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Abstract

In recent years, public-key cryptography has emerged to
become an important workload for embedded processors,
driven by a number of factors such as the need for securing
wireless communication. The computational requirements
of public-key cryptosystems are often beyond the modest
capabilities of embedded processors, which motivated the
development of architectural enhancements and instruction
set extensions to accelerate cryptographic operations like
long integer modular multiplication. Such instruction set
extensions make it necessary to explore different algorithms
for modular multiplication in order to determine the most
suitable one for the given custom instructions. In this paper
we analyze and compare the performance of two modular
multiplication algorithms on a SPARC V8 processor with
cryptography extensions. These algorithms are the Mont-
gomery multiplication according to the product scanning
(FIPS) technique and the Karatsuba-Comba-Montgomery
(KCM) multiplication. Our experimental results show that
the FIPS technique outperforms the KCM multiplication
for typical operand lengths used in cryptography. We also
compare our results with the performance figures of the
GNU Multiple Precision Arithmetic Library (GMP).

1. Introduction

The proliferation of mobile devices in recent years has
initiated a tremendous growth in wireless communication
technology. In the near future, billions of cell phones, hand-
held computers, sensors, actuators, and other mobile devices
with wireless networking capability will be connected to
the Internet, which will lead to radical new applications in
environmental monitoring, transportation, and interpersonal
communication and collaboration [22]. However, the rapid
growth of the “wireless Internet” has also raised security
concerns since more and more sensitive information, such
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as passwords or credit card numbers, is stored on mobile
devices and transferred over wireless communication chan-
nels. Wireless networks are extremely vulnerable to security
attacks because they transmit data via radio signals which
can be easily intercepted, read and modified by unauthorized
individuals. Therefore, security protocols like SSL/TLS [5]]
or IPSec/IKE are of fundamental importance for mobile
devices in order to ensure the privacy and confidentiality
of wireless communication. Virtually all modern security
protocols have in common that they apply the concepts
of public-key cryptography as introduced by Diffie and
Hellman in 1976 [3]. Public-key cryptosystems include
public-key encryption algorithms, key agreement methods
and digital signature schemes [[135].

Various public-key cryptosystems, such as RSA [18] and
Diffie-Hellman, rely on computation-intensive arithmetic
operations, in particular modular exponentiation. The main
problem when implementing modular arithmetic for use in
public-key systems is the length of the operands, which may
range from 512 to 2048 bits. Operands of such precision
exceed the word-size of 32-bit general-purpose processors
by more than an order of magnitude, and hence they can
not be directly processed on a 32-bit datapath. Software
implementations generally handle the mismatch between
operand size and the processor’s word-size by representing
the long operands as arrays of single-precision (i.e. 32-bit)
words. Algorithms for long integer arithmetic manipulate
the individual 32-bit words of these arrays with help of the
instructions provided by the processor, e.g. 32-bit add or
(32 x 32)-bit multiply instructions.

In the past, embedded systems like smart cards used
cryptographic co-processors to off-load the high compu-
tational burden of modular exponentiation from the main
processor. However, cryptographic co-processors do not
only increase the overall cost of embedded devices, but also
limit the flexibility and scalability compared to software
solutions. The increasing need for security in embedded
systems motivated a number of processor vendors to extend
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their architectures with special features and custom in-
structions to better support the processing of cryptographic
workloads. Such instruction set extensions can be viewed
as a hardware/software co-design approach with the goal
to increase the performance for a given application domain
while maintaining the flexibility of software [11]. Examples
of architectures with cryptography-specific enhancements
include the SmartMIPS [16] and ARM’s SecurCore [1]].

Instruction set extensions are a well-established way to
optimize embedded processors towards the requirements
of a certain application domain. However, when “tuning”
a processor’s instruction set for long integer arithmetic,
it is also necessary to select the most efficient arithmetic
algorithms since only a proper combination of both yields
the highest performance. Some arithmetic operations, such
as long integer modular multiplication, can be implemented
with a number of different algorithmsﬂ Therefore, it is
important to find out how the custom instructions affect the
relative performance of the different algorithms, and how
the relative performance changes when the length of the
operands increases, e.g. from 1024 to 2048 bits.

