
Line3D: Efficient 3D Scene Abstraction
for the Built Environment

Manuel Hofer, Michael Maurer, Horst Bischof

Institute for Computer Graphics and Vision
Graz University of Technology - Graz, Austria

http://www.icg.tugraz.at

Abstract. Extracting 3D information from a moving camera is tradi-
tionally based on interest point detection and matching. This is especially
challenging in the built environment, where the number of distinctive in-
terest points is naturally limited. While common Structure-from-Motion
(SfM) approaches usually manage to obtain the correct camera poses,
the number of accurate 3D points is very small due to the low number of
matchable features. Subsequent Multi-view Stereo approaches may help
to overcome this problem, but suffer from a high computational complex-
ity. We propose a novel approach for the task of 3D scene abstraction,
which uses straight line segments as underlying features. We use purely
geometric constraints to match 2D line segments from different images,
and formulate the reconstruction procedure as a graph-clustering prob-
lem. We show that our method generates accurate 3D models, with a
low computational overhead compared to SfM alone.

1 Introduction

Recovering 3D information from an image sequence used to be a very challeng-
ing and time consuming task. Today, thanks to freely available software such
as Bundler [24] or VisualSfM [26], even non-expert users are able to generate
accurate 3D models from arbitrary scenes within hours. Since these so-called
Structure-from-Motion (SfM) approaches operate on a sparse set of distinctive
feature points (e.g. SIFT [18] features), the resulting 3D point cloud is usually
quite sparse as well. The more important part of the SfM result are the obtained
camera poses for each input image, which enable subsequent Multi-View Stereo
(MVS) pipelines (e.g. PMVS [8] or SURE [21]) to create a (semi-) dense point
cloud.

While the first part of this two-step procedure (pose estimation via SfM) can
be computed very efficiently even for large crowd-sourced datasets [7, 10], the
second part (dense reconstruction via MVS) is still computationally expensive
and can take up to several days even on modern desktop computers. Moreover,
the resulting 3D point cloud might easily consist of millions of points and just
viewing it in a point-cloud viewer quickly becomes a very tedious task. The same
holds for any kind of automatic data analysis or post processing (e.g. meshing
[17]). This is due to the nature of using point clouds as a representation of a 3D

2 Manuel Hofer, Michael Maurer, Horst Bischof

(a)

SfM [15]

46, 572 points
runtime: 2.25 hours (b)

PMVS [8]

12, 156, 664 points
runtime: > 11 hours (c)

Line3D (proposed)

13, 489 lines
runtime: 375.63 sec

Fig. 1: Three different 3D representations of the BUILDING sequence (344 im-
ages). (a) Sparse 3D model [15]. (b) Semi-dense point-cloud (PMVS [8]). (c)
3D line model using Line3D. As we can see, it is hardly possible to recognize
the building in the sparse 3D model, while it is clearly recognizable in both the
semi-dense- and the line-based 3D model. Compared to PMVS, our method has
much lower runtime- and memory requirements.

model. On the one hand, shapes of arbitrary complexity can be described by a
set of 3D points, but on the other hand, the number of points needed to do so
can quickly exceed the capabilities of your system.

What would be desirable is an efficient way of abstracting the 3D model, so
that as much 3D information as possible can be encoded with only as much data
as really necessary. A natural choice would be to use more complex geometric
primitives as data representation, such as planes (e.g. [20]) or lines (e.g. [12]).
While this might not be sufficient for natural scenes (e.g. forests, etc.), it is
especially useful for the built environment, where most of the structures are
piece-wise planar/linear.

