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ABSTRACT 
In this paper we examine the concept of redundancy and 
how it can improve the scene interpretation. In our work, 
we focus on redundant sets of street-side images. 
Semantic segmentation is performed on each image. 
Results of the segmentation are compared in overlapping 
images and matched. We use two principally different 
datasets to validate our results. The Industrial System 
dataset is taken from a moving car by well-designed, 
calibrated, automated cameras, with the geometry and 
pattern of the images accurately defined. Our second 
dataset (Tummelplatz-Graz) was taken by a hand-held 
camera in an urban environment, following the “crowd-
sourcing” paradigm. Each database provides its typical 
level of redundancy and different approaches are needed 
for image matching. The annotated Tummelplatz-Graz 
database will be also released for public to make further 
references and comparison easier. 
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1.  Introduction 
 
Context-based interpretation of a scene captured in a 
single digital image has been addressed in several papers 
[2][3][6]. However, one may argue that progress is slow. 
This class of “hard problems” may become more tractable 
if one generalizes the input data to consist not of a single 
image, but of a stack of multiple images. We can denote 
this as “redundant” or “multi-view” input data. Therefore 
in our image databases, we usually want to employ 
multiple images of any given scene. Each of these images, 
when processed individually, will provide us with a 
specific interpretation. The purpose of this paper is to 
examine how multiple interpretations from multiple 
images differ and complement one another to improve the 
overall result. The effect of multi-view imagery on 
various geometric scene analyses has been established [5]. 

It is less well understood how the interpretation of a scene 
is affected by the transition from a single image to a 
multi-view image stack. 
 
Our work is motivated by the need to interpret scenes as 
part of establishing an Internet-hosted Exabyte 3D World 
model [10]. The need to address the human scale of such 
a World model leads one to consider street side images, 
either via the use of an organized industrial sensor 
approach [4] or via crowd sourcing based on user-
provided imagery [14].  
 
To reflect both of these approaches, we have collected 
two initial image data bases. The first database is an 
Industrial System dataset. Images are taken by a 
calibrated multi-camera apparatus mounted on a car (see 
Figure 1.1). 
 

 
Figure 1.1: An example of a camera system mounted on a 
car. It is designed to cover wide viewing range. 
 
 This setup creates overlapping images with a rigorous 
and calibrated geometry from a single image-taking 
position, and delivering for each object point multiple 
images from that single sensor position. By moving the 
car and repeating the image collection, the level of 
redundancy gets further increased. Carrying along a 
scanning laser arrangement with the imaging sensors 
provides one with additional range information and means 



to match the images. Figure 1.2 (a) is an example of a 
data set that consists of 250 images from each camera on 
the car platform. In our work, we used the input of only 
two cameras – one sideways and one frontal-sideways 
tilted camera. The data base supports investigations into 
the issues of the types of redundancies, namely multiple 
images, all taken with parallel optical axes from different 
camera positions; or multiple images all taken from a 
single position but with different directions for the optical 
axes, and various hybrids between these two concepts.  
 
The second database consists of 110 amateur photos taken 
with a handheld camera at the Tummelplatz in Graz (in 
this city’s historical center).  We augment the image data 
by manually collected ground truth: using one key frame, 
we manually interpret a selected collection of facades.  
Furthermore, the sparse 3D point cloud was created for a 
subset of this dataset to provide better image matching. 
Figure 1.2 (b) illustrates the data set. In this data set we 
also have sufficient images to be able to group them by 
similarity of their optical axes by dissimilarity due to 
differences in position and orientation of the optical axes, 
and by geometric resolution.  
 

 
 
Figure 1.2: Example of the image type from the 
Industrial System database (a) with the parallel optical 
axes providing a high level of redundancy from sequential 
exposures in a moving vehicle; in this example the optical 
axes are pointing halfway forward. In the Tummelplatz-
Graz database (b) the viewpoints and viewing directions 
of manually collected images can differ significantly for 
each object.  
 
Being limited to just two data sets does not permit us to 
study the results as a function of various object types. For 
this to be possible, we need to increase the variation of 
objects and scenes being studied – to be the subject of 
ongoing work.  
 