In this paper we analyze and compare the performance
of different algorithms for long integer modular multi-
plication on a SPARC V8 processor with cryptography
extensions. These extensions consist of a special multiply-
accumulate (MAC) unit that has been integrated into the
LEON-2 SPARC V8 core [6], and a small set of custom
instructions for performing MAC operations. Such MAC
operations are carried out in the inner loop of a number
of algorithms for long integer arithmetic, including the
Comba multiplication technique [2], Montgomery modular
multiplication according to the so-called Finely Integrated
Product Scanning (FIPS) method [14], and the Karatsuba-
Comba-Montgomery (KCM) multiplication [21]. All these
algorithms have in common that they spend the majority
of their execution time in inner loops performing MAC
operations [9]. Speeding up the inner-loop operations via
special architectural features and instruction set extensions
has a major impact on the overall execution time. There-
fore, a detailed exploration of the algorithmic design space
is important not only to determine the speed-up factors
compared to a “conventional” software implementation, but
also to find out how the relative performance of the different
algorithms depends on the operand length.

2. The LEON-2 SPARC V8 Processor

SPARC V8 [23] is a general-purpose RISC architecture
with a 32-bit datapath and an implementation-dependent
number of general-purpose registers (GPRs), of which 32
are visible to the programmer at a time. The fixed-length

!By “different” we mean that the algorithms have different loop struc-
tures and operations, respectively, but produce exactly the same result.
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and regularly encoded instruction set contains the usual
arithmetic/logic instructions, load/store instructions, control
transfer instructions (including branches, calls, jumps, and
conditional traps), as well as co-processor instructions. A
special characteristic of the SPARC V8 architecture is the
“windowed” register file, which means that the GPRs are
grouped into 8 global registers and between 2 and 32 register
sets, each consisting of 16 GPRs. Consequently, the overall
number of GPRs can range from 40 to 520, depending on
the implementation. An instruction can access the 8 global
registers plus a 24-register window into the register file.
Besides the GPRs, the SPARC architecture also defines a
number of control/status registers, including the Processor
State Register (%psr), Trap Base Register (%tbr), Multiply-
Divide Register (%y), Program Counter (PC), and several
Ancillary State Registers (,asrl to %asr31).

The SPARC architecture contains delayed control trans-
fer instructions (DCTIs). In particular, branches and calls
have an architectural delay slot of one instruction, which
means that the instruction immediately following a DCTI
is executed (unless the DCTI annuls it) before the control
transfer to the target address is completed [23]. Optimizing
compilers try to fill a delay slot with an instruction that is
logically before the DCTI but does not affect the condition
tested by the DCTI. If no such instruction is available, the
delay slot must be filled with a nop.

The SPARC architecture defines four integer condition
codes: N (last result negative), Z (last result zero), V (last
result overflowed), and C (last result carried). These con-
dition codes are stored in four bits of the Processor State
Register (%psr) and can be modified by arithmetic and
logical instructions whose mnemonics end with the letters
“cc”, e.g. subcc. Branch instructions test the condition
codes in order to determine whether or not the branching
condition exists. SPARC supports two versions of indexed
addressing, whereby the memory address is given by either
the sum of two registers, or the sum of a register and an
immediate value.

Arithmetic and logical instructions have a three-operand
format with two source registers and one destination regis-
ter. Multiply instructions, such as smul or umul, write the
32 least significant bits of the product into the destination
register and the 32 most significant bits into the Multiply-
Divide register (%y). The rdy instruction allows to transfer
the content of register %y to a GPR.

