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Abstract—Due to the combination of discrete events and con-
tinuous behavior the validation of hybrid systems is a challenging
task. Nevertheless, as for other systems the correctness of such
hybrid systems is a major concern. In this paper we present
a new approach for verifying the input-output conformance of
two hybrid systems. This approach can be used to generate
mutation-based test cases. We specify a hybrid system within
the framework of Qualitative Action Systems. Here, besides
conventional discrete actions, the continuous dynamics of hybrid
systems is described with so called qualitative actions. This
paper then shows how labeled transition systems can be used to
describe the trace semantics of Qualitative Action Systems. The
labeled transition systems are used to verify the conformance
between two Qualitative Action Systems. Finally, we present first
experimental results on a water tank system.

Index Terms—model-based testing, mutation testing, action
systems, qualitative reasoning, hybrid systems

I. INTRODUCTION

Discrete systems that have interaction with continuous
processes are denoted as hybrid systems. Most embedded
systems, e.g. a weather station sensing temperature etc. or a
fuel injection controller, are of this kind. The combination
of discrete and continuous systems usually leads to large
state spaces and the integration of these two concepts make
manual testing a complex, tedious and time-consuming task. In
order to ensure the correctness of complex systems, as hybrid
systems are, model checking and model-based testing are
applied today. This work presents a novel approach to verify
the input-output-conformance (ioco) [1] between two hybrid
systems. One possible application of such a conformance
verification is the generation of test cases based on mutations
of a specification.

Hybrid systems provide a closed-loop view on control
programs operating in their environment which allows to draw
more conclusions, e.g. stability or long term behavior, than by
looking at the controller in isolation. In order to reason about
such systems various formalisms, e.g. Hybrid Automata [2],
Hybrid Process Algebras like χ [3], Hybrid Action Systems
[4] or Continuous Action Systems [5], have been proposed.

The challenge in reasoning about hybrid systems is to deal
with infinite state spaces which arise because of continuously
evolving real-valued model variables. By applying predi-
cate abstraction techniques this can be countered. A model
checker for hybrid systems is HyperTech [6], the successor
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Fig. 1. Two-Tank Pump System.

of HyTech, which employs interval arithmetic methods to
over-approximate solutions of Ordinary Differential Equations
(ODEs). This and related techniques compute polyhedral in-
clusions of trajectories which requires numerical calculations.

We propose to use Qualitative Reasoning (QR) [7], a tech-
nique from Artificial Intelligence for common sense reasoning
about physical systems, to describe the continuous behavior of
hybrid systems.

In QR the behavior of a continuous system is described
with Qualitative Differential Equations (QDEs) which are an
abstraction of ODEs. Given a specification in the form of a
set of QDEs and the definition of an initial state, simulation
engines like QSIM [7] or Garp3 [8] infer a transition system
which contains all possible behaviors the system may show
over time. The behavior inference does not rely on numerical
information; all values (except zero) in the qualitative domain
are symbolic forming a finite total order.

Our previous work [9] introduces Qualitative Action Sys-
tems (QAS) as an adaptation of Hybrid Action Systems (HAS)
[4]. In QAS the differential actions of HAS are replaced
by corresponding qualitative actions resulting in a system
model with discrete state space. We augment actions with
labels (names) that may have parameters. Furthermore, named
actions are partitioned into disjoint input and output actions.
This gives an LTS semantics to (qualitative) action systems
which we use in turn to decide ioco between two systems. The
remaining unnamed actions are internal and cause τ transitions
during system evolution.

We developed a prototype tool written in GNU Prolog which
explores two given QAS while checking conformance on-the-
fly. For solving the qualitative differential equations we use
ASIM [10] which is also implemented in GNU Prolog.



Example I.1. Consider the example hybrid system in Figure 1
which serves as our running example. In the two-tank system
tank T1 is on a lower level than the tank T2. T1 is being
filled with water having some inflow rate in. Both tanks (T1,
T2) are connected by the pump P1 which is controlled such
that it fulfills the following requirements:

If the water level in T2 decreases below a certain Reserve
mark and T1 is full, pump P1 starts pumping water until T2
is full or T1 gets empty. In addition, the controller needs to
control the pump P2 that is pumping water out of T2: P2
shall be turned on as long as a button WaterRequest is pressed
and there is enough water in T2 (T2 not Empty).

The continuous dynamics of the system is expressed by two
coupled differential equations:

ẋ1 = (in− inout)/A1 and ẋ2 = (inout− out)/A2

Here, A1 and A2 are the base areas of the two tanks and
x1 and x2 denote the current level in the tanks. The variables
in, inout, and out denote the flow rates into T1, between T1
and T2, and out of T2 respectively. Based on this system
description we will develop a formal QAS model which is
then used for conformance verification in the application of
mutation-based test case generation.

The remainder of this paper is organized as follows. Section
II comprises the basic concepts applied in this work, i.e.
Qualitative Reasoning. Then Qualitative Action Systems are
introduced in Section III. In Section IV we discuss the input-
output conformance relation, and present our approach for
on-the-fly conformance checking in Section V. We show first
experimental results in Section VI, and discuss related work
in Section VII. Finally, we conclude in Section VIII.

II. QUALITATIVE REASONING

Continuous processes are usually described with differential
equations or directly via continuous functions. For hybrid
systems the continuous behavior is specified with ODEs.
However, the solution space of such equations is infinite,
i.e. depending on the boundary conditions various real-valued
functions (trajectories) over dense time are solutions to the
ODE.