 
2.  Interpretation of single image 
 
Both datasets have been collected in the center of the city 
of Graz, and both contain a large assortment of objects 
with high interclass variety. In our semantic segmentation, 
we consider the following classes: sky, cloud, roof, 
façade, vegetation, circulation spaces, grass, shadow and 

unidentified. We use the workflow proposed in [13] to 
identify these classes in the image. Semantic 
segmentation applied in our approach resembles the work 
of Hoiem [6], but includes the idea of geometric context 
to achieve an improved performance.  
Firstly, the image is segmented, using only visual 
features. We use the over-segmentation method, with 
small initial segments, to capture the detailed layout of the 
scene. Subsequently, the small segments are merged with 
rules to maximize the likelihood of merging only 
segments within the same object. The final segmentation 
usually provides only few large area segments in the 
image (two segments per building façade in average). 
Secondly, we proceed with the verification of 
classification based on geometric context. In this case we 
assume that some underlying spatial relations exist 
between the classes (see Figure 2.1 for an example). The 
classification hypotheses for the segments directly 
examine those spatial relations. For this purpose, the 
discriminative random fields (DRF) method [8] was 
implemented. DRF are a special case of Conditional 
Random Fields as introduced by Lafferty [9]. This 
modification allows us to employ discriminative 
classifiers instead of standard potentials. The probability 
distribution in this case can be expressed as: 
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where Ai is an unary (association) potential, representing 
the classification of the image segment i. Iij is a pairwise 
(interaction) potential, which denotes the spatial rule 
between the segments i and j, respectively between their 
assigned classes.  
 
It is shown in [13] that this approach can improve 
classification mainly for those areas that have strong 
spatial relations, for example the pair of façade-roof. For 
the classification of building façades the achieved success 
rate was 93.7%, thus having this portion of all facade 
pixels actually identified as belonging to a facade.  
 

 
Figure 2.1: Example of geometric context between object 
classes.  
 



In real scenes, the geometric context between segments or 
classes can be considered an invariant, but in a projective 
image of that real scene, the geometric context can be 
distorted. This is especially the case in composite scenes, 
where more than one instance of the same class is located: 
for example, the façade of one building can be projected 
above the roof of another building. Therefore, the impact 
of verification by context is view-dependent and can be 
considered as the source of discrepancies in semantic 
segmentations of multiple views. Our assumption is that 
in a redundant database, the impact of the geometric 
context is different for any two images of the same object 
that were taken from different positions, or under a 
different angle of view. In addition, multiple views offer 
the option of considering the 3rd dimension and in the 
process to accommodate for partial occlusions and for 
projection effects. 
Another source of a consistent error in this type of 
segmentation can be observed near the border of the 
areas. For example, the border between the façade and the 
street level (ground) is often visually not well defined, as 
there are disturbances like shop windows, cars, 
pedestrians or shadows. When we consider multiple views 
of such an area from different angles or positions, we will 
get different visual information. Therefore we can assume 
that results of the semantic segmentation will differ for 
each image in the multiple-view scheme.  This 
discrepancy can be observed mainly in the objects farther 
away from the camera, or in out-of-focus objects, for 
instance in blurred borders that provide a challenge for the 
segmentation. This observation allows us to assign a 
weight to the classification results in multiple views based 
on range, and range information will thus be desirable and 
useful.  
 
 
3.  Concept of redundancy 
 
Content redundancy in the image database can be 
considered as a source on new information for the image 
interpretation. In this paper, we will examine several 
types of redundancy in regard to the position of cameras. 
 
(a) Multiple views from a single position with rotated 
optical axes  
This type of redundancy is usually present from industrial 
systems, where the multiple cameras are aligned in a ”star 
formation” (see Figure 3.1). In this case, the rotation 
between images is well established and calibrated; the 
overlap areas between images provide “redundancy” in 
precisely defined manner. Also, this kind of setup may 
occur in crowd-sourced type datasets, when a user 
(photographer) makes different images from one single 
position. The rotation parameters will not be known in 
this case and the redundant areas must be established 
through a search for correspondences in the images. There 
are no geometric differences for a given object, but the 
context may change in multi-view, as well as the visual 
features of the objects. 