2.1. Main Characteristics of the LEON-2 Core

The LEON-2 processor is a highly configurable, synthe-
sizable VHDL implementation of the SPARC V8§ instruction
set architecture [6]. Originally developed by the European
Space Agency (ESA), the LEON-2 is now maintained by
Gaisler Research and has found widespread use in system-



Format Description

Operation

umac rsl, rs2

Unsigned Multiply and Accumulate

accu «— accu+rsl X rs2

umac2 rsl, rs2

Unsigned Multiply and Accumulate Twice

accu — accu~+2(rsl X rs2)

shacr rd Shift Accu Registers Right

rd — accu[31: 0]; accu — accu > 32

Table 1. Format and description of CIS instructions for long integer arithmetic

on-chip (SOC) designs in recent years. The LEON-2 core
is modifiable and extensible since the full source code is
available under the GNU LGPL license. LEON-2 consists
of a 32-bit SPARC V8 compatible integer unit (IU) with
a five-stage pipeline, a hardware multiplier, interfaces to a
floating-point unit (FPU) and a coprocessor (COP), a debug
support unit (DSU) with trace buffer, and separate data and
instruction caches. In addition, on-chip peripherals like
8-bit UARTS, 24-bit timers, an interrupt controller, and a
32-bit parallel I/O port are also provided. New modules
can be added easily by using the on-chip AMBA bus. The
LEON-2 VHDL model is extensively configurable; various
options such as the number of register windows, size and
organization of caches, and performance/area trade-offs for
the multiplier can be defined through a single configuration
file.

The LEON-2 pipeline can be configured to have either
one or two load delay cycles. We used a LEON-2 core with
one load delay slot since this configuration achieves better
performance in FPGA implementations. As a consequence,
load instructions take an extra clock cycle to complete, and
therefore the instruction following a load should not use the
loaded value as operand. However, since load instructions
are interlocked, the processor stalls the pipeline when a
loaded value is used “too soon.” The LEON-2 core also
contains a hardware multiplier that can be configured to
perform a (32 x 32)-bit multiplication in 35, 4, 2, or 1 clock
cycles.

2.2. Cryptography Instruction Set (CIS) Extensions

The Cryptography Instruction Set (CIS) is a small but
powerful set of RISC instructions which extend the SPARC
V8 architecture [10]. These instructions have been designed
to improve the performance of both secret-key and public-
key cryptographic algorithms. The CIS extensions are easy
to implement in hardware and entail only a slight increase in
silicon area. We have integrated CIS into the LEON-2 core
and prototyped the extended processor in an FPGA. This
prototype has then been used to evaluate the performance
of the arithmetic algorithms described in Section |3| In the
following, we give a brief overview of the Cryptography
Instruction Set and sketch the modifications of the LEON-2
core that are necessary for the integration of CIS. Further
details about the CIS extensions can be found in [[10].

189

The CIS extensions include six instructions to accelerate
public-key primitives, in addition to other instructions for
secret-key algorithms like the Advanced Encryption Stan-
dard (AES). It was shown in [8]] that six instructions are
sufficient to support the full range of public key techniques
specified in the IEEE standard 1363-2000 [12], including
RSA, DSA, Diffie-Hellman, and elliptic curve systems over
both prime fields and binary extensions ﬁeld However,
the algorithms for long integer arithmetic discussed in this
paper use only three CIS instructions, which are shown in
Table These instructions allow to speed up the typical
multiply-accumulate (MAC) operations carried out in the
inner loop of both FIPS and KCM modular multiplication
(see Section3).

rsl rs2

Register File

rd

U

hi part lo part

Yoasr20| %y

Figure 1. Integer unit and MAC for CIS extensions

The umac instruction performs a MAC operation on un-
signed 32-bit integers. More precisely, umac multiplies the
content of two GPRs, treating both operands as unsigned
integers, and adds the 64-bit product to a cumulative sum
stored in the three registers %asr20, %y, and %asr18, sub-
sequently called accu registers. The cumulative sum is, in
general, exceeding 64 bits in length when a number of 64-bit
products are summed up. Therefore, three 32-bit registers
are necessary to accommodate the cumulative sum, whereby
the 32 least significant bits are stored in register %,asr18, the
bits 32 through 63 in register %y, and the most significant
bits in %asr20, respectively. After adding the 64-bit product
to the cumulative sum, the result is written back to the accu
registers (see Figure|[I).

The umac?2 instruction, which is similar to umac, also
calculates the product rs/ x rs2, treating both operands as
unsigned integers. However, contrary to umac, the umac2
instruction doubles the 64-bit product before it is added to
the cumulative sum stored in the accu registers. Then, the
cumulative sum is written back to the accu registers (see

>The CIS extensions are an example for so-called domain-specific
instruction set extensions, i.e. instruction set extensions that support a full
application domain and not just a single application.