We propose a novel approach for the task of 3D scene abstraction, denoted
as Line3D, which makes use of straight line segments as data representation.
Our method works as an efficient SfM post-processing tool and positions itself
in between sparse and dense 3D reconstruction. We build on recent methods
[11–14], which use epipolar-guided line segment matching and formulate the 3D
reconstruction as a clustering problem. Our main contributions are the refor-
mulation of the scoring procedure of matched 2D segments in a less restrictive
way, the replacement of the simple graph-clustering procedure in [11, 12] with
a more recent matrix-diffusion based method [4], as well as the computation of
affinities between potentially matching segments using a linear function of their
estimated depth and user specified regularization parameters in the pixel space.
These modifications ultimately result in more complete 3D models without neg-
atively influencing the runtime.

Figure 1 shows a comparison between a sparse-, dense-, and a line-based 3D
model for an urban scene. As we can see, our reconstruction provides a high
amount of 3D information, despite its sparsity compared to the dense model.
Moreover, running our method is only a low computational overhead, even for

Line3D: Efficient 3D Scene Abstraction for the Built Environment 3

this relatively large-scale dataset. The source code of our method is publicly
available and can be downloaded from http://aerial.icg.tugraz.at.

2 Related Work

While line segments have been used for tasks such as image registration or 3D re-
construction for a long time (e.g. [2]), in recent years image-based 3D reconstruc-
tion has been dominated by the use of image feature-points and their invariant
descriptors (e.g. SIFT [18]). Only quite recently, the principles of feature-point
descriptors have been successfully ported to the task of line segment matching
(e.g. [28–30]), but line-based 3D reconstruction for real-world scenarios is still
rarely used. While earlier methods have severe limitations (e.g. Manhattan-world
assumption [23]), more recent approaches [11–14, 16] have successfully been de-
ployed on challenging datasets. They all require known camera poses (e.g. by
running a conventional SfM pipeline beforehand), since pose estimation using
line segments can only be done in special scenarios (e.g. by using triplets of two
parallel and one orthogonal lines [5]), with given 3D lines [27], or when explicit
endpoint correspondences can be established [19].

Jain et al. [16] proposed a method that does not require explicit correspon-
dences between line segments from different images, which enables 3D recon-
struction under difficult lighting conditions or around highly non-planar objects
(such as power pylons), where patch-based line descriptors would fail. They
formulate the reconstruction procedure as an optimization problem, where the
unknown depth of the endpoints of 2D line segments in the images is modelled
as a random variable. They compute the most probable 3D locations for the seg-
ment endpoints by minimizing the reprojection error among several neighboring
views, and compute a final 3D model by merging individual 3D hypotheses that
are sufficiently close together. While their approach generates visually pleasant
results, the continuous optimization of the endpoint depths, in a potentially large
range, renders the method inefficient for large-scale datasets.

To overcome these issues, Hofer et al. [13, 14] replaced the continuous depth
estimation with epipolar guided line segment matching, to limit the number of
possible 3D locations to a discrete set. They further replaced the greedy line-
merging from [16] with a scale invariant graph clustering formulation [12], which
can also be evaluated on-the-fly for incremental SfM applications [11].

We build up on the core principles presented in [11–14], which are appearance-
less line segment matching and global graph-clustering of corresponding seg-
ments across images. We demonstrate how the resulting 3D reconstructions can
be improved by making several adaptions to their original formulation, without
sacrificing runtime performance.

3 3D Reconstruction Using Line Segments

Given an (unordered) image sequence I = {I1, . . . , IN}, we first run an arbitrary
SfM pipeline to obtain the corresponding camera poses as well as a sparse set of

4 Manuel Hofer, Michael Maurer, Horst Bischof

3D points X = {X1, . . . , XK}, which is needed solely to define which images are
visual neighbors. We further define X(i) ⊂ X to be the set of 3D points which
are visible in image Ii. We require a set of 2D line segments Li = {li1, . . . , limi

} for
each image, where each segment lim simply consists of two endpoints pim, q

i
m ∈ R2.

The line segments can be obtained by any line segment detector, such as LSD [9]
or EDL [1].

