
Two Passes of Tiger Are Not One-Way

Florian Mendel

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Florian.Mendel@iaik.tugraz.at

Abstract. Tiger is a cryptographic hash function proposed by Ander-
son and Biham in 1996 and produces a 192-bit hash value. Recently,
weaknesses have been shown in round-reduced variants of the Tiger hash
function. Collision attacks have been presented for Tiger reduced to 16
and 19 (out of 24) rounds at FSE 2006 and Indocrypt 2006. Furthermore,
Mendel and Rijmen presented a 1-bit pseudo-near-collision for the full
Tiger hash function at ASIACRYPT 2007. The attack has a complexity
of about 247 compression function evaluations. While there exist several
collision-style attacks for Tiger, the picture is different for preimage at-
tacks. At WEWoRC 2007, Indesteege and Preneel presented a preimage
attack on Tiger reduced to 12 and 13 rounds with a complexity of 264.5

and 2128.5, respectively.
In this article, we show a preimage attack on Tiger with two passes
(16 rounds) with a complexity of about 2174 compression function eval-
uations. Furthermore, we show how the attack can be extended to 17
rounds with a complexity of about 2185. Even though the attacks are
only slightly faster than brute force search, they present a step forward
in the cryptanalysis of Tiger.

1 Introduction

A cryptographic hash function H maps a message M of arbitrary length to
a fixed-length hash value h. A cryptographic hash function has to fulfill the
following security requirements:

– Collision resistance: it is practically infeasible to find two messages M and
M∗, with M∗ 6= M , such that H(M) = H(M∗).

– Second preimage resistance: for a given message M , it is practically infeasible
to find a second message M∗ 6= M such that H(M) = H(M∗).

– Preimage resistance: for a given hash value h, it is practically infeasible to
find a message M such that H(M) = h.

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the length n of the hash value. Regardless of how a
hash function is designed, an adversary will always be able to find preimages or
second preimages after trying out about 2n different messages. Finding collisions
requires a much smaller number of trials: about 2n/2 due to the birthday paradox.
A function is said to achieve ideal security if these bounds are guaranteed.
B. Preneel (Ed.): AFRICACRYPT 2009, LNCS 5580, pp. 29–40, 2009.
http://dx.doi.org/10.1007/978-3-642-02384-2 3
c© Springer-Verlag Berlin Heidelberg 2009

http://dx.doi.org/10.1007/978-3-642-02384-2_3


30 Florian Mendel

Tiger is a cryptographic iterated hash function that processes 512-bit blocks
and produces a 192-bit hash value. It was proposed by Anderson and Biham in
1996. Recent cryptanalytic results on the hash function Tiger mainly focus on
collision attacks. At FSE 2006, Kelsey and Lucks presented a collision attack
on 16 and 17 (out of 24) rounds of Tiger [6]. Both attacks have a complexity
of about 244 evaluations of the compression function. These results were later
improved by Mendel et al. in [9]. They showed that a collision can be found
for Tiger reduced to 19 rounds with a complexity of about 262 evaluations of
the compression function. At Asiacrypt 2007, Mendel and Rijmen presented
the first attack on the full Tiger hash function [10]. They showed that a 1-bit
pseudo-near-collision for Tiger can be constructed with a complexity of about
247 compression function evaluations.

While several results have been published regarding the collision-resistance
of Tiger, this picture is different for preimage attacks. At WEWoRC 2007, In-
desteege and Preneel [4] presented a preimage attack on Tiger reduced to 12 and
13 rounds with a complexity of 264.5 and 2128.5, respectively.