Table [T). The umac2 instruction is very useful for the im-
plementation of long integer squaring, as will be shown in
Section Finally, the third CIS instruction specified in
Table [T} called shacr, allows to shift the cumulative sum
stored in the accu registers 32 bits to the right (with zeroes
shifted in), whereby the least significant 32-bit word of the
cumulative sum (i.e. the content of the register %asr18) is
written to the destination register rd.

As mentioned before, the CIS extensions consist of six
instructions for accelerating public-key cryptography, which
include the three instructions shown in Table 1, and three
other instructions not needed for the arithmetic algorithms
discussed in this paper. These six CIS instructions can be
executed in a single functional unit, namely, a multiply-
accumulate (MAC) unit. Therefore, the CIS extensions for
public-key cryptography can be easily integrated into the
LEON-2 core by replacing the integer multiplier by a special
MAC unit providing the desired functionality. Of course,
the MAC unit should be able to execute not only the CIS
instructions, but also the conventional SPARC V8 multiply
instructions like smul and umul.

We have implemented a CIS-capable MAC unit for the
LEON-2 consisting of a (32 x 16)-bit multiplier and a 72-bit
accumulator. The multiplier datapath is realized in form
of a Wallace tree and employs radix-4 Booth recoding in
combination with a carry-save representation to reduce the
overall delay. The 72-bit wide accumulator guarantees that
up to 256 double-precision (i.e. 64-bit) products can be
summed up without overflow and loss of precision, which
is sufficient for cryptographic applications. We have inte-
grated the MAC unit into the LEON-2 core and prototyped
the extended processor in an FPGA. The CIS extensions
for public-key cryptography increase the LEON-2 core by a
few thousand gatesﬂ and have no impact on the maximum
clock frequency. In addition to the modifications of the
LEON-2 core, we have also adapted the GNU assembler
gas to support the CIS extensions.

A LEON-2 equipped with a (32 x 16 4 72)-bit MAC unit
executes the “native” SPARC V8 multiply instructions smul
and umul in two clock cycles, whereby higher part of the
product is written to the %y register, while the lower part is
directed to a GPR in the register file. The CIS instructions
umac and umac? also have a latency of two cycles, but they
place their result in the accu registers (and not in a GPR),
and hence an “independent” instruction can be executed in
the integer unit during the second cycle of a umac or umac?2
instruction. This “parallel” execution is possible since the
buses connecting the register file and the functional units
are not occupied during the second cycle of a umac/umac2

3The increase in area depends on the configuration of the “original”
LEON-2 core. For instance, when taking a LEON-2 with a (32 x 16)-bit
multiplier as starting point, the extra hardware cost for the CIS extensions
for public-key cryptography amounts to roughly 5,000 gates [[10].
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instruction, similar to the execution of the madd instruction
in MIPS32 processors. Of course, the instruction directly
following a umac or umac2 should not use the content of
one of the accu registers as operand, otherwise the pipeline
stalls for a cycle.

3. Algorithms for Long Integer Arithmetic

Many important public-key cryptosystems, such as RSA
and Diffie-Hellman, rely on modular exponentiation, i.e. an
operation of the form C = M* mod N, whereby M, E, and
N are long integers (typically in the range of 512 to 2048
bits). A number of algorithms for modular exponentiation
have been proposed in the literature (see e.g. [15] and the
references therein), but in the end they all perform modular
multiplications and squarings, respectively. Therefore, the
efficient implementation of long integer modular arithmetic
is crucial for the performance of public-key systems.

3.1. Comba Multiplication

In what follows, we will represent long integers as arrays
of single-precision (w-bit) words, whereby w refers to the
word-size of the processor (i.e. w =32 in our case). The
bitlength of the integers is denoted by 7, and s is the number
of words necessary to store them, whereby s = [n/w]. For
example, a 512-bit integer requires s = 16 words on a 32-bit
processor. We will denote the long integers by uppercase
letters and use the corresponding lowercase letters for the
individual w-bit words, e.g. A = (a5_1,...,4a1,d0).