Similar to [11, 12], our method consists of several steps: (1) establishing po-
tential correspondences between line segments from different images, (2) eval-
uating these correspondences based on their support in neighboring views, (3)
selecting the most plausible correspondence for each 2D segment as its 3D posi-
tion hypothesis, and (4) clustering 2D segments based on their spatial proximity
in 3D to obtain the final correspondence set and 3D model.

3.1 Establishing Line Segment Correspondences

To generate a line-based 3D model we need to establish correspondences be-
tween 2D line segments from different images. Theoretically, this could be done
by one of the numerous line-matching approaches presented in the past (e.g.
[28–30]). However, most of these approaches are patch-based and are therefore
only suitable for line segments located on planar surfaces. Most of the line seg-
ments in natural images correspond to depth discontinuities, which results in
line descriptors describing the potentially far away background. To overcome
this drawback, recent methods have demonstrated how correspondences can be
established and verified using purely geometric principles, without any kind of
appearance [12–14], or with color histogram-based line descriptors [3] as weak
support [11].

We follow [11–14] and use epipolar matching constraints to establish a set of
potential correspondences for each line segment lim individually. Since it would
be infeasible (and unnecessary) to match all images with each other, we first
compute a set of visual neighbors Vi ⊂ {1, . . . , N}\{i} for each image Ii, by
finding its M nearest neighbors in terms of Dice’s similarity coefficient

SI(i, j) =
2 · |X(i) ∩X(j)|
|X(i)|+ |X(j)|

, (1)

which sets the number of common worldpoints in relation to the total number
of worldpoints for each image (the higher the more similar).

We then match all segments in Li to all segments in Lj (if j ∈ Vi). For a

specific segment pair, lim ∈ Li and ljm̄ ∈ Lj , we compute the epipolar lines of
their endpoints in the opposite image. We then simply intersect the infinite lines
passing through the segments lim and ljm̄ with the epipolar lines, and compute the
overlap of the region between the intersection points with the original segments.
If both relative overlaps (normalized by the length of the respective segment lim
or ljm̄) are above a fixed threshold τ , we consider lim and ljm̄ to be potentially
matching (τ = 0.25 in all our experiments).

Line3D: Efficient 3D Scene Abstraction for the Built Environment 5

As shown in [11–14], we can transform each 2D correspondence into a 3D
line Hi,j

m,m̄ by intersecting the two planes passing through the respective cam-
era centers Ci, Cj ∈ R3, and the 2D segments. We compute two 3D line seg-

ment hypotheses (hi,jm,m̄ and hj,im̄,m) for each correspondence, which are defined

as 3D line segments on Hi,j
m,m̄, whose projected endpoints coincide with the end-

points of the 2D line segments lim and ljm̄ respectively. Similar to the 2D case, a
3D line segment consists of two 3D points (hi,jm,m̄ = {P i,jm,m̄, Q

i,j
m,m̄}). Note that

Hi,j
m,m̄ = Hj,i

m̄,m, while in general hi,jm,m̄ 6= hj,im̄,m (due to occlusions and imprecise
2D segment detections).

3.2 Evaluating Line Segment Correspondences

The matching procedure enables us to establish a potentially large set of corre-
spondences, most of which are of course incorrect. Since we only use weak epipo-
lar constraints, it is not possible to distinguish correct from incorrect matches
during matching. However, we can assign confidence values for correspondences
after Li has been matched with all visual neighbors. This can either be done
using gradient-based backprojection and scoring of the 3D hypotheses over mul-
tiple images [14, 16] (which is time consuming), or by directly analysing their 3D
similarity to each other [11–13] (which requires some scale information). Both
methods are based on the observation that correct hypotheses of a 2D segment
always support each other (e.g. they are close together in 3D space and project
to similar locations in the images), while this does not hold for incorrect ones.