In Qualitative Reasoning (QR) continuous behavior cor-
responds to a sequence of temporally ordered states where
each state binds all variables to values. Real-valued variables
are abstracted to so-called quantities which have finite types
(quantity spaces) defined as an ordered set of points (land-
marks) and open intervals. The landmarks in the system define
the important points where the behavior is changed from a
qualitative point of view, e.g. water is frozen below 0°C, liquid
between 0 and 100 °C, and changes into steam above 100°C. In
addition the value of a quantity consists of an abstract gradient
( ∂∂t ), δ =df {−, 0,+} indicating that the quantity is decreasing,
steady, or increasing respectively. Thus, a QR model is defined
as follows.

Definition 1 (QR model): A QR model M is a tuple M =
(Q,QS,QDE) where Q is a set of quantities, QS =

{QSq0 , . . . , QSqn
} is a set of quantity spaces such that there

is a quantity space for every qi ∈ Q, and QDE is a set
of qualitative differential equations. The type of a quantity
qi ∈ Q, denoted by type(qi) is given in terms of the
quantity space and in terms of the abstracted gradient, i.e.
type(qi) ∈ (QSqi

× δ).

Example II.1. In order to model the continuous dynam-
ics of the flows in the two water tanks with QDEs we
define the system quantities with their according quantity
spaces. The quantities x1 and x2 have the quantity spaces
T1 =df 〈0,Empty,Full〉 and T2 =df 〈0,Empty,Reserve,Full〉
respectively. For the sake of simplicity we omit an additional
landmark Overflow for tank T1 and assume that when the
water climbs above Full it will overflow. The flow rates
have the quantity space FR =df 〈0,Max〉. We also need to
introduce auxiliary quantities in order to be able to set up the
QDEs. The auxiliary quantities, i.e. diff1 and diff2, have to
link different QDEs, hence they only need a coarse quantity
space, NZP =df 〈minf, 0, inf〉. In the following we use the QSIM
notation where minf =df −∞ and inf =df ∞. Furthermore,
add(x, y, z) denotes the addition x + y = z and d/dt(x, y)
means that y is the qualitative derivation of x.

The qualitative model of the two-tank system is given by
the following QDEs:

add(diff2, out, inout) ∧ add(diff1, inout, in)∧
d/dt(x1, diff1) ∧ d/dt(x2, diff2) (1)

A benefit of qualitative models is that the values are
symbolic. Landmarks (except zero) can stand for any real
number; for the process of behavior inference we only need
the ordering of landmarks, not their exact numerical values.
For instance the quantity water temperature may have a
value (0..boiling point, +) meaning that the temperature is
increasing somewhere in the liquid phase of water. Here
0..boiling point stands for the open interval (0, boiling point).

In other words, a system model is essentially a constraint
system stating relations between quantities. From such a model
simulation engines, e.g. QSIM [7], generate a transition system
by starting from a given initial state and inferring successor
states which satisfy all model constraints (QDEs). Then the
successors of the successors are computed and so on until no
new state is discovered. Since the domain is finite, simulation
will always generate a finite number of states. However,
depending on the system model the generated transition system
can get quite big.

Beside system constraints in the form of QDEs there are
also implicit constraints imposed by the underlying theory.
For example the continuity law [7] requires that the value
of a quantity between two successive states changes only
continuously, i.e. there is no jump over values in the domain
of either QS or δ. For instance a quantity cannot change
its value from one landmark to another one without crossing
the interval in between. In addition a non-continuous change
of direction, e.g. an immediate change from increasing to
decreasing without steady in between, is also disallowed.
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Fig. 2. Qualitative evolution of the fill level of tank T1

We define the simulation result of a QR model M as a
transition system.

Definition 2 (Simulation result): Given a QR model M =
(Q,QS,QDE) and an initial valuation for every quantity q ∈
Q, then the simulation result is a transition system TS =df

(S, s0, T, v). S ⊂ N0 denotes a set of states, s0 =df 0 is the
initial state, T : S × S is the transition relation obtained by
simulating the QR model, and v : S 7→ (Q 7→ QSq × δ) is a
valuation function binding states to value assignments for all
quantities q ∈ Q.

A simulation result is basically a graph showing all possible
behaviors of the QR model. The trace semantics of this
simulation result is given in terms of sequences of state
valuations.

Definition 3 (Trace semantics): The trace semantics of the
QR transition system TS = (S, s0, T, v) is defined as follows:

traces(TS) =df {〈v(s0), v(s1), . . .〉 | i ∈ N0 ∧ si ∈ S∧
s0 = 0 ∧ (si, si+1) ∈ T}

Example II.2. As an example we consider the evolution of
the fill level in tank T1. Initially the fill level is somewhere
in the interval (0,Empty) and the flow rates in and inout
have a qualitative value (0..Max, 0). For presentation purposes
we use the QR tool Garp3 [8] as it generates nice graphical
simulation results. Figure 2(a) shows the qualitative behavior
M and Figure 2(b) shows according traces projected on the
quantity x1, i.e. {tr1, tr2, tr3} ⊂ traces(M) ↓ x1, of the
simulated scenario. The abstract derivation δ is represented
by a circle, by an arrow pointing up and by an arrow pointing
down denoting steady, increasing, and decreasing behavior,
respectively. Depending on the order relation between the
inflow and outflow rates of tank T1 the fill level either stays
steady (tr3), increases to the maximum (tr1), or decreases to
zero (tr2).

Since a sequence of states in a QR TS abstracts a set of real-
valued functions over time each state in the sequence either
lasts for a time-point (zero duration) or a time-interval. Thus,
time is abstracted to a temporally ordered sequence of states.

