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ABSTRACT
Distortion compensation of nonlinear systems is an important topic
in many practical applications. This paper concerns with lineariza-
tion of nonlinear systems which can be modeled using Volterra series
by connecting two adaptive nonlinear Volterra filters. The first one
is a training filter connected in parallel with the nonlinear system
and its kernels are estimated recursively. The second adaptive filter
is a predistorter connected tandemly with the nonlinear system and
its kernels are a copy from the training filter. Three recursive algo-
rithms, namely: the Recursive Least Squares (RLS), the Kalman Fil-
ter (KF), and the Recursive Prediction Error Method (RPEM) algo-
rithms, are developed and studied using numerical simulations. Sim-
ulation studies for time-invariant and time-varying nonlinear systems
show that the KF and RPEM algorithms provide lower nonlinear dis-
tortion as compared to the RLS algorithm.

1. INTRODUCTION

Digital compensation of nonlinear distortion is an essential require-
ment in many applications. In wireless communication systems,
the nonlinearity of high power amplifiers is an obstacle to increase
the transfer data rate and mobility. In Hi-Fi systems, small distor-
tion produced by nonlinear components dominates the overall per-
formance. Further more examples can be found in communication
systems, speech processing, and control engineering, see [1-3]

In this paper, the Indirect Learning Architecture (ILA) method
[4, 5] shown in Fig. 1 is considered for distortion compensation of
nonlinear systems. The coefficients of the predistorter are a copy
of the coefficients of a training filter connected in parallel with the
nonlinear system. These coefficients can be estimated recursively, as
done in [4], using the Recursive Least Squares (RLS) algorithm, see
[6, 7]. Also, in this paper, the Kalman Filter (KF) and the Recursive
Prediction Error Method (RPEM) algorithms [6, 7] are developed for
this approach. Moreover, the performance of these three algorithms
is studied in case the nonlinear system is time-varying.

This paper is organized as follows. In Sec. 2, a review for the
ILA method is given. Sec. 3 discusses the RLS algorithm for esti-
mating the kernels of the training Volterra filter and hence the kernels
of the Volterra predistorter. The KF and RPEM algorithms are devel-
oped in Sec. 4 and Sec. 5, respectively. Some simulation examples
are given in Sec. 6. Conclusions are presented in Sec. 7.

2. THE INDIRECT LEARNING ARCHITECTURE

Assume that the nonlinear systemH (q) to be compensated in Fig. 1
is a discrete-time (possibly time-varying) causal system. Also, the
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Fig. 1. Compensation of nonlinear distortion using the ILA method.

systemH (q) with input and output signalsy(n) andz(n) can be
modeled byqth-order Volterra series withM -tap memories. Hence

z(n) =

qX

k=1

“M−1X

i1=0

..

M−1X

ik=0

hk(i1, · · · , ik; n)y(n − i1)..y(n − ik)
”

(1)
wherehk(i1, · · · , ik; n) are thekth-order kernels.

Similarly, the relation between the input and output of the pre-
distorterC(p) is given by

y(n) =

pX

k=1

“N−1X

i1=0

..

N−1X

ik=0

ck(i1, · · · , ik; n)x(n − i1)..x(n − ik)
”

(2)
whereN is the number of memories andck(i1, · · · , ik; n) are the
kth-order kernels. According to thepth-order Volterra theorem [8],
C(p) can remove nonlinearities up topth-order provided that the
inverse of the first-order Volterra system is causal and stable.

As a direct approach, the predistorterC(p) is an adaptive fil-
ter whose kernelsck(i1, · · · , ik; n) can be estimated recursively as
done in [3] using the nonlinear filtered-x least mean squares algo-
rithm. In this paper, the kernelsck(i1, · · · , ik; n) are estimatedin-
directly as a copy of the kernels of the training Volterra filterC̃(p),
see Fig. 1. The same approach was used in [4, 5]

The input-output relation of the training filter is given as

ỹ(n) =

pX

k=1

“N−1X

i1=0

..

N−1X

ik=0

c̃k(i1, · · · , ik; n)z(n − i1)..z(n − ik)
”

(3)
wherec̃k(i1, · · · , ik; n) are thekth-order kernels.
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Let us define an error signale(n) to be given by

e(n) = y(n) − ỹ(n) (4)

As this error signal approaches zero, the overall output of the system
z(n) (input to the training filterC̃(p)) approaches the total system
input x(n) (input to the predistorterC(p)) since the outputs of the
two Volterra models,i.e. y(n) andỹ(n), approach each other. When
the kernels̃ck(i1, · · · , ik; n) and indirectlyck(i1, · · · , ik; n) have
been found and it is believed that the nonlinear system characteristics
are not changing, the training branch is shutted down. The training
branch can be reconnected in case of significant change in the char-
acteristics ofH (q) and hence high nonlinear distortion level investi-
gated at the receiver end. On the other hand, in case of time-varying
nonlinear systems, the training branch should be always connected.

