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Abstract 
In this paper we propose a method for semantic segmentation of the street-side images. 
Segmentation and classification is pixel based and contains classes of building facades, sections of 
sky, road and other areas present in general images taken in urban environment. A segmentation 
method is suggested and detected segments are processed in a classification step. Final 
classification is reinforced using spatial rules implemented in a form of the discriminative random 
fields. Result shows that this approach can overcome problems reported in previous methods, as 
additional constraints are used in the classification. 
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1. Introduction 
 
Even rapid progress in object recognition has left the recognition task an open problem. The best 
algorithms today cannot compete with human vision. The reason for this is that in human vision, 
object recognition is a global process. In computer vision, most algorithms are focused on a specific 
object class and tend to neglect overall context information in the image. Background information is 
considered ineffective and gets removed. But in the human vision, background and contextual 
information play a major role in a recognition task. We therefore suggest that context is a basic 
element of a successful recognition algorithm. For example, the application of image context 
information during the recognition task can narrow a recognition area and thus eliminate false 
positives.  
The goal of a semantic segmentation algorithm is to retrieve the image context information through 
classification of each region in the image into some predefined classes usually definable for an 
application domain and type of image. In this paper, we consider single street-side images. Common 
classes in street-side scenes are the building facades, sections of road (ground level) and sections of 
sky. We also consider vegetation, clouds, building roofs and grass areas. Dark areas in the image are 
marked as shadows and are not classified. (see Figure 1.1).  

 
Figure 1.1: Classes in the image are marked in different color. Dark green – building façade, brown – roof, gray – 

ground, green – vegetation, blue – sky,  dark gray – shadow, black - unclassified. 
 



At first, an image is segmented into large, logically coherent regions. It is assumed that only one 
object class is associated with one region. During the subsequent classification, only regions are 
considered as the objects of classification. To improve the result of classification, spatial relations 
between the segments are examined.  
In this approach, not only the visual features of the segments are used for categorization, but it is 
assumed, that there are some spatial and contextual relations between the classes in street-side 
scenes. As an example of the spatial rule, in majority of properly oriented street-side images, 
building facades are located bellows the sections of the sky. If in the classification output, this 
probability rule is not met, it may indicate an error in classification. These spatial rules get 
represented as a discriminative random field. Classifiers are learned in a supervised process. As it is 
described in [8], only a small number of training pictures is required to train the classifiers. For this 
purpose, we developed a hand-labeled ground truth database. The same database is used for training 
of the discriminative random fields [14].  
 
2. Related work 
 
Context understanding in an urban environment is gaining relevance due to initiatives such as 
Google Earth or Microsoft Live Maps. Understanding of context in 3D modeling is a well known 
idea. Different sources, from single image [3, 6] to video sequence [2], have been considered for 
context retrieval. In the single image case appearance based and shape based methods are used for 
this purpose. Features like color, texture, shape and some geometric cues [6] have proven to be 
reliable sources of information. In the case of a video sequence or multiple images of the same 
scene, 3D point clouds can be used to retrieve context [2].  
Enhancing classification by exploiting spatial dependencies has been suggested by several authors. 
The Markov random fields model (MRF), as a representation of spatial dependencies, is a classical 
approach in this case [1, 5]. However, recent work shows that conditional random field is an 
improvement over MRF model in the labeling task [10, 15].  This is due to better discrimination 
properties of conditional random fields over MRF [16]. Discriminative random fields as a specific 
application of conditional random fields has been suggested for the task of categorization in the 
work of Kumar [9]. In this paper, we propose to extend the discriminative field approach to verify 
(and eventually select correct) classification of the image regions. Our assumption is that this 
method will provide better result in situations, where other classification methods reported problems 
with the lack of features [6]. 
 