 

 
Figure 3.1: Camera setup in star formation. Gray areas 
denote redundant regions from overlaps in images taken 
form one single position. 
 
(b) Multiple views from varying positions with parallel 
optical axes 
This type of redundancy is generally present from 
systematic environment mapping (see Figure 3.2). It will 
result from industrial systems or from hand-held cameras 
if a purposeful “strip” of images is being collected, often 
this is the case in planning for a 3D reconstruction. The 
translation of the pose between the views is more or less 
regular, but in a natural environment, the high level of 
regularity is sometimes difficult to achieve. 

 
Figure 3.2: Camera setup with parallel axes. Gray areas 
denote redundant regions, typical for images acquired 
from a moving platform like a car. 

 
(c) Multiple views from varying positions and variable 
directions  
This type of redundancy is present in an unorganized 
dataset, usually obtained from hand held cameras. It can 
be observed in a crowd-sourced database that provides a 
large volume of data. The lack of organization causes the 
difficulty. Even the state of the art block adjustment 
algorithms today need dozens of views of the single 
object to correctly establish matches. Several approaches 
have been designed to create some kind of organization 
structure in this type of datasets. Usually, some number of 
correspondences has to be established first [12][1] and the 
camera parameters have to be determined [7]. It is 
therefore assumed that the overlaps and thus the 
“redundant information” can be obtained from this type of 
data.  
 



Considerable portions of images taken in urban 
environment will contain temporal objects. These are 
located in the scene only for short periods, and are mostly 
people, animals, transportation vehicles, perhaps others. 
We do not consider them to be a specific class of objects 
and are therefore considering them as “undesirable” since 
they cause occlusion for relevant objects. In redundant 
databases, images of the same scene taken from different 
viewpoints and directions also will be taken at different 
times, and may support an effort to recover those 
occluded portions of a scene.  
 
 
4.  Image matching 
 
In the general case of urban imaging, a block of images 
would be triangulated in today’s typical workflows as 
illustrated by Photo-tourism and Photosynth [14]. We also 
employed this approach and created a sparse 3D point 
cloud from the subset of Thummelplatz dataset. The 
algorithm described in [7] was used to extract this point 
cloud (see Figure 4.1).  
 

 
Figure 4.1: An example of 3D point cloud in the 
Tummelplatz dataset. This point cloud was created from 
28 views and consists of 3498 points (thus of 125 points 
per image in average). Of a given façade one has 2623 
points to work with. 
 
As our goal in this paper is to match the building facades 
between two images pixel-by-pixel, sparse point cloud 
does not provide us with enough data for this. It is 
necessary to interpolate the positions of pixels between 
the points belonging to a point cloud inside the façade. 
We can operate with a simple assumption, that the area 
between two façade points is planar. In a perspective 
imaging, a planar object is mapped into the image plane 
by a projective transformation. Establishing the 
parameters of this transformation can provide image 
matching even for pixels not belonging to a point cloud.  
We merely need to identify at least 4 façade points in each 
image. We can use four non-collinear points from the 
point cloud, or when the point cloud is not present, we can 
mark these points manually and assign world coordinates 
for them. The perspective transformation matrix can be 
defined uniquely, if image and object coordinates of at 
least four points are measured. The relation between the 

point in the image plane x and the point in the world plane 
x’ can be defined as x’ = Hx, where H is the projective 
transformation matrix.  The parameters of matrix H can 
be computed from 4 corresponding point coordinate sets, 
or alternately can be derived from the certain metric 
properties such as length ratios and angles, as described in 
the work of D. Liebowitz [11].  
For the purpose of testing the segmentation results, the 
borders and the inner area of the building façade were 
manually labeled. By associating with each façade in 
object space a unique identifier (number), we can 
automate the matching task for each group of images of 
the same façade (see Figure 4.2). 
 
In an Industrial System database, we used the laser 
scanner data in similar way as a point cloud. Given that 
each image is geo-tagged, the position of a laser scanner 
point on the building façade in the world coordinate 
system can be projected back into each image. This will 
provide us with image and object coordinates of a 
sufficient number of object points so that the image-object 
relationship is fully defined 
 
We use this simple method to relate the overlaps of the 
images to one-another and to then study the differences in 
the segmentation from image to image in the overlaps. 
 