The ILA method has two drawbacks that degrade its perfor-
mance. Namely: the convergence of the training filter to a biased
estimates due to the noisy measurement ofz(n) and the fact that
the postinverse and the preinverse of the nonlinear system are not
always equal. Some new techniques are proposed in [9, 10] in order
to improve the performance of the ILA method.

In this paper, the predistorter kernels are estimated recursively
using the RLS, KF and RPEM algorithms [6, 7]. This is the topic of
the next sections.

3. THE RLS ALGORITHM

Let us define the kernels vector̃C of the training filterC̃(p) as

C̃
T

=
`
C̃1 · · · C̃p

´
, (5)

whereC̃k is given by

C̃
T

k (n) =
`

c̃k(0, · · · , 0; n) · · · c̃k(N − 1, · · · , N − 1; n)
´
.

(6)
Writing Eq. (2) and Eq. (3) in vector form, we have

y(n) = C
T (n)X(n) (7)

ỹ(n) = C̃
T
(n)Z(n) (8)

whereCT (n) = C̃
T
(n) and

X(n) =

0
BBBBBBBBBBBBB@
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...
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...
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...
x(n − N + 1)x(n − N + 1) · · ·x(n − N + 1)

1
CCCCCCCCCCCCCA

(9)

Z(n) =

0
BBBBBBBBBBBBB@

z(n)
z(n − 1)

...
z(n − N + 1)

...
z(n)z(n) · · · z(n)

...
z(n − N + 1)z(n − N + 1) · · · z(n − N + 1)

1
CCCCCCCCCCCCCA

.

(10)

Hence using Eq. (7) and Eq. (8), the errore(n) can be written as

e(n) = C̃
T
(n)(X(n) −Z(n)). (11)

Therefore, if the Volterra models satisfy the conditions [4]

X(n) 6= Z(n) =⇒ y(n) 6= ỹ(n)

X(n) = Z(n) =⇒ y(n) = ỹ(n)
(12)

the error signale(n) approaches zero,Z(n) approachesX(n), and
hencez(n) approachesx(n). These conditions are simply mean that
the nonlinearity of the systemH (q) is invertible.

The kernel vector̃C can be estimated as done in [4] using the
RLS algorithm [6, 7]. The RLS algorithm minimizes the cost func-
tion VRLS(C̃) given by

VRLS(C̃) =

nX

k=1

λn−ke2(k) (13)

whereλ ≤ 1 is the forgetting factor ande(n) is given by Eq. (11).
The smaller the value ofλ, the quicker the information in previous
data will be forgotten (cf. Sec. 4). Therefor, the choice ofλ controls
the ability of the algorithm to track time-varying parameters. The
RLS algorithm takes the following form [6, 7]:

e(n) = C̃
T
(n − 1)(X(n) −Z(n))

K(n) = (λ +ZT (n)P (n − 1)Z(n))−1
P (n − 1)Z(n) (14)

P (n) = λ−1
P (n − 1) − λ−1

K(n)ZT (n)P (n − 1)

C̃(n) = C̃(n − 1) +K(n)e(n)

The most common choice for the initial condition ofP (n) isP (0) =
ρI whereI is the identity matrix andρ is a constant reflects our trust
in the initial parameter vector̃C(0).

4. THE KF ALGORITHM

The Kalman filter (KF) algorithm [6, 7] is a well studied algorithm
that provides the optimal (mean square) estimate of the system state
vector and also has the ability to track time-varying parameters. The
KF is usually presented for state-space equation whose matrices may
be time varying.

In order to construct the state space model for the ILA method,
the kernel vector̃C is modeled as a random walk or a drift. Hence,
the training filter has the following state-space model

C̃(n + 1) = C̃(n) + v(n)

ỹ(n) = C̃
T
(n)Z(n)

(15)

whereE{v(n)vT (m)} = R1δn,m and the covariance matrixR1

describes how fast different components ofC̃ are expected to vary.
Applying Kalman filter to the state-space model (15) gives the

following recursive algorithm [6, 7]:

e(n) = C̃
T
(n − 1)(X(n) −Z(n))

K(n) = (1 +ZT (n)P (n − 1)Z(n))−1
P (n − 1)Z(n) (16)

P (n) = P (n − 1) −K(n)ZT (n)P (n − 1) +R1

C̃(n) = C̃(n − 1) +K(n)e(n)