Algorithm 1. Comba’s multiplication method
Inmput: A = (a5_1,...,a1,a0) and B = (by_1,...,b1,bp).
Output: Product P=A-B = (pr—_1,---,P1,P0)-

1 (t,u,v) —0

2: for i fromOby 1tos—1do

3:  for jfrom O by 1 toido

4 (t,u,v) — (t,u,v)+a; x b;_;
5:  end for

6: pi<V

7 Veu,u—t, t+—0

8: end for

9: for i from s by 1to 2s —2 do

10: for jfromi—s+1byltos—1do
11: (t,u,v) — (t,u,v)+a; x b;_;
12 end for

13: pi<vV

14 ve—u,u—t, t<—0

15: end for

16: pos—1 <V

Comba’s multiplication technique [2]], shown in Algorithm
[T} consists of two outer loops and two rather simple inner



loops which do the bulk of computation. In each iteration
of the inner loop, a multiply-accumulate (MAC) operation
is carried out, i.e. two w-bit words are multiplied and the
2w-bit product is added to a cumulative sum. This sum can
easily get longer than 2w bits, and so we need three w-bit
registers for its storage. Algorithm [I]denotes the cumulative
sum by the triple (7, u,v), which represents the integer value
-2 4 4-2% +v. The operation carried out at line 7 and 14
of Algorithm [1]is just a w-bit right-shift of the cumulative
sum (¢, u,v).

Algorithm performs exactly s> MAC operations when
the two operands A and B consist of s words. The product
P =A-B is obtained one word at a time, starting with the
least significant word pg. The first outer loop (lines 2 to 8)
calculates the s least significant words of the product P (i.e.
the words pg to ps_1), while the second outer loop (lines
9 to 15) calculates the upper half of the product (i.e. the
s words ps to pag_1). Comba’s multiplication technique is
also called product scanning method since the outer loop
moves through the words of the product P.

The square A” of a long integer A can be computed much
faster than the product A - B of two distinct integers. Due
to a “symmetry” in the squaring operation, the 2w-bit terms
of the form a, X a, appear once for x =y and twice when
x #y. However, since the terms a, X a, and a, X ay are the
same, they need to be computed only once and then left
shifted in order to be doubled. Therefore, the squaring of an
s-word integer requires exactly (s*>+s)/2 single-precision
multiplications, compared to the s> multiplications needed
when calculating the product of two distinct integers.

The algorithm for Comba squaring is similar to Comba
multiplication. More precisely, Comba squaring also has a
nested loop structure, but the inner loop is iterated only s /2
times and the operation carried out in the inner loop has the
form (r,u,v) «— (t,u,v)+2(a; x a,_;).

3.2. Karatsuba Multiplication

Karatsuba’s method [[13]] reduces a multiplication of two
s-word operands to three multiplications of size s/2, but at
the expense of an increased number of additions. The three
half-size multiplications can be performed with Comba’s
method, or again with Karatsuba’s method, provided that
the operands are large enough. A product of two s-word
operands, when obtained with Comba’s method, requires
to calculate s single-precision multiplications. Karatsuba’s
method performs only 3s?/4 single-precision multiplica-
tions. However, applying Karatsuba’s method recursively
results in an algorithm with complexity O(s'°%23).

In order to explain Karatsuba’s method, let us assume,
for simplicity, that the bitlength » and the number of digits
s are both even. The operands A and B are split into two
parts of equal length, whereby Ay, By, consist of the s/2 least
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significant digits, and Ay, By of the s/2 most significant
digits of A and B, respectively. Since A = Ag - 2"/2 4 A; and
B= BH~2”/2+BL, the product P = A - B can be computed
according to the following equation.