 
Figure 4.2: Image segmentation and matching. Top row – 
original images of the same objects from different view 
point. Middle row – semantic segmentation of the 
individual images. Dark green – façade, brown – roof, 
light green – vegetation, white – clouds, gray – ground. 
Bottom row – building façade is marked and matched. 
 
 
5.  Experiments 
 
5.1 Simple application of multiple views 
 
For the purpose of testing the multiple-view image 
interpretation, we have developed an annotation tool. This 
allows us to identify facades and the correspondences 
between the planar objects in the images. For each façade, 



the perspective distortion is computed from four non-
collinear points from a point cloud (if present) or from 
points manually marked. The position in world 
coordinates for each point of the façade is computed 
through interpolation between three closest point cloud 
points. The identification number for each façade helps in 
automating the work with multiple images. We also 
identify objects that generate occlusions such as 
vegetation, pedestrians or cars. This type of annotation 
can provide us with pixel-by-pixel correspondences 
between the images. 
For each image, a semantic segmentation is being 
performed as if it was all by itself, and in accordance with 
section 2. Our task in this experiment is to assess, how the 
results of the façade segmentation differ between images, 
and the identical object areas do get defined by means of 
image matching as previously discussed. The framework 
can be described in the following steps: 

1. For each façade object, identify the group I of 
images, where it is located and annotated.  

2. Compute the perspective transformation matrix 
Hi for each image  I∈i

3. For each point ijijx F∈ , where F is the façade in 
the image i with the identification number j, 
transform xi,j into the world plane coordinates x’i,j 
= Hixi,j 

4. ijx∀ compute the new classification as 
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where c() is the classification of façade pixel xj 
as façade in image I and w() is the weight 
function. Z is the normalizing factor, setting sij 
into <0,1> interval 

5. Compute the new classification as a result of sij 
for each pixel of the façade. 

 
We designed several scenarios according to the concept of 
redundancy described in Section 3. Three scenarios are 
identified for the Tummelplatz-Graz database as follows:  

a) stable position, rotated optical axes (SPRA) 
b) varying position, parallel optical axes (VPPA) 
c) varying position, varying axes (VPVA) 

The industrial system (IS) is considered as a separate case 
with a varying position, parallel optical axes and a high 
level of redundancy. 
 
In our first experiment, the weights w(xij) are set to 1 for 
each image. This approach was chosen to demonstrate, 
that even the simple summing of classification through all 
images can provide improved results over single image. 
Pixel xij is then classified as a façade, if sij > 0.5 (see 
Figure 5.1). 
 

 
Figure 5.1: The segmentation of three different views of 
the same object. Each segmentation shows error (in a red 
box) different from the others. 
 
Results from this experiment are summarized in Table 
5.1. For each of the 4 overlap cases, we produce three 
numbers. “# img” is the number of images used in the 
scenario; “Single img” is an average result of 
classification for each image in the scenario separately. 
This number is expressed in a percentage of all façade 
pixels that were correctly classified as a façade class. The 
row “Multi img” is the result of multiple view approach, 
as described in this paper.  
 

Scen. SPRA VPPV VPVA IS 
# img 24 22 55 250 
# img/obj 8 11 6 27 
Single img  93.9 94.2 93.4 89.2 
Multi img 96.2 96.9 95.7 93.3 

 
Table 5.1: “# img” is the number of images; “# img/obj” 
is the average number of views of a given object point. 
“Single img” is the average value of correct classification 
of pixels in single image approach (in percentage); “Multi 
img” is the value of correct pixel classification in multiple 
views approach (in percentage). 
 
From the results of this experiment we can observe, that 
the improvement in multiple views approach can be 
achieved in all examined scenarios. The single image 
approach has the highest error rate in the industrial system 
dataset. This is probably due to lower quality of the 
images (lower resolution and lens quality). But the 
improvement in multiple views approach is also higher in 
this scenario. It is assumed, that the high level of 
redundancy may be the contributing factor in this result. It 
is therefore assumed that this scenario can benefit the 
most from the redundancy in a dataset.  
 