For example the qualitative value (0..max,+) can abstract an
infinite number of monotonic increasing functions like f(t) =
t + max

2 , f(t) = 3 · t + 1, f(t) = et, . . . which satisfy the
following conditions: 0 < f(0) < max and ∀t ∈ dom(f) •
ḟ(t) > 0 ∧ f(t) < max, where dom gives the domain of a
function.

Due to overapproximation qualitative behavior can be spu-
rious, i.e. behavior which cannot occur in any real system.
A well known example of spurious behavior is a frictionless
spring-mass system where in some cycles the amplitude is
increasing and decreasing in others. A further problem of
Qualitative Simulation is the combinatorial explosion in the
size of behavior trees. This is especially the case when pro-
cesses work in parallel. For instance, consider two water tanks
of the same size which are filled with some non-zero inflow
rates. Then the behavior tree will explain all possibilities which
may occur: One tank gets full before the other one or both
tanks reach their maximum fill level at the same time. This
is a common property in theories dealing with concurrent
processes where the interleaving semantics of parallel behavior
may lead to big state spaces. Behavior branching can be
reduced by refining the model with additional information
about the system, like order relations between quantities. De
Jong [11] surveys Qualitative Simulation and discusses issues
about and solutions for spurious behavior and combinatorial
behavior branching.

The practical effect in our application of QR in model-based
testing is that spurious behavior is filtered out automatically
during test case execution. Hence, spurious behavior does not
influence the correctness of the approach. However, the size
of state spaces is a concern.

The next section introduces Qualitative Action Systems
demonstrated on our running example.

III. QUALITATIVE ACTION SYSTEMS

Action Systems by Back et al. [12], [13] provide a frame-
work for describing discrete and distributed systems. The
actions are statements in the form of Dijkstra’s guarded com-
mands where the semantics is defined via weakest precondition
predicate transformers. An action system, see Equation 2,
consists of a block of variable declarations followed by an
initialization action S0 giving to each variable an initial value,
and a do od block looping over the nondeterministic choice
of all actions. Variables declared with a star are exported by
an action system and can be imported by others in the import
list I at the end of the action system block.

AS =df |[var Y : T • S0; do A1� . . .�Anod ]| : I (2)

In order to specify distributed concurrent systems several
action systems can be composed in parallel. For two action
systems A1 and A2 the import list of the resulting system gets
(u1 ∪ u2)\(v1 ∪ v2) where u1, u2 are the imported variables
and v1, v2 are the export variables of A1 and A2, respectively.

Parallel composition of several action systems communicat-
ing over shared (imported/exported) variables provides a good
choice to model distributed and parallel systems.



An action A can be executed if the enabledness guard holds:
g(A) =df ¬wp(A, false). The execution of an action from
states which do not satisfy the enabledness property behaves
as magic, i.e. any postcondition may be established. When
program statements A are totally defined for all possible initial
states they satisfy the strictness property: wp(A, false) ≡ false.
Our actions fulfill this property. Furthermore, the termination
guard t(A) =df wp(A, true) ensures that when action A is
executed it will terminate in some post state. The guard p of
an action A must not be weaker than its enabledness guard.
This always holds when the actions are strict: p → g(A) =
p→ ¬wp(A, false) = p→ true = true.

Our approach of Qualitative Action Systems (QAS) is based
on the former work of Hybrid Action Systems (HAS) by
Rönkkö et al. [4]. In HAS the continuous behavior is specified
with so called differential actions e :→ d where e is the evo-
lution guard and d is a system of ODEs. Differential actions
are atomic, i.e. the continuous state of the system evolves as
long as the evolution guard is true. The evolution terminates in
states where the guard does not hold anymore. As termination
condition it must be ensured that the evolution guard becomes
false eventually. Differential actions are defined via weakest
precondition semantics and are relations between states before
and after continuous evolutions. The states in-between are
internal and hence hidden from an outside view.

While HAS are a proper framework for specifying hybrid
systems and proving properties within the refinement calculus
the infinite state space is a problem when dealing with
automated techniques like model checking or model-based
testing. Hence, the continuous behavior has to be abstracted in
some way. A well known technique called predicate abstrac-
tion makes infinite state spaces finite. We apply Qualitative
Reasoning as a means to abstract from continuous behavior to
qualitative, discrete behavior.

The work in [9] presents Qualitative Action Systems that we
use for model-based test case generation. Qualitative actions
are defined via weakest precondition semantics, for details see
[9]. The evolution of a qualitative action is a transition system
which terminates in post states where the evolution guard does
not hold. This means that the set of traces is truncated by the
evolution guard.

Definition 4 (Termination state): Given the simulation re-
sult TS = (S, s0, T, v), it’s trace semantics traces(TS),
and an evolution guard eq , then the termination state for a
particular trace tr ∈ traces(TS) is defined as ∆(tr, eq) =df i
such that i ∈ N0 ∧ ¬eq[Q := tr[i]] ∧ ∀j < i • eq[Q := tr[j]].
The expression eq[Q := v] denotes the substitution of Q in
eq by v and tr[i] denotes the i-th element of the trace tr. If
the evolution guard always holds, i.e. there is no termination
state, then ∆(tr, eq) =df −1.