In this article, we will present a security analysis with respect to preimage
resistance for the hash function Tiger. We show a preimage attack on Tiger
reduced to 2 passes (16 rounds). It has a complexity of about 2174 compression
function evaluations and memory requirements of 239. Very recently Isobe and
Shibutani presented a preimage attack on 2 passes of Tiger with complexity of
about 2161 and memory requirements of 232 [5]. This is slightly more efficient
than the attack presented in this paper. However, their attack method seems
to be limited to 2 passes, while our attack can be extended to 17 rounds. In
detail, we show how the attack can be extended to 17 rounds with a complexity
of about 2185 and memory requirements of 2160

In the preimage attack on Tiger, we combine weaknesses in the key schedule
of Tiger with a generic meet-in-the-middle approach to construct a preimage for
the compression function faster than brute force search. A similar attack strategy
was use to construct preimages for the compression function of round-reduced
MD5 in [2,12]. Once we have found a preimage for the compression function
of round-reduced Tiger, we use a meet-in-the-middle attack respectively a tree
based approach, to turn it into a preimage attack for the hash function.

The remainder of this article is structured as follows. A description of the
Tiger hash function is given in Section 2. In Section 3, we present preimages
for the compression function of Tiger reduced to 16 rounds (2 passes) and 17
rounds. We show how to extend these attacks for the compression function to
the hash function in Section 4. Finally, we present conclusions in Section 5.

2 Description of the Hash Function Tiger

Tiger is an iterated hash function based on the Merkle-Damg̊ard construction. It
processes 512-bit input message blocks, maintains a 192-bit state and produces
a 192-bit hash value. In the following, we briefly describe the hash function.
It basically consists of two parts: the key schedule and the state update trans-



Two Passes of Tiger Are Not One-Way 31

formation. A detailed description of the hash function is given in [1]. For the
remainder of this article, we will follow the notation given in Table 1.

Table 1. Notation

Notation Meaning

A � B addition of A and B modulo 264

A � B subtraction of A and B modulo 264

A � B multiplication of A and B modulo 264

A⊕B bit-wise XOR-operation of A and B
¬A bit-wise NOT-operation of A

A� n bit-shift of A by n positions to the left
A� n bit-shift of A by n positions to the right
A[i] the i-th bit of the word A (64 bits)
Xi message word i (64 bits)

round single execution of the round function
pass set of consecutive round, has a size of 8 (1 pass = 8 rounds)

2.1 State Update Transformation

The state update transformation of Tiger starts from a (fixed) initial value IV
of three 64-bit words and updates them in three passes of eight rounds each. In
each round one 64-bit word X introduced by the key schedule is used to update
the three state variables A, B and C as follows:

C = C ⊕X

A = A � even(C)
B = B � odd(C)
B = B � mult

The results are then shifted such that A,B,C will be B,C,A in the next itera-
tion. Fig. 1 shows one round of the state update transformation of Tiger.
The non-linear functions even and odd used in each round are defined as follows:

even(C) = T1[c0]⊕ T2[c2]⊕ T3[c4]⊕ T4[c6]
odd(C) = T4[c1]⊕ T3[c3]⊕ T2[c5]⊕ T1[c7]

where state variable C is split into eight bytes c7, . . . , c0 with c7 is the most
significant byte and c0 is the least significant byte. Four S-boxes T1, . . . , T4 :
{0, 1}8 → {0, 1}64 are used to compute the output of the non-linear functions
even and odd. For the definition of the S-boxes we refer to [1]. Note that state
variable B is multiplied with the constant mult ∈ {5, 7, 9} at the end of each
round. The value of the constant is different in each pass of the Tiger hash
function.



32 Florian Mendel

Xi+1

Ai

even

odd

Bi Ci

Ai+1 Bi+1 Ci+1

Fig. 1. The round function of Tiger.

After the last round of the state update transformation, the initial values
A−1, B−1, C−1 and the output values of the last round A23, B23, C23 are com-
bined, resulting in the final value of one iteration (feed forward). The result is
the final hash value or the initial value for the next message block.