The design variableR1 plays a similar role to that of the forgetting
factorλ in the RLS algorithm (14). In case of tracking time varia-
tions of the Volterra kernels,λ should be small orR1 is large. On
the other hand, for good convergence properties and small variances
of time-invariant kernels,λ should be close to 1 orR1 close to zero.
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5. THE RPEM ALGORITHM

The RPEM algorithm [6, 7] is derived by a minimization of the cost
function

V (C̃) = lim
N→∞

1

N

NX

n=1

E
h
ε2(n, C̃)

i
(17)

whereε(n, C̃) is the prediction error defined as

ε(n, C̃) = y(n) − ỹ(n, C̃) (18)

The RPEM algorithm gives consistent parameter estimates under
weak conditions in case the asymptotic cost function has a unique
stationary point represents the true parameter vector [6, 7].

The formulation of the RPEM algorithm requires the negative
gradient ofε(n, C̃). Thus using Eqs. (8) and (18), we have

ψ(n) = −
dε(n, C̃)

dC̃
=

dỹ(n, C̃)

dC̃
= Z(n). (19)

Hence, the RPEM algorithm [6, 7] follows as

ε(n) = y(n) − C̃
T
(n − 1)Z(n)

λ(n) = λoλ(n − 1) + 1 − λo

S(n) = ψ
T (n)P (n − 1)ψ(n) + λ(n) (20)

P (n) =
`
P (n − 1)

− P (n − 1)ψ(n)S−1(n)ψ(n)T (t)P (n − 1)
´
/λ(n)

C̃(n) = C̃(n − 1) + P (n)ψ(n)ε(n).

Hereλ(n) is a forgetting factor grows exponentially to 1 asn → ∞
where the rateλo and the initial valueλ(0) are design variables.
Remark 1: In case of predistortion of time-varying nonlinear sys-
tems, the RPEM algorithm of (20) can be modified to:

ε(n) = y(n) − C̃
T
(n − 1)Z(n)

S(n) = ψ
T (n)P (n − 1)ψ(n) + r2 (21)

P (n) =
`
P (n − 1)

− P (n − 1)ψ(n)S−1(n)ψ(n)T (t)P (n − 1)
´

+R3

C̃(n) = C̃(n − 1) + P (n)ψ(n)ε(n)

wherer2 andR3 are the gain design variables, see [7]. This modifi-
cation transforms the problem into Kalman Filter (KF) formulation.
Remark 2: Since our system model is linear in parameters, the gra-
dient calculation in Eq. (19) leads toψ(n) = Z(n). Hence, the
two algorithms (16) and (21) are expected to perform similarly. An
identical performance of these two algorithms is obtained in case the
design variables are chosen asr2 = 1 andR3 = R1.

6. SIMULATION STUDY

In this section, a comparison study between the RLS, KF, and RPEM
algorithms is given using computer simulations. Two examples are
given. In both examples, the nonlinear systemH (q) is a known
second-order Volterra system. The predistorterC(p) and the training
filter C̃(p) are also assumed to be second-order Volterra filters. This
means thatq = p = 2. Also, the number of memories is chosen
to beN = 3. The input signal to the predistorter is chosen as a
Gaussian random signal of5 × 103 samples with variance1 whose
frequency band is limited to prevent aliasing [3, 8].
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Fig. 2. Comparison between the RLS, KF and RPEM algorithms for
a time-invariant nonlinear system.

As a measure of performance, the mean square distortion of the
total system consists of the predistorter plus the nonlinear system is
evaluated as [3]

D(n) = 10 log10

 
bE{(z(n) − d(n))2}

bE{d2(n)}

!
(22)

where bE{.} is the mean obtained by103 independent realizations
andd(n) is the desired signal defined as

d(n) = x(n − τ) + v(t). (23)

Hereτ is the time delay necessary to have a causal predistorter and
v(t) is zero-mean additive white Gaussian noise (AWGN). In this
simulations, the desired signald(n) is chosen such that a signal to
noise ratio (SNR) of 40 dB is achieved.
Remark 3: The delay timeτ equals zero in case the system to be
compensated is minimum phase [3].