We denote the execution of a qualitative action with the
evolution guard eq and the QR model Dq by eq :⇁ Dq . This
execution can be seen as a nondeterministic assignment Q :=
tr[i] where tr ∈ traces(M), M is the simulated behavior
of Dq , and i = ∆(tr, eq). It states that the qualitative state
Q is updated to a new state Q′ which is the last state of a

System =df

|[ var x1 : T1, x2 : T2, out, inout : FR,
diff1, diff2 : NZP,
p1 running, p2 running,wr : Bool

• x1 := (0, 0);x2 := (0, 0);
out := (0, 0); inout := (0, 0); wr := false
p1 running := false; p2 running := false

alt PUMP1 ON : g1 → p1 running := true;
inout := (0..Max, 0)

� PUMP1 OFF : g2 → p1 running := false;
inout := (0, 0)

� PUMP2 ON : g3 → p2 running := true;
out := (0..Max, 0)

� PUMP2 OFF : g4 → p2 running := false;
out := (0, 0)

� WATER REQ(X) : g5 → wr := X
with ¬(g1 ∨ g2 ∨ g3 ∨ g4 ∨ g5) :⇁

add(diff2, out, inout) ∧ add(diff1, inout, in)∧
d/dt(x1, diff1) ∧ d/dt(x2, diff2)

]| : in

Fig. 3. Qualitative action system of our running example.

terminating trace. If there exists no such state Q′, then the
action does not terminate.

In order to apply model-based testing using labeled tran-
sition systems, actions are augmented with names (labels)
which may have parameters. Unnamed actions are internal and,
when executed, cause τ events. The set of labels is partitioned
into inputs and outputs. Then state space exploration of the
action system yields an LTS which can be used for test case
generation. The tester applies controllable (input) events to the
IUT and checks if observable (output) events are allowed by
the specification.

Figure 3 shows the qualitative action system of our running
example. The var section declares the variables with according
types Ti. The states S of an action system are a subset of the
cross product of its n state variable types, i.e. S ⊂ T1 ×
· · · × Tn. Beside the quantities we introduce three Boolean
variables: px running models the state of pump1 and pump2,
respectively, and wr denotes the water request by a user of the
system. In the initial phase of the system all Boolean variables
are set to false and all quantities to steady zero. The imported
quantity in represents the inflow into tank T1. As we do not
define an external system which controls the inflow we set it
to some constant rate, in =df(0..Max, 0). Hence, the system is
closed and the inflow is actually part of the state variables.

The alt and with keywords express an alternation between
discrete and qualitative actions. In our model we apply inter-
rupting prioritized alternation [14]. This means that whenever
a discrete action is enabled it has priority over all qualitative
actions. For reactive systems this is an important property
which allows to interact with the environment at certain points.
Hence the environment cannot block the controller from
performing its function. In the other direction the controller



eventually has to reach stable states in its computation where
it interacts with the environment. Otherwise the environment
and hence the progress of time is blocked. Since actions are
atomic, interrupting behavior can be realized by interlocking
qualitative with discrete actions. In our example the QDEs of
the system, see (1), are globally defined, thus the evolution
guard is true. However, such a qualitative action will never
terminate and therefore will prevent the discrete controller
from execution. By conjoining all negated guards of discrete
actions to the evolution guards of qualitative actions the
interrupting alternation behavior can be achieved. Other forms
of alternation for hybrid systems are discussed in [14].

The first four actions in the alt block are output actions
controlling the state of the pumps where the guards g1 to g4
are defined according to the requirements as follows:

g1 =df x2 < Reserve ∧ x1 = Full ∧ ¬p1 running
g2 =df p1 running ∧ (x1 < Empty ∨ x2 = Full)
g3 =df wr ∧ ¬p2 running ∧ x2 > Empty
g4 =df p2 running ∧ (¬wr ∨ x2 ≤ Empty)

The remaining action WATER REQ(X) is an input action to
the system. The Boolean parameter X determines if water is
required or not, and the guard describes a simple user scenario:
A user turns on the water when the tank T2 is full and turns
it off again when the water drops below the reserve level.

g5 =df(¬wr ∧ x2 = Full ∧ X = true)∨
(wr ∧ x2 < Reserve ∧ X = false)

The qualitative action in the with section updates the
environmental state of the system. At the end of an evolution
another action may get enabled or the system terminates.
Notice, that qualitative actions have no name as they are
treated in a different manner than input and output actions.
Since the QDEs of qualitative actions are an abstract repre-
sentation of ODEs, inputs and outputs evolve in parallel over
time. In contrast to the sequential input/output behavior of
discrete event systems (LTS, . . . ) the input/output behavior of
continuous, linear, and time-invariant systems can be described
with transfer functions H(s) =df

fout(s)
fin(s) . Here, fout(s) and

fin(s) are the images of the Laplace transformed continuous,
time-dependend functions fin(t) and fout(t). Let us consider
a simple integrator H(s) = 1

s and an input signal having the
function fin(t) = 3t. Then

L {fin(t)} = fin(s) =
3
s2

fout(s) = fin(s) ·H(s) =
3
s3

fout(s) s cfout(t) = 3
t2

2

where F (s) s cf(t) denotes that f(t) is the inverse Laplace
transformed of F (s), i.e. L −1{F (s)} = f(t). The continuous
behavior is a vector of two functions 〈in(t), out(t)〉T where in
and out evolve simultaneously. Hence, for qualitative actions
we introduce a special label qual which denotes the evolution
of input and output quantities. In our example system the flow

rates in, out, and inout are input quantities and x1, x2 are
output quantities.

In the next section we present ioco as conformance relation.

IV. INPUT-OUTPUT CONFORMANCE

Conformance relations are used to determine if an IUT
behaves correctly regarding a given specification. In order to
decide conformance some testing hypotheses have to be stated
[15]. One is that the implementation can be represented with
the same formalism as the specification. In our application this
is always the case since we decide the conformance between
two specifications (an original and a mutated version).