A24 = A−1 ⊕A23

B24 = B−1 � B23

C24 = C−1 � C23

2.2 Key Schedule

The key schedule takes a 512-bit message block X0, . . . , X7 and produces 24 64-
bit words X0, . . . , X23. It is an invertible function which ensures that changing
a small number of bits in the message will affect a lot of bits in the next pass.
While the message words X0, . . . , X7 are used in the first pass to update the
state variables, the remaining 16 message words, 8 for the second pass and 8 for
the third pass, are generated by applying the key schedule as follows:

(X8, . . . , X15) = KeySchedule(X0, . . . , X7)
(X16, . . . , X23) = KeySchedule(X8, . . . , X15)

The key schedule modifies the inputs (I0, . . . , I7) in two steps:

first step second step

T0 = I0 � (I7 ⊕ A5A5A5A5A5A5A5A5) O0 = T0 � T7

T1 = I1 ⊕ T0 O1 = T1 � (O0 ⊕ ((¬T7) � 19))
T2 = I2 � T1 O2 = T2 ⊕O1

T3 = I3 � (T2 ⊕ ((¬T1) � 19)) O3 = T3 � O2

T4 = I4 ⊕ T3 O4 = T4 � (O3 ⊕ ((¬O2) � 23))
T5 = I5 � T4 O5 = T5 ⊕O4

T6 = I6 � (T5 ⊕ ((¬T4) � 23)) O6 = T6 � O5

T7 = I7 ⊕ T6 O7 = T7 � (O6 ⊕ 0123456789ABCDEF)

The final values (O0, . . . , O7) are the output of the key schedule.



Two Passes of Tiger Are Not One-Way 33

3 Preimage Attacks on the Compression Function

In this section, we will present two preimage attacks on the compression function
of Tiger – one for Tiger with 2 passes (16 rounds) and one for 17 rounds. Both
attacks are based on structural weaknesses in the key schedule of Tiger. By
combining these weaknesses with a generic meet-in-the-middle approach we can
construct a preimage for the compression function of Tiger reduced to 16 rounds
(2 passes) with a complexity of about 2173 compression function evaluations
and memory requirements of 238. The attack can be extended to 17 rounds of
Tiger at the cost of about 2184 compression function evaluations and memory
requirements of 2159. In the following, we will describe both attacks in more
detail.

3.1 Preimage Attack on Two Passes of Tiger

Before describing the preimage attack on the compression function of Tiger
reduced to 2 passes (16 rounds), we first have a closer look at the key schedule
of Tiger. In the following, we present a differential characteristic for the key
schedule of Tiger which we can use to construct preimages for the compression
function faster than brute force search. Consider the differential

(δ1, 0, δ2, 0, 0, 0, 0, 0) → (δ1, 0, 0, 0, 0, 0, 0, 0) , (1)

with δ1 � δ2 = 0, where δ1 and δ2 denote modular differences in the 19 most
significant bits of the message words X0, X2 and X8. In order to guarantee that
this characteristic holds in the key schedule of Tiger, several conditions have to
be fulfilled.

Due to the design of the key schedule of Tiger, the difference δ1 in X0 will lead
to the same difference δ1 in T0 = X0 � (X7⊕A5A5A5A5A5A5A5A5). Furthermore,
by choosing X1 = 0, we get T1 = T0 and hence ∆T1 = ∆T0 = δ1. Since ∆T1 =
δ1, ∆X2 = δ2 and δ1 � δ2 = 0, there will be no difference in T2 = X2 � T1.
Note that by restricting the choice of δ1 and hence δ2 to differences in the 19
most significant bits we can ensure that there will be no differences in T3 =
X3 � (T2 ⊕ ((¬T1) � 19)). It is easy to see, that due to the left shift of T1

by 19 bits these differences will be canceled. Since there are no difference in
T2 and T3, there will be no differences in T4, . . . , T7. To ensure that there will
be only a difference in X8 = T0 � T7, namely δ1 after the second step of the
key schedule of Tiger, we need that T7 = 0. This can be achieved by adjusting
X6 accordingly, such that T6 ⊕ X7 = 0. It is easy to see that if T7 = 0 then
X8 = T0 and hence ∆X8 = ∆T0 = δ1. Furthermore, X9 = T1 � X8 and hence
∆X9 = δ1 � δ1 = 0. Since ∆X9 = 0 and there are no differences in T2, . . . , T7

there will be no differences in X10, . . . , X15. By fulfilling all these conditions on
the message words and restricting the differences of δ1 and hence δ2 to the 19
most significant bits, this characteristic for the key schedule of Tiger will always
hold.