To be scale invariant and fast, we use a novel similarity measure based on
positional- and angular reprojection errors between a 3D hypothesis and 2D
segments. We assign a confidence

c(hi,jm,m̄) =
∑

x∈Vi\{j}

max
y∈{1,...,mx}

{
A2D(Γx(hi,jm,m̄), lxy)

}
, (2)

to a correspondence hi,jm,m̄, where Γx projects a 3D line segment into an image Ix,
and A2D computes a truncated affinity between two 2D segments. This affinity
is defined as

A2D(l1, l2) =

{
Sa2D(l1, l2) · Sp2D(l1, l2) if Sa2D(l1, l2) · Sp2D(l1, l2) > 0.5

0 otherwise
, (3)

with Sa2D being an angular similarity, and Sp2D being a position similarity defined
as

Sa2D(l1, l2) = exp

(
−∠(l1, l2)2

2σ2
a

)
Sp2D(l1, l2) = exp

(
−dmax(l1, l2)2

2σ2
p

)
, (4)

where ∠(l1, l2) denotes the angle between the two line segments (in degrees),
and dmax(l1, l2) is the maximum normal distance between the endpoints of l1 to
the infinite line passing through l2, and vice versa. σa and σp are user specified
regularization parameters.

6 Manuel Hofer, Michael Maurer, Horst Bischof

With this formulation we are able to determine whether a matching hypothe-
sis makes sense or not. We only keep hypotheses for further processing for which
c(hi,jm,m̄) > 1, which means that at least two segments from two additional images

(apart from Ii and Ij) have to support hi,jm,m̄. We end up with a much sparser set
of correspondences, with a significantly lower number of outliers, while correct
hypotheses are only seldom removed.

3.3 Assigning 3D Locations to 2D Segments

As in [11–13], given all hypotheses hi,jm,m̄ for a 2D segment lim, we want to estimate
its most probable 3D position, since each 2D segment can only be a projection
of one specific 3D structure. We then use this 3D information for the following
clustering procedure, as first shown in [11, 12]. For each 2D segment lim we define
its 3D location as

ĥim = argmax
hi,j
m,m̄

{
c(hi,jm,m̄)

}
, (5)

which is simply its 3D hypothesis with the highest confidence. We addition-
ally normalize the associated confidence c(ĥim) = min{1, c(ĥim)/2}, such that

c(ĥim) = 1 means a hypothesis is supported by ≥ 4 images (see Section 3.2).
In contrast to [11, 12], where confidences are always normalized linearly by the
locally highest confidence value (per image), we normalize by a fixed value. We
have seen that 3D segment hypotheses verified by 4 or more images are almost
never incorrect, which can also be observed for SfM point-clouds on the 3D
point level. This enables correct matches which are only found in a low number
of visual neighbor images (due to occlusions, etc.) to obtain a high confidence,
despite the potential occurrence of other correspondences from the same image
which might be occluded less often. Since this procedure is purely local, it can
be easily done even for large-scale datasets.

3.4 Clustering 2D Segments Across Images

To perform the segment clustering we need an affinity matrix W , which holds
the pairwise similarities between all potentially matching 2D segments. Since
we only need to consider segment pairs which have been matched before, this
matrix is usually very sparse. The question is how these similarities should be
computed. We could use the same metric as for the hypothesis confidence above,
by projecting 3D segments into images and evaluating the projective score (see
Eq. 3). The problem with this procedure is that the reprojection error is not
necessarily an appropriate indicator for a good correspondence, since it might
be small despite a large spatial displacement. Hence, it is desirable to compute
similarities directly in the 3D space.

To achieve this, we need some scale information. Since it is not possible to
obtain a metric 3D reconstruction from a conventional SfM pipeline (unless fur-
ther knowledge about the scene is provided, e.g. ground control points [22]), we
have to find a way to derive a scale estimate from the reconstruction. Motivated

Line3D: Efficient 3D Scene Abstraction for the Built Environment 7

by [11–13], we use user defined uncertainty thresholds in the pixel space, which
are then brought into the local 3D space of the reconstruction. Unlike in these
approaches, where an estimate about spatial uncertainty thresholds is made us-
ing all potential 3D line segment hypotheses (correct as well as incorrect ones),
we formulate the uncertainty estimation as a linear function of the scene depth
with respect to the underlying camera geometry, which is more robust to outlier
hypotheses.