The ioco relation expresses the conformance of implemen-
tations to their specifications where both are represented as
labeled transition systems (LTS). Because ioco distinguishes
between inputs and outputs, the alphabet of an LTS is parti-
tioned into inputs and outputs.

Definition 5 (LTS with inputs and outputs): A labeled
transition system with inputs and outputs is a tuple
M = (S,L∪ {τ},→, s0), where S is a countable, non-empty
set of states, L = LI ∪ LU a finite alphabet, partitioned into
two disjoint sets, where LI and LU are input and output
alphabets, respectively. τ 6∈ L is an unobservable action,
→⊆ S × (L ∪ {τ})× S is the transition relation, and s0 ∈ S
is the initial state.

We use the following common notations:
Definition 6: Given a labeled transition system M =

(S,L∪{τ},→, s0) and let s, s′, si ∈ S, a(i) ∈ L and σ ∈ L∗.

s
a→ s′ =df (s, a, s′) ∈ →
s
a→ =df ∃s′ • (s, a, s′) ∈ →

s
a

6→ =df 6∃s′ • (s, a, s′) ∈ →
s

ε⇒ s′ =df s = s′ ∨ ∃s0 . . . sn •
s = s0

τ→ s1
τ→ . . .

τ→ sn−1
τ→ sn = s′

s
a⇒ s′ =df ∃s1, s2 • s

ε⇒ s1
a→ s2

ε⇒ s′

s
a1...an⇒ s′ =df ∃s0, . . . , sn • s = s0

a1⇒ s1
a2⇒ . . .

an⇒ sn = s′

s
σ⇒ =df ∃s′ • s

σ⇒ s′

Furthermore, for an LTS M we define:

init(s) =df {a ∈ L ∪ {τ} | s
a→}

traces(M) =df {σ ∈ L∗ | s0
σ⇒}

s after σ =df {s′ | s
σ⇒ s′}

The first relation init(s) defines the set of events enabled in
state s. The next definition associates to an LTS the according
set of event sequences starting from the initial state. The
relation after determines the set of states reachable after a
trace σ starting from an initial state. Moreover, an LTS M
has finite behavior if all traces have finite length and it is
deterministic if ∀σ ∈ L∗ • |s0 after σ| ≤ 1 holds.

For the ioco relation IUTs are considered to be weak input
enabled, i.e. all inputs (possibly preceded by τ transitions) are
enabled in all states: ∀a ∈ LI ,∀s ∈ S • s

a⇒. This class of
LTS is referred to as IOTS(LI , LU ) where IOTS(LI , LU ) ⊂
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Fig. 4. Two suspension automata showing the behavior of the water tank
example and of a mutated version of the water tank specification.

LTS(LI ∪ LU ). A state s from which the system cannot
proceed without additional inputs from the environment is
called quiescent, denoted as δ(s). In such a state all output and
internal events are disabled: ∀a ∈ LU ∪ τ • s

aY→. The special
label δ /∈ L denotes the absence of any output event in a state.
Hence, the transition relation → is extended by adding δ self-
loops at quiescent states: →δ=df→ ∪{(s, δ, s) | s ∈ S ∧ δ(s)}.
Let Mδ be the LTS over the alphabet L ∪ {τ, δ} resulting
from adding δ self-loops to an LTS M . Then the deterministic
version of Mδ is called suspension automaton Γ. The set of
suspension traces is

Straces(Mδ) =df {σ ∈ (L ∪ δ)∗ | s0
σ⇒}.

For a state s ∈ S the set of outputs possible in s is defined
as follows:

out(s) =df {a ∈ LU | s
a→} ∪ {δ | δ(s)}

out(S′) =df

⋃
s∈S′

out(s)

Informally, the input-output conformance relation states that
for all suspension traces in the specification the outputs of the
implementation after such a trace must be included in the set
of outputs produced by the specification after the same trace.
More formally:

Definition 7: For implementation models
i ∈ IOTS(LI , LU ) and specifications s ∈ LTS(LI ∪LU ) the
relation ioco is defined as follows:

i ioco s =df ∀σ ∈ Straces(s) • out(i after σ) ⊆ out(s after σ)

Example IV.1. Figure 4 shows two suspension
automata with LI = {in water req[1]} and
LU = {qual, out pump1 on, out pump1 off, δ}. These
two LTSs do not conform with respect to ioco because
out(Mutant after 〈〉) = {qual, out pump1 off} 6⊆ {qual} =
out(System after 〈〉)

V. ON-THE-FLY CONFORMANCE CHECKING

A conformance relation is defined between two formal
models, in our case ioco ⊂ LTS(LI ∪LU )×LTS(LI ∪LU ).
Usually one of the models is the implementation model,
however we determine the conformance between two spec-
ifications. These models represent the behaviors of hybrid
systems which are derived on-the-fly during the exploration
of our specification models, i.e. QAS.

The labeled transition system of a QAS M is given by con-
sidering events as labels in the LTS. Then the LTS semantics of
a QAS M is given by the set of event traces M can produce
after a finite number of computation steps. More formally:
Given a QAS M , and an initial state s0 ∈ S, the set of event
traces is defined as:

traces(M) =df {σ ↓ L | (σ ∈ (L ∪ I)∗• (3)

σ = 〈a0, . . . , an〉 ∧ s0
a0→ s1

a1→ . . . sn
an→ ∧

∀i = 0 . . . n • g(ai)(si))}

Here, g(ai) is the enabledness guard of action ai and I
denotes the set of internal actions. If the current state si
satisfies the enabledness guard the according action is executed
and the event name ai is appended to the trace which led to
si. Furthermore, the action execution updates state si to si+1.
Note, that internal actions, when enabled, cause τ transitions:
∀i ∈ I, s • g(i)(s) =⇒ s

τ→. Since we are only interested
in traces over the alphabet L, internal action are removed by
projecting σ′ onto L, see (3).