We will use this characteristic for the key schedule of Tiger to show a preimage
attack on Tiger reduced to 16 rounds (2 passes). We combine the characteristic



34 Florian Mendel

for the key schedule of Tiger with a generic meet-in-the-middle approach, to
construct a preimage for the compression function of Tiger with 2 passes. The
attack has a complexity of about 2173 compression function evaluations and
memory requirements of 238. It can be summarized as follows.

1. Suppose we seek a preimage of h = AA‖BB‖CC, then we chose A−1 = AA,
B−1 = BB, and C−1 = CC. To guarantee that the output after the feed
forward is correct, we need that A15 = 0, B15 = 0, and C15 = 0.

2. In order to guarantee that the characteristic for the key schedule of Tiger
holds, we choose random values for the message words X0, X2, . . . , X7 and
set X1 = 0. Furthermore, we adjust X6 accordingly, such that T7 = 0.

3. Next we compute A7, B7, and C7 for all 238 choices of B−1[63 − 45] and
C−1[63 − 45] and save the result in a list L. In other words, we get 238

entries in the list L by modifying the 19 most significant bits of B−1 and the
19 most significant bits of C−1.

4. For all 238 choices of the 19 most significant bits of B15 and the 19 most
significant bits of C15 we compute A′

7, B′
7, C ′

7 (by going backward) and
check if there is an entry in the list L such that the following conditions are
fulfilled:

A7[i] = A′
7[i] for 0 ≤ i ≤ 63

B7[i] = B′
7[i] for 0 ≤ i ≤ 63

C7[i] = C ′
7[i] for 0 ≤ i ≤ 44

These conditions will hold with probability of 2−173. Note that we can always
adjust the 19 most significant bits of X8 such that the 19 most significant
bits of C7 and C ′

7 match.
Since there are 238 entries in the list L and we test 238 candidates, we expect
to find a matching entry with probability of 2−173 · 276 = 2−97. Hence,
finishing this step of the attack has a complexity of about 238 · 297 = 2135

evaluations of the compression function of Tiger and memory requirements
of 238.

5. Once we have found a solution, we have to modify the 19 most significant
bits of X0 and X2 such that the characteristic in the key schedule of Tiger
holds. To cancel the differences in X0 and X2, we have to adjust the 19
most significant bits of B−1 and C−1 accordingly. Thus, after applying the
feed-forward we get a partial pseudo preimage for 154 (out of 192) bits of
the compression function of Tiger reduced to 16 rounds.

Hence, we will find a partial pseudo preimage (154 out of 192 bits) with a
complexity of 2135 and memory requirements of 238. By repeating the attack 238

times we will find a preimage for the compression function with a complexity of
about 2173 instead of the expected 2192 compression function evaluations. Note
that the partial pseudo preimage (154 out of 192 bits) is also a fixed-point in 154
bits for the compression function f . We will need this later to turn the attack
on the compression function into an attack on the hash function.



Two Passes of Tiger Are Not One-Way 35

3.2 Going Beyond Two Passes

In a similar way as we can construct a preimage for the compression function of
Tiger reduced to 16 rounds, we can also construct a preimage for the compression
function of Tiger reduced to 17 rounds. The attack has a complexity of about
2184 compression function evaluations and has memory requirements of 2159.

For the attack on 17 rounds we use a slightly different characteristic for the
key schedule of Tiger. It is shown below.