P=Ay-By-2"+X-2"*+AL-B, (1)

Whereby X = [A[-I'BH +AL~BL — (AH —AL) . (BH —BL)]. A
graphical representation of Karatsuba’s method is given in
Figure [2] It is also possible to do the calculation with the
absolute value for (Ay —Ay)-(By —By) and to use the sign
to decide whether this value is added to or subtracted from
Apg By +Ap-By. We refer to [7] for further details.

| Ay -By l Ap-Bp |
+ | Ap-By |
+ | Ap-Bp |
— | (An—AL)-(Bu—B1) |

Figure 2. Karatsuba’s multiplication technique

Karatsuba squaring is similar to multiplication, but with
A =B the equation reduces to three (s/2)-digit squares
that have to be added according to Figure [2| The middle
term (Ay —Ap)? is always positive, which simplifies the
implementation of Karatsuba squaring [7]].

Karatsuba’s technique is often used in combination with
Comba’s method. This so-called Karatsuba-Comba multi-
plication employs Karatsuba’s trick to reduce a full-length
multiplication of s-word operands to three multiplications
with operands consisting of s/2 words, and these half-size
multiplications are accomplished with Comba’s method.

3.3. FIPS Montgomery Multiplication

A modular multiplication is an arithmetic operation that
requires to calculate the product of two operands and to
perform a modular reduction. If Z is an integer, then the
reduction of Z with respect to a modulus N (i.e. Z mod N)
gives as result the integer remainder in the range [0,N — 1]
after Z is divided by N. An ingenious method for imple-
menting modular reduction was introduced by Montgomery
in 1985 [17], and has since then found widespread use in
practical applications.

Given two integers A and B, and the modulus N, the
Montgomery multiplication algorithm computes

Z =MonPro(A,B) =A-B-R~' mod N 2)

whereby 0 < A, B < N—1 and R, the so-called Montgomery
residual factor, is a constant such that gcd(R,N) = 1. Even
though the algorithm works for any R which is relatively
prime to N, it is generally more efficient when R is a power



of two, e.g. R=2" where n=[log,(N)]|. The so-called
Montgomery product Z=A-B-27" mod N of two integers
A and B can be calculated as shown in Algorithm

Algorithm 2. Montgomery multiplication

Input: Ans-word modulus N = (ns_1,...,n1,np), operands
A,B < N, pre-computed constant N/ = —N~! mod 2".
QOutput: Montgomery productZ=A-B-27" mod N.
1. P—AXB
2: Q + Px N mod?2"
3 Z— (P+QxN)/2"
4. if Z> N then Z «— Z — N end if

First, the two operands A and B are multiplied together
to obtain the product P. The following two multiplications
reduce the product modulo N, whereby only the lower part
of the result of the first multiplication is needed, and from
the second multiplication only the higher part. A final sub-
traction of N may be necessary to bring the result into the
range of [0,N—1]. The constant N’ depends only on the
modulus N and hence it can be pre-computed. In summary,
a Montgomery multiplication is only slightly more costly
than two conventional multiplications of n-bit integers.

Algorithm 3. Montgomery multiplication (FIPS method)

Input: An s-word modulus N = (n_1,...,n1,n0), operands
A,B < N, pre-computed constant ng, = —r,, "' mod 2v.
Output: Montgomery product Z=A-B-27" mod N.
1. (t,u,v) <0
2: forifromOby 1tos—1do

3:  for jfromOby l1toi—1do

4 (t,u,v) — (t,u,v)+a; x b;_;
5 (t,u,v) — (t,u,v)+z; X nj_;
6: end for

7. (t,u,v) — (t,u,v)+a; X by

8 zi < vxnjmod2”

9:  (t,u,v) — (t,u,v)+z; X no

10 ve—u,u—t, t+<0

11: end for

12: for i from s by 1 to 2s—1 do

13:  for jfromi—s+1byltos—1do
14: (t,u,v) — (t,u,v)+a; x bi_;
15: (t,u,v) — (t,u,v)+z; X nj_;
16:  end for

17: Zj—s <V

18 veu,u—t, t<—0

19: end for

20: Zg <V

21: if Z> N then Z < Z — N end if

The Montgomery multiplication algorithm calculates the
Montgomery product A - B-27" mod N instead of the actual
residue A-B mod N, i.e. the result carries the factor 27", For
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this reason, Montgomery arithmetic requires a conversion
of operands and a re-conversion of the result in order to get
rid of this factor [[15]]. We will not further discuss the basics
of Montgomery multiplication since they are covered in a
number of papers and textbooks, e.g. in [4,[19] [14} [15].