Note that we consider qual ∈ LU as an (observable) output
event denoting the end of an environmental evolution, thus the
changes of input and output quantities during an evolution are
internal.

Example V.1. For example, consider the generation of the LTS
“System” in Figure 4 from the system specification in Figure 3.
Starting from the initial state of the system specification in
Figure 3 only the qualitative action is enabled. This is because
all guards (g1, . . . , g5) evaluate to false in the initial state.
The execution of the action leads to the qual event after the
initial state of the LTS “System” in Figure 4. The qualitative
action updates x1 from (0, 0) to (full, 0). In this state the
guard g1 evaluates to true. Hence, the action PUMP1 ON
can be executed. This results into the out pump1 on-labeled
transition in the LTS. The other parts of the system are derived
in a similar manner. For the sake of brevity, we do not show
the complete LTS of the system. Note, that the Mutant LTS
shows parts of an LTS obtained by negating the guard g2 in
the original specification. Also here only parts of the whole
LTS are shown.

The conformance verification between two LTSs is achieved
by computing the synchronous product modulo the confor-
mance relation [16], i.e. LTS1×iocoLTS2. In the case of non-
conformance the resulting product LTS will contain special
fail states. The conformance verification is then achieved by a
reachability analysis of fail states. Any trace leading to a fail
state is a counter-example showing non-conformance.



pass fail

out_pump1_off delta
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Fig. 5. Conformance verification result with a mutated action
’out pump1 off’

Informally, the synchronous product LTS1 ×ioco LTS2 is
calculated by applying one of the following rules:
• Transitions that are possible in both LTSs are transitions

of the synchronous product.
• Inputs that are allowed in LTS1 but are not allowed in
LTS2 lead to a sink state labeled with pass. This rule
reflects that implementations may behave arbitrarily after
unspecified inputs.

• For any output that is allowed in LTS2 but not in LTS1

a transition to a pass state is added.
• For inputs that are enabled in LTS2 but not in LTS1 the

labeled transition system LTS1 is made input-enabled,
i.e. such transitions are part of the synchronous product.

• If an output of the left hand LTS LTS1 is not an output
of the right hand LTS LTS2 a transition leading to a fail
state is added to the synchronous product.

Example V.2. The calculation of the synchronous product
between the two labeled transition systems of Figure 4 leads to
the very beginning of the LTS shown in Figure 5. For example,
the qual-action is enabled in both LTS, thus it is part of the
synchronous product. The output action out pump1 off is not
allowed by the specification. Consequently, this action leads
to a fail state in the synchronous product. After the qual-
action the out pump1 off action is still not allowed by the
specification. Thus, again this action leads to a fail state. Note,
that Figure 5 shows the synchronous product for the larger
LTSs than those depicted in Figure 4.

The product calculation is performed on-the-fly. Our Prolog
conformance checker explores two given Qualitative Action
Systems state by state and computes the synchronous product
according to these rules. On-the-fly computation can be quite
efficient when traces which reveal the fault are rather short.
However, in the worst case the complete specification has to
be unfolded during product calculation.

Algorithm 1 getSuccessors(qas, s1) : L ∪ {δ} 7→ P(S)
1: s2 := tauClosure(R, s1, τ);
2: qstates := s2\{s ∈ s2 | ∃ev ∈ LU ∪ τ, s′ ∈ P(S)•
s′ = R(s, ev)};

3: succ := [ev 7→ {s | ∃s′ ∈ s2, s′′ ∈ P(S)•
s′′ = R(s′, ev) ∧ s ∈ s′′} | ev 6= τ ];

4: if qstates 6= ∅ then
5: succ := succ ∪ [δ 7→ qstates];
6: end if
7: return succ;

Algorithm 1 computes the successor events and successor
states in the suspension automaton Γ of a given QAS. Because
of determinization via subset construction the states in Γ
are sets of states. Given a specification qas and a state s1
getSuccessors returns a map from events to successor states.
For the successor computation we use a relation R(s, ev)
which takes a state s and an event ev and calculates the
successor states of s that are reachable by event ev. More
formally,

R(s, ev) = {s1 | ∃s2 • int(qas, s, s2, ev) ∧ s1 ∈ s2}

Here, the predicate int : QAS × S ×P(S)× (L∪ {τ}) 7→
bool interprets the given QAS specification by nondeterminis-
tically interpreting all actions.

At first all states reachable via internal actions are com-
puted. This process is called τ -closure computation because it
generates no observable events. We assume that specifications
are strongly converging, i.e. there are no infinite sequences
of internal computations. Because of its pattern matching and
backtracking capability Prolog is well suited to describe search
and exploration problems. Listing 1 shows that tauClosure can
be written quite compact with only three Prolog clauses.

Listing 1. tauClosure
1 t a u C l o s u r e (QAS, S1 , S2 ) :−

t a u C l o s u r e (QAS, S1 , S1 , S2 ) .
3 t a u C l o s u r e ( , [ ] , Cl , Cl ) :− ! .

t a u C l o s u r e (QAS, S1 , A, Cl ) :−
5 f i n d a l l ( S2 , ( member ( S , S1 ) ,

i n t (QAS, S , S2 , t a u ) ) , S3 ) ,
7 f l a t t e n ( S3 , S t a t e s ) ,

d i f f e r e n c e ( S t a t e s , A, F r o n t i e r ) ,
9 un ion ( F r o n t i e r , A, A1 ) ,

t a u C l o s u r e (QAS, F r o n t i e r , A1 , Cl ) .