(0, δ1, 0, 0, 0, 0, 0, δ2) → (0, 0, 0, 0, 0, 0, 0, δ3) → (δ4, ?, ?, ?, ?, ?, ?, ?) (2)

where δ4 denotes modular difference in the 31 most significant bits of the message
word X16 and δ1, δ2, δ3 denote modular difference in the 8 most significant bits
of the message words X1, X7, X15. Note that while in the attack on 2 passes we
have only differences in the 19 most significant bits, we have now differences in
the 8 (respectively 31) most significant bits of the message words.

In order to guarantee that this characteristic holds in the key schedule of
Tiger, several conditions have to be fulfilled. In detail, a difference δ2 in X7 will
lead to a difference in T0 = X0 � (X7 ⊕ A5A5A5A5A5A5A5A5) after the first step
of the key schedule. By adjusting X1 accordingly (choosing the difference δ1

carefully), we can prevent that the difference in T0 propagates to T1 = X1 ⊕ T0

and hence, there will be no differences in T1, . . . , T6. However, due to the design
of the key schedule of Tiger there will be a difference in T7 = X7 ⊕ T6. In
order to prevent the propagation of the differences in T7 to X8 we need that
T6 = A5A5A5A5A5A5A5A5. Thus, we have that

X8 = T0 � T7

= X0 � (X7 ⊕ A5A5A5A5A5A5A5A5) � (X7 ⊕ A5A5A5A5A5A5A5A5)
= X0.

We can guarantee that T6 = A5A5A5A5A5A5A5A5 by adjusting X6 accordingly.
Note that by restricting the differences of δ2 and hence also δ1 to the 8 most
significant there will be only differences in the 8 most significant bits of T7 =
X7 ⊕ T6 and therefore no differences in X9 = T1 � (X8 ⊕ ((¬T7) � 19)) and
X10, . . . , X14, only in X15 = T7 � (X14 ⊕ 0123456789ABCDEF) there will be a
difference δ3 in the 8 most significant bits.

However, in the third pass there will be differences in the 31 most significant
bits of X16 (denoted by δ4) due to the design of the key schedule of Tiger. It
is easy to see that a difference in the 8 most significant bits in X15 will result
in differences in the 8 most significant bits of T0, . . . , T5. Furthermore, since
T6 = X14 � (T5 ⊕ ¬T4 � 23) we will get differences in the 31 most significant
bits of T6 and hence also in T7 as well as in X16 = T0 � T7.

Again, by combining this characteristic for the key schedule of Tiger with a
generic meet-in-the-middle approach, we can construct preimages for the com-
pression function of Tiger for more than 2 passes (17 rounds) with a complexity
of about 2184 compression function evaluations. The attack can be summarized
as follows.



36 Florian Mendel

1. Suppose we seek a preimage of h = AA‖BB‖CC, then we chose A−1 = AA,
B−1 = BB, and C−1 = CC. To guarantee that the output after the feed
forward is correct, we need that A16 = 0, B16 = 0, and C16 = 0.

2. Choose random values for the message words X0, X1, . . . , X7 such that T6 =
A5A5A5A5A5A5A5A5 after the first step of the key schedule of Tiger. Note
that this can be easily done by adjusting X6 accordingly, i.e. X6 = T6 �
(T5 ⊕ (¬T4 � 23)). This is needed to ensure that differences in T7 will be
canceled in the key schedule – leading to the correct value of X8 after the
second step of the key schedule.

3. Next we compute A6, B6, C6 for all 2159 choices of A−1, C−1 and B−1[63-
− 33] and save the result in a list L. In other words, we get 2159 entries in
the list L by modifying A−1, C−1 and the 31 most significant bits of B−1.

