the appendix of [18].

Since k is typically chosen by the user in order to fulfil the approximation quality, the
rank of Rk might not be optimal. In order to further reduce the storage requirement, the
matrix block is compressed by means of QR decomposition. The procedure is described
in [4].
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4 NUMERICAL RESULTS

To show the practicability of the described isogeometric fast boundary element method,
a numerical example in two dimensions is presented. The approximation quality of the
discretised single (6) and double layer operator (7) is tested on a tunnel geometry such as
used in [2]. As test setting, we chose several source points outside the domain and apply
Kelvin’s fundamental solution from that points to the surface as boundary condition.
The approximation quality is measured at multiple points inside the domain by means
of the maximum norm ‖ • ‖∞. Figure 4 shows the optimal convergence of the described

BEM formulation. As depicted in Figure 5, matrix compression cH = storage(M)
storage(MH)

with
almost linear rate is observed while accuracy is still maintained according to the chosen
interpolation quality.
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5 CONCLUSION

In this work we have shown the application of the concept of H-matrices to a NURBS
based, isogeometric collocation BEM. The matrix approximation stems from the interpo-
lation of fundamental solutions over bounding boxes of admissible pairs of indices. For
the interpolation of the double layer operator in elasticity, the conormal derivative to the
surface is used. For the spatial bisection, bounding boxes enclosing the support of NURBS
functions are required. We have shown an evaluation scheme based on knot insertion and
Bézier extraction
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