Here, the predicates difference(A, B, C) and union(A, B, C)
are the conventional set operations C = A\B and C = A∪B,
respectively. When an action is enabled the interpreter executes
it and returns its label plus the set of successor states. In the
current version of our tool actions are interpreted with concrete
values, thus nondeterministic updates of state variables yield
a set of successor states.

For the purpose of τ -closure computation the event variable
of the int predicate is instantiated with tau. This ensures that
only internal actions are interpreted. The built-in predicate
findall collects all successor states S2 of executed internal
actions, that are enabled in state S, in a list stored in variable



S3. The member predicate enumerates all states S ∈ S1.
Since S2 is a list of states, S3 is a list of lists. In Line 7 the
built-in predicate flatten converts S into a single list of states
States. The set difference in Frontier contains new states to
be explored and the set union in A1 are the states which have
already been visited. When the base case in Line 3 is reached
the exploration agenda in Frontier is empty. Then the variable
S2 in Line 1 is unified with the list of all states reachable by
the execution of internal actions.

Coming back to the description of Algorithm 1, the set of
states after τ -closure computation, from which no internal or
output action is enabled, are quiescent states and stored in
qstates (Line 2). Next, the specification is interpreted for all
states s′ ∈ s2. All successor events ev 6= τ and successor
states s are entered into the successor map succ : L ∪ {δ} 7→
P(S) via the map comprehension in Line 3. If there are some
quiescent states then the successor map is extended with a
δ event associated with the set of quiescent states (Line 5).
Finally, the successor map is returned by GetSuccessors.

During exploration the interpretation of qualitative actions
requires to solve QDEs. When the evolution guard of a
qualitative action holds in a certain state then the QR tool
ASIM [10] is called to compute the qualitative transition
system. Then, according to Definition 4, a breadth-first search
determines the set of states where the evolution terminates.
From these states the exploration of further actions proceeds.

Starting from an initial state and by recursively applying
the getSuccessor algorithm to two given specifications we
compute the synchronous product by following the rules
described above.

A. Notes on Test Case Generation

An application of the presented conformance checker is
mutation-based test case generation. A test case is basically
a tree that can be extracted from the synchronous product.
However, test cases need to take care of the environmental
events.

During conformance verification environmental updates are
represented by observable qual events. However, the infor-
mation about qualitative values at the end of an evolution
are important in order to decide the enabledness of subse-
quent events. In addition the valuation is required by a test
adapter to determine the end of an evolution for raising qual
events. The adapter samples the environment while performing
qualitative abstraction, i.e. mapping concrete to qualitative
values. Then the trigger of qual events could be implemented
in Prolog via unification. Let us consider an example where
an evolution terminates when the environment has the state
x1 = Empty ∨ x2 = Full. The corresponding Prolog clause
qual(X1, X2) :- X1 = empty;X2 = full is true when X1
and X2 are unified with according values from the test adapter.

Hence, for test cases, qual events are extended with param-
eters and nondeterministic assignments to these parameters.
This is an equivalent, but more compact representation than
branching over all possible parameter valuations. In the fol-
lowing section we will see an example where this issue is
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Fig. 6. Scenario where only pump P1 is controlled
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Fig. 7. Example trace of a real system can be replayed on the LTS in Figure 6

treated.

VI. EXPERIMENTAL RESULTS

The LTSs in Figure 6 and 5 have been generated by the
verification tool. Input and output events are prefixed with
’in ’ and ’out ’, respectively. When the conformance check
of a specification is applied to itself then the resulting LTS is
a full exploration of the system behavior. This is useful during
system development when one wants to check if the written
specification reflects the intended behavior.

Because the visualization of the full system behavior would
be too large, Figure 6 shows a smaller scenario. Here, the three
actions PUMP2 ON, PUMP2 OFF, and WATER REQ(X)
have been removed from the QAS specification. The controller
can only switch pump P1 on and off; this happens until the
the water level in the upper tank T2 has increased above the
Reserve mark. At this point the system terminates, because
pump P1 cannot be activated anymore and all guards evaluate
to false. Recall that this is our termination condition.

Figure 7 depicts a possible trace of a real system. The
system starts in the initial state where both tanks are empty
and there is some nonzero inflow into T1. When the lower
tank gets full the controller starts P1. The trace in Figure 7
shows that the flow rate of the pump is higher than the inflow
rate, thus the water level in tank T1 decreases to the Empty
mark. However, the inflow rate could also be equal or higher
than the pump flow rate. In this case P1 would keep pumping
until tank T2 is full.



TABLE I
RESULTS WHEN APPLYING CONFORMANCE VERIFICATION TO MUTATED

SPECIFICATIONS.

Mut. No.Mut- Avg.Time Average No.
Op. ations [ms] states trans = 6=

ASO 10 2230 33.4 53.2 8 2
ENO 6 777 21.8 35.2 0 6
ERO 20 939 19.6 30.7 0 20
Σ 36 1315 24.9 39.7 8 28

Furthermore, depending on the capacity of the two tanks
more or less pump switches are required to fill the upper tank.
The model of the continuous environment is abstract enough
to explain several numerical variations in real implementations
of the system.

The LTS in Figure 5 shows the conformance verification
result between the original and a mutated version of the
specification. In particular the Expression Negation Operator
(ENO) was applied to the guard of action out pump1 off in
the specification QAS. This operation yields a mutant which
is not equivalent to the specification because the resulting LTS
contains fail states.