4. For all 2159 choices of A16, C16 and the 31 most significant bits of B16 we
compute A′

6, B′
6, C ′

6 (by going backward) and check if there is an entry in
the list L such that the following conditions are fulfilled:

A6[i] = A′
6[i] for 0 ≤ i ≤ 63

B6[i] = B′
6[i] for 0 ≤ i ≤ 63

C6[i] = C ′
6[i] for 0 ≤ i ≤ 55

These conditions will hold with probability of 2−184. Note that we can always
adjust the 8 most significant bits of X7 such that C6 = C ′

6 will match. Since
there are 2159 entries in the list L and we test 2159 candidates, we will find
2−184 · 2318 = 2134 solutions. In other words, we get 2134 solutions with a
complexity of about 2159 evaluations of the compression function of Tiger
and memory requirements of 2159.

5. For each solution, we have to modify the 8 most significant bits of X1 such
that T1 = X1 ⊕ T0 is correct in the first step of the key schedule for the
new value of X7. Note that by ensuring that T1 is correct, we will get the
same values for X8, . . . , X14 after applying the key schedule of Tiger, since
T6 = A5A5A5A5A5A5A5A5 due to step 2 of the attack. In order to cancel the
differences in the 8 most significant bits of X1, we have to adjust the 8 most
significant bits of A−1 accordingly. Furthermore, the 8 most significant bits
of X15 and the 31 most significant bits of X16 will change as well. This results
in new values for A16, C16 and the 31 most significant bits of B16.
Since, we modify A−1, C−1 and the 31 most significant bits of B−1 in the
attack we get after the feed-forward 2134 partial pseudo preimage (partial
meaning 33 out of 192 bits) for the compression function of Tiger reduced
to 17 rounds.

Hence, we will find 2134 partial pseudo preimage (33 out of 192 bits) with a
complexity of 2159. By repeating the attack 225 times we will find a preimage
for the compression function of Tiger reduced to 17 rounds with a complexity
of about 2159 · 225 = 2184 instead of the expected 2192 compression function
evaluations.



Two Passes of Tiger Are Not One-Way 37

4 Extending the Attacks to the Hash Function

If we want to extend the preimage attack on the compression function of Tiger
to the hash function, we encounter two obstacles. In contrast to an attack on the
compression function, where the chaining value (or initial value) can be chosen
freely, the initial value IV is fixed for the hash function. In other words, for a
preimage attack on the hash function we have to find a message m such that
H(IV,m) = h. Furthermore, we have to ensure that the padding of the message
leading to the preimage of h is correct.

First, we choose the message length such that only a single bit of padding
will be set in X6 of the last message block. The last bit of X6 has to be 1 as
specified by the padding rule. Since we use in both attacks characteristics for the
key schedule of Tiger where no difference appears in X6, we can easily guarantee
that the last bit of X6 is 1. However, X7 of the last message block will contain the
message length as a 64-bit integer. While we can choose X7 free in the attack on
2 passes (16 rounds), this is not the case for the attack on 17 rounds. The 8 most
significant bits of X7 are determined during the attack (cf. Section 3.2). However,
the remaining bits of X7 can be chosen freely. Therefore, we can always guarantee
that we will have a message length such that the padding of the last block is
correct. For the sake of simplicity let us assume for the following discussion that
the message (after padding) consists of ` + 1 message blocks.

We show how to construct a preimage for Tiger reduced to 16 rounds consist-
ing of ` + 1 message blocks, i.e. m = M1‖M2‖ · · · ‖M`+1. Note that the attack
for Tiger reduced to 17 rounds works similar. It can be summarized as follows.

1. First, we invert the last iteration of the compression function f(H`,M`+1) =
h to get H` and M`+1. Note that this determines the length of our preimage.
This step of the attack has a complexity of about 2173 compression function
evaluations.