3. Segmentation 
 
Retrieval of the position and borders of regions located in urban scenes is based on segmentation. 
Several requirements must be met by this segmentation to cope with the problems presented in a 
street-side scenery. At first, regions have to be logically coherent. It means for example, a single 
region should contain only one building façade (or part of it) and should not extend to facades of 
different buildings, or to the sky or ground regions. But also, segmented regions should be as large 
as possible.  
When examining pictures of street-side scenery, it is obvious that texture covariance can change 
rapidly through a logically coherent region. As an example, in one building façade, regions with low 
covariance alternate with regions containing ornaments or pillars, where covariance is high. But both 
of these regions may still be part of the same building façade, so we would like it to be considered as 
one region. This requirement is not easily met, because segmentations are usually designed to 
distinguish between such regions. Also, borders between two regions, can be well-defined in street-
side images, but they may also be very smooth (for example, between clouds and sky regions). 



To meet these requirements, we use a non-standard segmentation approach with a novel variation. 
Watershed type segmentation serves as a primary segment retrieval method. The threshold for the 
segmentation is set low so that the image gets intentionally over-segmented. In the next step, 
segments which are geometrically close to each other and are similar are joined into larger regions. 
Similarity of the segment is computed using color. 
“Visual similarity” is a floating point value between 0 and 1 expressing how similar two color values 
seem to a human. In most cases, visual similarity can be computed in the CIE-lab color space, as a 
Euclidean distance of lab values [11]. However, implementation revealed that this approach is not 
suitable in the current application. The main reason is that in CIE-lab space, hue and saturation have 
approximately the same weights in computing similarity. In street-side images, most building 
facades can be distinguished by their hue, but nearly all facades have a rather low saturation. 
Therefore, to differentiate between two buildings, a large weight must be put on hue, and smaller on 
saturation. To achieve this, visual similarity is computed through a specific formula in HSV color 
space: 
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Where [h1, s1, b1] and [h2, s2, b2] are colors in HSV color space and f1, f2 are logarithmic functions: 
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where Z1, Z2, Z3 are normalizing constants. 
Similar modifications are used for differences of saturation and brightness. A final visual similarity 
value is computed as maximum of the differences of hue, saturation and brightness.  
In this approach, several variable coefficients (k1, k2, k3, …) are used (in logarithmic functions). To 
achieve best results, these coefficients have been optimized in a supervised learning process. Hand-
labeled ground truth datasets (with each building marked as different object) were used, and for each 
set of coefficients, segmentation was performed. Coefficients that achieved the best results are 
consequently used in segmentation. 
Merging of segments into regions is an iterative process. In the first step, only segments larger then 
0.2% of the image and visually similar are joined into region (more then two segments are allowed 
to merge in one step). In next steps, smaller segments are merged into existing regions. Also, visual 
similarity is computed and required for merging, but the threshold is lowering with each step. The 
representative color of the region is recomputed after each step. 
This approach for image segmentation has several advantages over the standard methods. As 
described before, segmentation can be easily modified by adjusting the coefficients, when ground 
truth data are present. By over-segmenting the image in a watershed segmentation, most details are 
preserved, so in the final output, borders of the regions are well-defined. Also, when we proceed 
with merging of segments that are geometrically close to each other, but not necessary connected, 
regions in the final segmentation do not have to be continuous. This is especially useful in the urban 
areas, where building facades or other logically coherent areas are often dissected by wires, traffic 
lamps, poles, or other objects in the image. These areas can then still be considered as the uniform 
regions.   
 
 