Example 1: Compensation of distortion for a time-invariant non-
linear system.
In this example, a comparison study between the RLS, KF, and RPEM
algorithms is given. The input-output relation of the nonlinear sys-
temH (2) is chosen as

z(n) = H (2) [y(n)] = H1 [y(n)] +H2 [(y(n)] (24)

where the first-order kernel matrixH1 is given as

H1 =
`

0.5625 0.4810 0.1124 −0.1669
´

(25)

and the second-order kernel matrixH2 is

H2 =

0
@

0.1749 0 0
0 0 −0.0875
0 −0.0875

1
A . (26)

The simulation results are shown in Fig. 2. All the three algo-
rithms were initialized withC(0) = 1 andP (0) = 10I . Also,
λ = 0.99, R1 = 10−6I , λo = 0.99, andλ(0) = 0.95. The re-
sults of Fig. 2 show that the KF and the RPEM algorithms provide
a lower total distortion than the RLS algorithm. On average, the
achieved values ofD are -30.53 dB, -31.64 dB and -32.36 for the
RLS, KF and RPEM algorithms, respectively.
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Fig. 3. Comparison between the RLS, KF and RPEM algorithms for
a time-varying nonlinear system.

Example 2: Compensation of distortion for a time-varying non-
linear system.
In order to investigate the ability of the three recursive algorithms
studied in this paper to track time variations in the kernels of the non-
linear systemH (q), the following simulation study was performed.

First, a zero-mean white Gaussian noise with a covariance ma-
trix of 10−6I was added to the elements of the kernel matrices de-
scribed by Eqs. (24)-(26) and the data were generated as done in
Example 1. In this case, the RPEM algorithm (21) was considered.
Also, the three algorithms were initialized as in Example 1 except
R1 = 10−8I , r2 = 1.2 andR3 = 10−6I . The simulation results
are shown in Fig. 3. Again, it can be noticed from this figure that
the KF and RPEM algorithms achieve lower total distortion than the
RLS algorithm. On average, the achieved values ofD are -30.08
dB, -31.31 dB and -31.26 for the RLS, KF and RPEM algorithms,
respectively.

Finally, it is assumed to have an abrupt change in the nonlinear
system atn = 500 and the elements of the kernel matrices are in-
creased by10% from its original value. The simulation results are
given in Fig. 4. The three algorithms were initialized withλ = 0.99,
R1 = 10−6I , r2 = 1.2 andR3 = 10−6I . The results show that
the RLS algorithm is the fastest to recover from this abrupt change
as compared to the KF and RPEM algorithms which perform quite
similar and achieve a lower total distortion than the RLS algorithm.
On average, the achieved values ofD are -31.36 dB, -32.32 dB and
-32.66 for the RLS, KF and RPEM algorithms, respectively.

7. CONCLUSIONS

The ILA method has been considered in this paper to estimate the
parameters of the predistorter that is used to linearize nonlinear sys-
tems. The parameters of the training filter are estimated recursively
using the RLS, KF, and RPEM algorithms. These parameters are
copied simultaneously to the predistorter that has the same order and
memory length as the training filter. These different recursive algo-
rithms have been studied for time-invariant and time-varying second-
order nonlinear Volterra systems. Simulation studies show that the
KF and RPEM algorithms achieve lower total distortion as compared
to the RLS algorithm. On the other hand, the RLS algorithm shows
a faster convergence speed in case of abrupt changes in the kernel
values of the nonlinear system.

0 1000 2000 3000 4000 5000
−35

−30

−25

−20

−15

Time (samples)

D
 [d

B
]

 

 

RLS
KF
RPEM

Fig. 4. Comparison between the RLS, KF and RPEM algorithms for
an abrupt change.

Acknowledgements

This work was supported by Infineon Technologies Austria AG. The
authors would also like to thank Dr. David Schwingshackl and Dr.
Gerhard Paoli for valuable discussions during this work.

8. REFERENCES

[1] X. Y. Gao and W. M. Snelgrove, “Adaptive linearization
schemes for weakly nonlinear systems using adaptive linear
and nonlinear FIR filters,” inProc. of the 33rd Midwest Sym-
posium on Circuits and Systems, 1990.

[2] P. Singerl and H. Koeppl, “A low-rate identification method for
digital predistorters based on volterra kernel interpolation,” in
Proc. of The 48th Midwest Symposium on Circuits and Systems,
Ohio, USA, 2005, pp. 1533–1536.

[3] Y. H. Lim, Y. S. Cho, I. W. Cha, and D. H. Youn, “An adaptive
nonlinear prefilter for compensation of distortion in nonlinear
systems,” IEEE Tran. on Signal Processing, vol. 46, no. 6,
1998.

[4] C. Eun abd E. J. Powers, “A new Volterra predistorter based
on indirect learning architecture,”IEEE Trans. on Signal Pro-
cessing, vol. 45, no. 1, 1997.

[5] L. Ding, R. Raich, and G. T. Zhou, “A Hammerstein predis-
tortion linearization design based on the indirect learning ar-
chitecture,” inProc. of The IEEE International Conference on
Acoustics, Speech, and Signal Processing, Orlando, Florida,
2002.
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