2. Once we have fixed the last message block M`+1 and hence the length of
the message m, we have to find a message m∗ = M1‖M2‖ · · · ‖M` consisting
of ` message blocks such that H(IV,m∗‖M`+1) = h. This can be done once
more by using a meet-in-the-middle approach.
(a) Use the preimage attack on the compression function to generate 210

pairs (Hj
`−1,M

j
` ) leading to the chaining value H` and save them in a

list L. This has a complexity of about 210 · 2173 = 2183 compression
function evaluations.

(b) Compute H`−1 by choosing random values for the message blocks Mi

for 1 ≤ i < ` and check for a match in L. After testing about 2182

candidates, we expect to find a match in the list L. Once, we have found
a matching entry, we have found a preimage for the hash function Tiger
reduced to 16 rounds consisting of ` + 1 message blocks.

Hence, we can construct a preimage for the Tiger hash function reduced to 16
rounds with a complexity of about 2183 compression function evaluations. In
a similar way we can find a preimage for Tiger reduced to 17 rounds with a
complexity of about 2188.



38 Florian Mendel

However, due to the special structure of the partial-pseudo-preimages for the
compression function of Tiger reduced to 16 and 17 rounds, this complexity can
be reduced by using a tree-based approach. This was first used by Mendel and
Rijmen in the cryptanalysis of HAS-V [11]. Later variants and extensions of this
method were presented in [3,7,8]. With this method, we can construct a preimage
for the Tiger hash function reduced to 16 and 17 rounds with a complexity
of about 2174 and 2185 compression function evaluations, respectively. In the
following, we will describe this in more detail for Tiger reduced to 16 rounds.
Note that the attack for Tiger reduced to 17 rounds works similar.

1. Assume we want to construct a preimage for Tiger reduced to 16 rounds
consisting of ` + 1 message blocks.

2. First, compute H` and M`+1 by inverting the last iteration of the com-
pression function. Note that this determines the length of our preimage m.
This step of the attack has a complexity of about 2173 compression function
evaluations.

3. Next, we construct a list L containing 239 partial-pseudo-preimages for the
compression function of Tiger. Note that all partial-pseudo-preimages will
have the following form: Hi = f(Hi−1,Mi), where Hi ∧ mask = Hi−1 ∧ mask
and hw(mask) = 154, where hw(x) denotes the bit Hamming weight of x.
In other words, each preimage for the compression function is also a fixed-
point for 192 − 38 = 154 bits. Note that this is important for the attack to
work. Constructing the list L has a complexity of about 239 · 2135 = 2174

compression function evaluations.
4. Next, by using the entries in the list L we build a backward tree starting

from H`. For each node in the tree we expect to get two new nodes on the
next level. It is easy to see that since we have 239 entries in the list L, where
154 bits are equal for each entry, we will always have two entries, where Hi

is equal. Therefore, we will have about 220 nodes at level 20. In other words,
we have about 220 candidates for H`−20.

5. To find a message consisting of `− 20 message blocks leading to one of the
220 candidates for H`−20 we use a meet-in-the-middle approach. First, we
choose an arbitrary message (of `−21 message blocks) leading to some H`−21.
Second, we have to find a message block M`−20 such that f(H`−21,M`−20) =
H`−20 for one of the 220 candidates for H`−20 in the list L. After testing about
2172 message blocks M`−20 we expect to find a matching entry in the tree
and hence, a preimage for Tiger reduced to 16 rounds. Thus, this step of the
attack has a complexity of about 2172 compression function evaluations of
Tiger.

Hence, with this method we can find a preimage for the Tiger hash function
reduced to 16 rounds with a complexity of about 2174 compression function
evaluations and memory requirement of 239. Note that the same method can be
used to construct preimages for the Tiger hash function reduced to 17 rounds
with a complexity of about 2185 compression function evaluations and memory
requirements of 2160.