We aim at converting an uncertainty threshold t from the pixel space into
the 3D space, for each image Ii individually. Therefore, we define zi to be the
center point of Ii, and z̃i to be zi shifted by t (in any direction). We unproject
zi from the image at a distance of 1, and obtain a 3D point Zi. We then shoot
a 3D ray through z̃i and compute the normal distance kit between Zi and this
ray. We use this distance as the slope of our linear uncertainty function

ui(X, t) = kit · ‖Ci −X‖2, (6)

where ‖Ci − X‖2 is the Euclidean distance between a 3D point X and the
camera center Ci of Ii (i.e. its scene depth along the viewing ray). In other
words, ui(X, t) assigns a spatial uncertainty to a 3D point X, with respect to a
maximally allowed reprojection error t, in the image Ii.

To avoid the possibility that the allowed spatial uncertainty grows too large
for points far away from the camera center, we analyse the configuration of the
final 3D hypotheses of all segments in Li, to obtain a depth range in which this
estimation makes sense. We therefore compute the median scene depth Di over
all final 3D hypotheses ĥim, by using both segment endpoints, and truncate our
uncertainty function at the median. We obtain a modified uncertainty estimator

ûi(X, t,Di) =

{
ui(X, t) if ‖Ci −X‖2 < Di

kit ·Di otherwise
, (7)

which can then be finally used to estimate similarities between clusterable 2D
segments.

To compute the pairwise segment affinities, we use two separate uncertainty
thresholds tl (lower bound) and tu (upper bound), with tl < tu. Since we always
have small inaccuracies throughout the reconstruction procedure (e.g. in the SfM
or the line segment detection), we cannot assume we will have perfect 3D hy-
potheses with zero distance to each other. We therefore do not punish deviations
below tl, and fit a Gaussian model between tl and the cutoff value tu. For two
potentially matching 2D segments lim and ljm̄, their similarity is computed as

W (lim, l
j
m̄) =

1

2

(
c(ĥim) + c(ĥjm̄)

)
·A3D(ĥim, ĥ

j
m̄). (8)

The similarity function A3D is defined in a similar way as for the 2D case (Eq.
3):

A3D(ĥim, ĥ
j
m̄) = Sa3D(ĥim, ĥ

j
m̄) ·min

{
Sp3D(ĥim, ĥ

j
m̄), Sp3D(ĥjm̄, ĥ

i
m)
}
, (9)

8 Manuel Hofer, Michael Maurer, Horst Bischof

where the angular similarity Sa3D is equivalent to its 2D counterpart Sa2D (Eq.
4), and the position similarity Sp3D is defined as

Sp3D(ĥim, ĥ
j
m̄) = min

{
E(P̂ im, ĥ

j
m̄), E(Q̂im, ĥ

j
m̄)
}
, (10)

with the point-to-line affinity E being computed as

E(X,h) =

{
1 if dist(X,h) < ûi(X, tl, Di)

exp
(
− (dist(X,h)−ûi(X,tl,Di))

2

2σ2
i,X

)
otherwise

,

(11)
where dist(X,h) is the Euclidean distance between a point X and a line h. The
distance regularisation parameter σi,X is derived from tl and tu, such that the
affinity E drops to 0.01 if the maximum allowed distance ûi(X, tu, Di) is reached.

The resulting affinity matrix could now be directly fed to an arbitrary graph
clustering algorithm, which takes a simple pairwise affinity matrix as an input.
Related methods [11, 12] used [6] as a clustering algorithm, which delivers vi-
sually pleasant results for the general case. To further improve the clustering
result, we deploy a more recent clustering strategy [4], which is based on diffus-
ing the given affinity matrix W , by implicitly considering the underlying data
manifold. Compared to [6], there is virtually no computational overhead, since
the diffusion procedure can be efficiently computed in parallel on the GPU.