Kog et al. [14] describe a number of efficient software
algorithms for calculating the Montgomery product on a
general-purpose processor. One of these algorithms is the
so-called Finely Integrated Product Scanning method (or
FIPS method for short), which can be phrased as shown in
Algorithm 3] The FIPS method may be viewed as Comba
multiplication with a “fine” integration of the Montgomery
reduction, i.e. multiplication steps and reduction steps are
performed in the same inner loop [4]]. In any iteration of the
inner loop, two single-precision multiplications are carried
out, and both products are added to the same cumulative
sum. We do not discuss further details here since the FIPS
method is well documented in the literature, e.g. in [14].

3.4. KCM Modular Multiplication
The Karatsuba-Comba-Montgomery (KCM) algorithm

combines Karatsuba and Comba-like multiplication tech-
niques with Montgomery modular reduction [21]].

Algorithm 4. Montgomery reduction (product scanning)

Input: An s-digit modulus N = (n,_1,...,n1,n9), operand
P < 2N—1, pre-computed constant nj, = —n,, "' mod 2.
Output: Montgomery residue Z = P-27" mod N.
1 (t,u,v) <0
2: for i fromOby 1 tos—1 do
for jfromOby 1toi—1 do
(t,u,v) — (t,u,v)+zj X ni_;
end for
(t,u,v) — (t,u,v) + pi
zi < v x nj mod 2%
(t,u,v) «— (t,u,v)+z; X ny
Veu, u—t, t+—0
end for
: for i from s by 1 to 2s—2 do

122 for jfromi—s+1by1tos—1do
13: (t,u,v) — (t,u,v)+zj X ni_;

14:  end for

150 (t,u,v) — (t,u,v)+ p;

16: Zj—s <V

17 ve—u,u—t, t<—0

18: end for

19: (t,u,v) — (t,u,v)+ pas—1

20 Zg—1 ¢V, Zg<— U

21: if Z> N then Z +— Z — N end if

Contrary to FIPS, the KCM method completely separates
the multiplication of A by B and the reduction of the product



modulo N. The KCM method employs Karatsuba-Comba
multiplication for the former [20], while the latter is realized
with a product scanning technique as shown in Algorithm 4]
[19]. This algorithm accomplishes the Montgomery reduc-
tion in a similar way as Algorithm [2] The first outer loop
(lines 2-10) of Algorithm [ calculates the s words of the
product Q = P-N' mod 2" and stores them in the array
(Zs—1,---,21,20). Thereafter, the second loop (lines 11-20)
produces the Montgomery residue Z = (P+Q-N)/2". A
detailed description of Algorithm [4] and the KCM method
can be found in [19]].

4. Implementation Details and Results

We have developed a highly optimized assembler library
containing the arithmetic algorithms described in Section 3]
The assembler implementations use the MAC instructions
provided by the CIS extensions (see Table [I)) in order to
speed up the inner loop operations. In the following, we
explain the inner loop operations in detail and discuss the
execution times that we measured on the LEON-2.

4.1. Inner Loop Operation

All arithmetic algorithms discussed in the previous sec-
tion spend the vast majority of their execution time in inner
loops performing MAC operations. Hence, any effort spent
to optimize the inner loop is well spent. For instance, saving
a single clock cycle in the inner loop of Comba’s method
reduces the overall execution time by more than 4000 cycles
when the operands have a length of 64 words.

LABEL(loop2): 1d [%il + %111, %13
1d [%hi2 + %121, %14
subcc %11, 4, %11
umac %13, %14

bge LABEL(loop2)

add %12, 4, %12

Figure 3. Inner loop of Comba’s method

Figure [3| shows a hand-optimized assembly implemen-
tation of the inner loop of Comba’s method (Algorithm [T]).
At the beginning, the two 1d instructions load the words
aj and b;_; from memory and place them in register %13
and %14, respectively. Then, the umac instruction multiplies
the two words together and adds the product a; x b;_; to the
cumulative sum in the accu registers. The subcc and add
instruction, which do simple pointer arithmetic, are used
to fill a load delay slot and a branch delay slot. Note that
the subcc instruction also sets the condition codes which
determine whether the branch (bge) is taken or not.
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A LEON-2 with CIS extensions executes the instruction
sequence depicted in Figure |3|in six clock cycles, provided
that the load instructions hit the data cache. Hence, any
iteration of the inner loop of Comba’s method requires six
cycles, even when the umac instruction has a latency of two
cycles. This is possible because the bge instruction can be
executed in parallel to the umac (or, more precisely, during
the second cycle of the umac), as explained in Section