Two Passes of Tiger Are Not One-Way 39

5 Conclusion

In this article, we presented a preimage attack on the compression function of
Tiger reduced to 16 and 17 rounds with a complexity of about 2173 and 2184

compression function evaluations and memory requirements of 238 and 2159,
respectively. In the attack, we combined weaknesses in the key schedule of Tiger
with a generic meet-in-the-middle approach. Furthermore, we used a tree-based
approach to extend the attacks for the compression function to the hash function
with a complexity of about 2174 and 2185 compression function evaluations and
memory requirements of 239 and 2160, respectively. Even though the complexities
of the presented attacks are only slightly faster than brute force search, they show
that the security margins of the Tiger hash function with respect to preimage
attacks are not as good as expected.

Acknowledgements

The author wishes to thank Mario Lamberger, Vincent Rijmen, and the anony-
mous referees for useful comments and discussions. The work in this paper has
been supported in part by the European Commission under contract ICT-2007-
216646 (ECRYPT II).

References

1. Ross J. Anderson and Eli Biham. TIGER: A Fast New Hash Function. In Dieter
Gollmann, editor, FSE, volume 1039 of LNCS, pages 89–97. Springer, 1996.

2. Jean-Philippe Aumasson, Willi Meier, and Florian Mendel. Preimage Attacks on
3-Pass HAVAL and Step-Reduced MD5. In Roberto Avanzi, Liam Keliher, and
Francesco Sica, editors, SAC, LNCS. Springer, 2008. To appear.

3. Christophe De Cannière and Christian Rechberger. Preimages for Reduced SHA-0
and SHA-1. In David Wagner, editor, CRYPTO, volume 5157 of LNCS, pages
179–202. Springer, 2008.

4. Sebastiaan Indesteege and Bart Preneel. Preimages for Reduced-Round Tiger. In
Stefan Lucks, Ahmad-Reza Sadeghi, and Christopher Wolf, editors, WEWoRC,
volume 4945 of LNCS, pages 90–99. Springer, 2007.

5. Takanori Isobe and Kyoji Shibutani. Preimage Attacks on Reduced Tiger and
SHA-2. In Orr Dunkelman, editor, FSE, LNCS. Springer, 2009. To appear.

6. John Kelsey and Stefan Lucks. Collisions and Near-Collisions for Reduced-Round
Tiger. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of LNCS, pages
111–125. Springer, 2006.

7. Lars R. Knudsen, Florian Mendel, Christian Rechberger, and Søren S. Thomsen.
Cryptanalysis of MDC-2. In Antoine Joux, editor, EUROCRYPT, volume 5479 of
LNCS, pages 106–120. Springer, 2009.

8. Gaëtan Leurent. MD4 is Not One-Way. In Kaisa Nyberg, editor, FSE, volume
5086 of LNCS, pages 412–428. Springer, 2008.

9. Florian Mendel, Bart Preneel, Vincent Rijmen, Hirotaka Yoshida, and Dai Watan-
abe. Update on Tiger. In Rana Barua and Tanja Lange, editors, INDOCRYPT,
volume 4329 of LNCS, pages 63–79. Springer, 2006.



40 Florian Mendel

10. Florian Mendel and Vincent Rijmen. Cryptanalysis of the Tiger Hash Function.
In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of LNCS, pages 536–550.
Springer, 2007.

11. Florian Mendel and Vincent Rijmen. Weaknesses in the HAS-V Compression Func-
tion. In Kil-Hyun Nam and Gwangsoo Rhee, editors, ICISC, volume 4817 of LNCS,
pages 335–345. Springer, 2007.

12. Yu Sasaki and Kazumaro Aoki. Preimage attacks on one-block MD4, 63-step MD5
and more. In Roberto Avanzi, Liam Keliher, and Francesco Sica, editors, SAC,
LNCS. Springer, 2008. To appear.


	Introduction
	Description of the Hash Function Tiger
	State Update Transformation
	Key Schedule

	Preimage Attacks on the Compression Function
	Preimage Attack on Two Passes of Tiger
	Going Beyond Two Passes

	Extending the Attacks to the Hash Function
	Conclusion