Table I depicts first results when applying conformance
verification to mutated specifications. We manually applied
some well known mutation operators (ASO = association
shift operator, ENO = expression negation operator, ERO =
event replacement operator) [17] to the specification shown in
Figure 3. Table I shows for each mutation operator (1st col-
umn) the total number of generated mutants (2nd column) the
time needed for the calculation of the complete synchronous
product (3rd column), and the size of the synchronous products
in terms of number of states (4th column) and number of
transitions (5th column). Furthermore, this tables shows the
number of equivalent (6th column) and the number of different
mutants (7th column).

In the previous section it was mentioned that for test case
generation qual events are extended with parameters which
contain the information of qualitative state variables at the
end of an evolution. For instance, after the second qual event
in Figure 5 it depends on the valuation of the qualitative state
variables which successive event is enabled. In this case the
input event in water req(X) requires that the level in tank T2
is Full.

Hence, in order to obtain meaningful test cases which
react and depend on environmental changes the valuation of
observed qualitative variables are part of qual events.

VII. RELATED RESEARCH

Our work is based on action systems [12], [13] and their
extension to hybrid action systems [4]. Action systems are
defined in the theory of refinement calculus where program
statements are formalized as predicate transformers in higher
order logic. The state of an action system consists of global
and local variables. An action system has at least one action.
Each action is guarded and in the case of several enabled
actions one of them is chosen nondeterministically. The be-
havior of an action system starts from an initial state where an

initialization predicate must hold and is followed by possibly
infinite states. Finite behavior can be terminated or aborted.
Terminated behaviors end in a state where no further action is
enabled and aborted behaviors end in states where termination
cannot be guaranteed. Action systems enable compositional
modeling via the parallel composition operator. The work in
[18] deals with trace refinement of action systems.

The extension to hybrid action systems provides the pos-
sibility to model systems of partially defined ordinary differ-
ential equations (ODEs). Each differential action represents a
partially defined ODE for which the domain is bounded by
an invariant. Discrete actions are executed as their guards are
enabled and may cause noncontinuous change in the system.

The conformance relation hioco [19] is an extension of
Tretmans’ ioco testing theory for labeled transition systems.
It states that in every system state the discrete and continuous
output behavior of the implementation must conform to the
hybrid specification. Transitions are labeled with actions that
can be discrete or continuous. Continuous actions are called
trajectories σ ∈ Σ where σ =df (0, t]→ val(V ) valuates a set
of variables V . Furthermore, the set of actions is partitioned
into input and output actions. In addition to the traditional
definition of ioco the set of trajectories in the implementation
must be included in the set of allowed trajectories in the
specification. An abstract test case generation algorithm is
presented which is not directly implementable.

The work in [20] deals with randomized test case generation
for hybrid systems. Based on the notation of hybrid automata
the approach refers to states as (x, q) tuples where x ∈ Rn is a
valuation of the continuous variables and q is a set of discrete
variables which index the system mode. The idea is to explore
the state space by building Rapidly Exploring Random Trees
(RRTs) [21]. The RRT algorithm has been used in robotics for
path planning by computing control signals for trajectories in
high dimensional spaces.

The work in [22] deals with the modeling of hybrid sys-
tems using interval arithmetic constraints. Interval arithmetic
provides a means to deal with rounding errors where the real
value of a variable is located somewhere within an interval.
Systems are specified in the CLP(F) language which can
state constraints over real numbers and analytic constraints
over differentiable functions. The underlying constraint solver
calculates, similar to QSIM [7], an over approximation of the
solution of a system of ODEs. Due to over approximation the
solver returns a set of solution intervals. If there is a correct
solution to a query it will be in one of the returned intervals.
On the other hand not all solutions in the returned set may
contain actual solutions. The CLP(F) system solves analytic
constraints by using power series to approximate analytic
functions. It is also possible to handle non-linear ODEs. A
drawback of the approach is the high resource consumption
with increasing modeling time. This is because of an increase
of constraints over Taylor coefficients in the according power
series.



VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a new approach to verify the input
output conformance (ioco) between two hybrid systems. In
order to get a discrete event view on a hybrid system,
according to the work in [4], only the begin and the end of
continuous evolutions in the environment are observed. We
described this environmental changes with nondeterministic
update statements. Along such a change the observable event
qual is introduced. For test case generation we propose to
extend qual events with according parameters of observed
qualitative state variables for two reasons. First, the parameter
values associate the event with the end of the corresponding
evolution. Secondly, the values are required to resolve enabled-
ness decisions for subsequent events.

A discrete event view on a hybrid system allows us to apply
well known conformance relations like ioco for model-based
test case generation. Even though such test cases contain no
continuous information they are able to reveal unspecified
environmental conditions in hybrid systems whenever they
affect the discrete behavior of the system.

After giving an introduction to Qualitative Reasoning, Ac-
tion Systems, and Labeled Transition Systems with the con-
formance relation ioco, this work presented the exploration of
Qualitative Action Systems and the according generation of
LTSs. Then it was shown how the input output conformance
verification between two given QAS specifications works.
After discussing the application of conformance verification
for mutation-based test case generation the approach was
demonstrated on a two-tank pump control example.

The contribution of this work is threefold: (1) definition of
an LTS semantics for hybrid systems by the introduction of
qual events, (2) implementation of a tool for conformance
verification, and (3) first experimental results for mutation
testing by means of conformance verification.

For future work the approach can be extended by consider-
ing the evolutions inside qual events. Therefor, the trajectories
of hybrid systems can be verified with the qrioconf [23] re-
lation while the discrete events satisfy ioco. This combination
would result in a discrete version of hioco [19].
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