The inner loop of the FIPS Montgomery multiplication
(Algorithm [3) is very similar to that of Comba’s method,
except that two MAC operations are carried out in any
iteration of the loop. Also the implementation of both FIPS
squaring and KCM squaring is straightforward, especially
when using the umac2 instruction. The shacr instruction
can be used in the outer loops of Algorithm|l|and the other
algorithms discussed in Section 3]

4.2. Measured Results

In order to compare the performance of the different
arithmetic algorithms, we have executed them on a LEON-2
core with CIS extensions and measured the execution times
with the help of a cycle counter. The algorithms have been
implemented with “rolled loops” since loop unrolling can
entail a significant increase in code-size, especially for long
operands. All execution times reported in this paper have
been measured under “warm cache” conditions.

Algorithm || 512b | 1024b [ 1536b | 2048b
FIPSMul. || 3094 | 11270 [ 24571 | 42913
FIPS Sqr. || 3266 | 10724 | 22407 [ 38281
KCM Mul. || 4811 [ 14737 | 29986 | 50687
KCM Sqr. || 4561 | 13161 [ 25957 | 43013

Table 2. Cycle counts for FIPS and KCM method

Table [2| summarizes the execution times (clock cycles)
of FIPS and KCM multiplication/squaring, respectively, for
operand lengths ranging from 512 to 2048 bits. Our results
clearly demonstrate the superiority of the FIPS method for
both short (512-bit) and long (2048-bit) operands. Even
though long integer squaring is, in general, significantly
faster than multiplication, the difference in performance
between modular squaring and modular multiplication is
just about 10% (for both FIPS and KCM), simply because
the reduction operation always takes the same effort.

[ Impl. ][ 512b | 1024b | 1536b | 2048b
FIPS/CIS || 2.496 | 16.774 | 53.466 | 123.539
KCM/CIS || 3595 | 21.011 | 63.056 | 141.333
GMP/SW || 5.903 [ 48.719 | 124.213 | 322.880

Table 3. Exponentiation times (in million cycles)



Table [3| shows the execution time (in 10° cycles) of a
full modular exponentiation. When performed according
to the “square and multiply” algorithm, a modular expo-
nentiation requires to calculate n/2 modular multiplications
and n modular squarings, whereby n is the bitlength of the
exponent. The exponentiation times summarized in Table 3]
confirm that the FIPS method is much faster than the KCM
method. Table [3| also contains the performance figures of
the GMP library [7], a high-speed arithmetic library with
assembler optimizations for various architectures, including
SPARC V8. According to our results, the CIS extensions
accelerate modular exponentiation by a factor of between
2.4 and 2.9 compared to GMP.

5. Conclusions

In this paper we analyzed the performance of two mod-
ular multiplication techniques on a SPARC V8 processor
with cryptography extensions. Our results show that the
FIPS method outperforms the KCM method for the typical
operand lengths used in cryptography (512-2048 bits), even
though the latter method is asymptotically faster than the
former. According to our experiments, the break-even point
is somewhere at 4000 bits, i.e. the KCM method becomes
faster than the FIPS method when the operands have a
length of more than 4000 bits. However, since operands
of such size are rarely used in cryptography, we conclude
that the FIPS method is the algorithm of choice for our
platform (SPARC V8 with CIS extensions).

We have also found that the relative performance of the
FIPS and the KCM method does not only depend on the
operand length, but also on other factors like loop unrolling
or the multiplier latency. A performance evaluation con-
ducted on one platform does, in general, not allow to draw
conclusions about the performance figures on a different
platform. Therefore, an exploration of the algorithmic de-
sign space is necessary to identify the best candidate.
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