4. Classification 
 
In a segmentation step, several large regions are usually detected in the image. In the subsequent 
classification, these regions are classified into categories of building facades, sky, cloud, roof, 
ground, vegetation and grass. Regions with brightness lower then 0.1 are marked as shadows, as they 
lack any features necessary for the classification.  Only regions larger then the 1% of the image are 
classified. Labeling of smaller regions is decided based on their neighborhood segments. 
Classification is based on decision tree. Training is in a supervised process. As a result of accurate 
segmentation, standard open ground truth databases (like LabelMe) are not precise enough. 
Therefore, new ground truth dataset was created and each region was manually classified. We use 30 
hand labeled images as a training set, remaining 200 images are for testing purposes. 
In the process of classification, each region is considered a coherent object. Classification is based 
on color, position in the image, size and texture. A single representative color value is computed for 
a region as an average of color of the pixels inside the region. In a learning process, a color 
histogram is created for each category. In a classification process, the color of the region is 
compared with class histogram. 
The position of the region in an image is represented as a position matrix. The image gets divided 
into a regular grid; each cell in the grid represents a coefficient in a matrix. It is computed if the 
region belongs to the cell. The same process is applied during the position classifier training. In the 
classification step, the position matrix of the region and the overall position matrix of the class are 
compared. 
The texture of the region gets expressed as a histogram of gradient values over the region area. This 
representation of the texture is sufficient to distinguish smooth regions from textured regions. In the 
process of image over-segmentation, textured areas get segmented. As described in the previous 
section, these areas may be subsequently joined, so the insides of the regions may contain high 
gradient values. Therefore, classes like building roofs, or vegetation areas that contain some texture 
information relevant for classification, can be recognized thanks to this feature. 
Classifier is modeled as a decision tree. The last level of the tree contain the confidence values for 
each class computed as a joint probability of the classifiers located in the path from the root to the 
leaves. These values may be considered as the classification result, but as described in [6], features 
presented in this section may not be sufficient to discriminate between all classes. For example, 
regions of the sky and regions of façade windows can be very similar in color and texture and they 
may be located in similar positions in the image. Therefore, it is necessary to use some additional 
constraints in the classification. In the next section, we present spatial rules approach for verification 
of the classification.  
 
5. Spatial rules in classification 
 
Real objects in street-side scenes are in the spatial relations to each other. For example, sky and 
clouds are always above the buildings, roofs are usually above the facades and ground is below the 
buildings. It is assumed that some of these rules are transferable into digital images as a central 
projection of the real scene. Using these rules may be valuable as constraints in the classification. 
Before applying the rules, we must assume that we already know what objects may be located in the 
image. Therefore, in the process of classification, not only the most likely classification result is 
used, but several results with highest confidence value are used as a set of competing classification 
hypotheses (see Figure 2.1). 
 

 



 
Figure 2.1: Multiple hypotheses for a single image. For each region, all possible classifications passing the 

threshold are included in the hypotheses. 
 
For each hypothesis, spatial rules get checked. Finally, a winning hypothesis is selected, as the one 
for which the most spatial rules are valid.  
Spatial rules are encoded as a probability of spatial relations between two different classes. To 
extract the spatial rules that are commonly valid in street-side images, we must have a labeled 
ground truth database, with all objects classified.  
Spatial rules are implemented as a discriminative random field data structure, representing every 
region in the image as a graph node. Regions close to one another are neighbors in the graph. In a 
classical approach, where each node represents a pixel, or a grid element in the image, spatial 
relations are implicit in the position of such element in the picture. In our model, regions are not 
assembled in any predictable fashion and they vary in shape and size. To extract the spatial relation, 
graph structure is assembled with the image regions as the nodes (see Figure 2.2).  
 

 
Figure 2.2: Graph-structure placed the over segmented image. 

 
In the case of street-side images, mostly vertical spatial relations are relevant. Relations that are 
examined between the regions are described in Table 1.1. 
 

Region i Relation Region j 
Inside 

Enveloping 
partially above 
partially below 

fully above 

Bounding box 

fully below 

Bounding box 

Inside 
Above Region centre 
Below 

Bounding box 

Above Region centre Below Region centre 

Table 1.1: Spatial relations are described based on the relations between bounding boxes and centers of two 
regions. 