5.2 Classification consistency as a function of distance 
from the camera 
 
A second experiment examines the effect of redundancy 
in regard to the distance of the objects from the camera. It 
is assumed that distant objects are more difficult to 
classify, as they contain larger pixels and thus less 
information about the object, but the relationship between 
the distance and the classification result is unclear. In this 
scenario, we use the industrial system database with laser 



range data to classify and match objects. We are 
comparing the classification of areas of building facades 
at different distances from the camera. The area of the 
façade is considered consistently classified if it is labeled 
as a façade, or unidentified. The results can be read from 
Figure 5.2. We see that at a distance of 10 meters, 95% of 
the façade pixels are consistently being classified as 
“façade” or unidentified. Going farther way to 40 m, this 
reduces to a level of 84%. 
This result can be used in the further experiments, to 
derive a distance dependent weight for the classification 
in image overlaps or redundant databases. The 
classification of an object closer to the camera is at a 
higher confidence than that of an object that is farther 
away.  
 
 

 
 
Figure 5.2: Relationship between the distance from the 
camera and the consistency of a façade classification. 
Values are plotted in blue for objects at various distances 
from the camera; the red line is an average value. 
 
5.3 Multiple views classification based on distance 
 
In this experiment, we apply our previously extracted 
function of distance based classification consistency to 
improve the algorithm described in section 5.1. We set the 
weight function w(xij) as a function of distance from a 
camera. This will provide the weighting for each pixel, 
when the distance information is available. We used the 
subset of Tummelplatz dataset, for which the 3D point 
cloud is available and the Industrial System dataset with 
laser range data for this experiment. The results can be 
observed in Table 5.2. 
 

Scen. VPVA IS 
# img 28 250 
Single img 93.5 89.2 
Multi img 96.1 95.7 

 
Table 5.2: “# img” is the number of images; “Single img” 
is the average value of correct classification of pixels in 
single image approach (in percentage); “Multi img” is the 
value of correct pixel classification in multiple views 

approach using the distance as a weight function (in 
percentage). 
 
In this experiment, we can conclude that selecting a more 
appropriate weight function w(xij) for the classification in 
multiple views scenario can add some improvement. The 
selection of weight function is dependent on additional 
data, in this case, the presence of distance information. 
This will require the calibration of the camera 
(preprocessed or automatic), or some other source of data 
(laser scanner, for example).  
 
 
6. Conclusion 
 
In this paper, we presented a study on the effect of image 
overlaps or redundancy on the interpretation of street side 
images. This work is a step in the processing of large 
clusters of images located in various internet databases, as 
well as data sets produced by methodical imaging by 
means of industrial systems. We demonstrate that the 
results of image interpretation can be improved by the 
application of redundancy in the various multiple views 
scenarios and that this improvement is available even if 
the approach used is rather basic. 
The implication on the various crowd-sourcing datasets 
should be considered based on the available resources. 
The problem with this type of data is the non-existence of 
camera calibration and lack of additional localization 
data. However, the ongoing work on automated block 
adjustments algorithms (Photo-tourism, Photosynth) 
shows that the processing of large image databases can be 
performed effectively and provide sufficient information 
for the required image matching. 
In the case of the industrial system, additional data for 
easy image matching are usually available. This makes 
the application of redundancy an attractive concept, as we 
can achieve improvement with little effort.  
 
Next steps in our work are to develop a dense 3D point 
cloud of the objects of interest and to transform the source 
images into a single world coordinate system. For each 
XYZ-point on an object surface, we will then have a 
redundant pixel stack ready for submission to a multi-
view classifier. 
 
An additional result from this work is an annotated 
database Tummelplatz-Graz. This database contains 110 
digital photographs (2576x1932 resolution), with 
manually labeled building façades. The system of labeling 
supports the study of one specific facade in several 
images. The database contains 16 unique building facades 
(including historical buildings and modern architecture), 
each façade shown on 3-20 images. Included in the data 
are the annotations of occlusion from pedestrians and 
vegetation. The images also encompass different lighting 
and weather conditions. The database is released to the 
public at the webpage: 
http://www.icg.tugraz.at/Members/recky 
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