 
Spatial rules have probabilistic values and as such, are modeled on discriminative random fields.  
Let us assume we want to represent conditional distribution P(x|y) of spatial relations over classes (x 
is a vector representing classes and y are the observations). Using Hammersley-Clifford theorem [5], 
this distribution can be expressed as 
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where Z is normalizing constant, Ni is the set of neighbors of node i. Ai is unary (association) 
potential and Iij is pairwise (interaction) potential. In this form of distribution, the assumption of 
acyclicity is no longer required, which is a certain advantage in our application. 
Unary potential Ai represents the measure of how likely node i belongs to class xi, given the 
observation vector y. In our approach, this potential is directly derived from the previous 
classification step. In classification, confidence values of each class were assigned to each region. 
These values, when normalized, serve as the unary potentials. 
Pairwise potentials Iij represents the measure of interaction between two neighboring nodes i and j 
given the observation vector y. Pairwise potentials are derived from the testing set during the 
learning process. Let us assume, that M is the set of training images, xk is the classification of k-th 
image and yk is observation of spatial relation in k-th image (see Table 1.1). We can represent the set 
of classified regions neighboring the region i in image M∈k  as . Then probability that region i 
in k-th image is classified into class xi is

iN
kx
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N
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ixP yx ,| . This value can be computed directly from 
the training set.  Inserting this value into equation (4) give us parameters for pairwise potential Iij, as 
described in [8] 

 
6. Results 
 
For testing purposes, 230 images with different weather and lighting conditions were selected from 
the CityFit database (Vienna and Graz). These images contain a large variety of objects from 
historical buildings, standard city blocks, residential apartments and modern architecture (see Figure 
3.1). 

 
Figure 3.1: Example of the urban scenes present in the database 

 
To speed up and normalize the testing process, images were down-sampled to 0.3 Mpix resolution. 
Thirty of these images were used in a supervised training process as the hand-labeled ground truth 
data.  Tests were performed with a following hardware setup: Intel 2660Mhz, 2 GB RAM, GeForce 
8800.  
 



 fac [%] roof [%] grou [%] sky [%] veg [%] grass [%] cloud [%] 

clas 89,3 76,5 92,4 97,6 80,4 93,5 57,5 

with DRF 93,7 85.2 94,3 98,1 83,7 95,4 62,3 

Table 2.1: Results of the classification. In the first row, only standard features were used for the classification. In 
the second row classification was reinforced by discriminative random fields. 

 
In Table 2.1 we can see correct classification rates for each class in the testing database. The 
percentage numbers express the value of correctly classified pixels of each class presented in the 
image. Value was computed only in case, when the class was present on more then 5% of the image 
area. When computing the average over all testing images, contribution of each image was weighted 
by a size of area covered by a class. Regions with brightness lower then 0.1 were marked as shadow 
areas. When present in specific area of the class, these regions were not considered as incorrectly 
classified. 
 
To test the performance of segmentation, 50 testing images were selected. Segmentation of these 
images, based on visual similarity and CIE-lab distance was computed. For each image, only regions 
of the building façades were considered. In the first test, the volume of the façade region extending 
to other then original coherent area was computed. In the case of CIE-lab distance. this was 
approximately 5.7% of the region (average of all façade regions in all testing images). In case of 
visual similarity, this volume was reduced to 3.2%.  
 
7. Conclusion 
 
Application of image context has been described in several papers [12, 7]. It is obvious, that the 
application of image context is highly precision dependent. Even small errors may have large effects 
on the final application results.  
In this paper, highly precise and fast method of street-side image context retrieval is presented. This 
method is able to solve problems of previous classification approaches. This is due to the new 
verification method based on spatial relations between the classes applied to the large regions of the 
image. Seven different classes can be detected (see Figure 3.2), but this number can be further 
increased, when extended ground-truth database will be available. Also, novel method of 
segmentation that can be tailored (in automatic supervised learning process) to specific class of 
images is presented, as an improvement over previous methods. 
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Figure 3.2: Examples of image context. Each class is marked in different color. Dark green – 
building façade, brown – roof, gray – ground, green – vegetation, blue – sky, light green – grass, 

dark gray – shadow, black - unclassified. 
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