The clustering result from [4] is post-processed by removing all clusters which
do not contain 2D segments from at least four different images. We estimate the
final 3D line for each remaining cluster from the 3D segments of the contained
2D residuals, as first shown in [16]. The line direction can be computed by a
Singular Value Decomposition of the scatter matrix containing all endpoints of
clustered 3D segment hypotheses, and a point on the line can easily be obtained
by computing the center of gravity among all these endpoints. We finally project
all individual segments onto the averaged 3D line, and compute a set of 3D line
segments on this line, such that each of these segments is fully covered by at
least three of the projected hypotheses. Figure 2 visualises the different steps of
the reconstruction procedure for the BUILDING sequence.

4 Experimental Results

We demonstrate the capabilities of our algorithm on two challenging real-world
datasets, and quantitatively compare our results to the state-of-the-art [12] on
a publicly available dataset with ground truth. We further set our line-based
reconstructions in relation to conventional dense point-clouds, obtained from
PMVS [8], to give an idea of the pros and cons of both methods in terms of
runtime vs. level of abstraction.

The parameters are kept fixed for all datasets. We set the 2D confidence reg-
ularisation parameters to σp = 2px and σa = 5◦, and the uncertainty thresholds
to tl = 2px and tu = 6px. As a line segment detector we use LSD [9], and as

Line3D: Efficient 3D Scene Abstraction for the Built Environment 9

(a) Selected 3D Hypotheses (b) Final Clusters

Fig. 2: Visualisation of the reconstruction procedure. (a) Individual 3D hypothe-

ses ĥim for all segments lim. (b) Result of the graph-clustering [4] using random
colors (one per cluster).

Ground truth
(laser scan)

Hofer et al. [12]

RMSE: 0.0598
6.61 seconds

Line3D (proposed)

RMSE: 0.0568
3.64 seconds

Fig. 3: Quantitative evaluation on the Herz-Jesu-P8 [25] dataset.

an SfM pipeline we use [15]. Our algorithm is implemented in C++ and CUDA,
making use of parallel computing whenever possible.

Figure 3 shows a quantitative comparison between our method and the
method by Hofer et al. [12] on the Herz-Jesu-P8 [25] dataset. The lines are col-
ored by their root-mean-square error (RMSE) to the ground truth surface. As
we can see, both approaches have a comparably high accuracy while our method
manages to reconstruct more 3D segments. Please note that not all valid 3D
lines are actually contained in the ground truth. This is especially notable on
the railings at the main entrance (colored in dark red).

Figure 4 shows qualitative results for two real-world test sequences. Please
note that the runtime for PMVS is measured in hours, while for [12] and Line3D
it is in seconds. As can be seen, both line-based approaches generate virtually
outlier-free results very efficiently, but our method in general manages to recon-
struct more 3D segments. This is mainly due to the different uncertainty- and
confidence estimation procedures, as well as the modified clustering process,
which enable 3D segments that are not visible in many images to be recon-
structed more likely. The comparison to the dense point-clouds underlines once
more how a lot of 3D information can be extracted in a very short time when
only straight line segments are used as features. Our 3D line models give the

10 Manuel Hofer, Michael Maurer, Horst Bischof

390, 762 points
0.83 hours

1, 689 lines
50.67 seconds

2, 697 lines
55.85 seconds

PYLON, 66 images, 4320 × 3240px

12, 156, 664 points
11.34 hours

12, 565 lines
368.28 seconds

13, 489 lines
375.63 seconds

BUILDING, 344 images, 4912 × 3264px

Fig. 4: Qualitative reconstruction results. Left column: PMVS [8], Middle col-
umn: Hofer et al. [12], Right column: Line3D (proposed method).

viewer a very good impression of what is going on in the scene, but in a compact
way and requires a very short amount of computational time.

5 Conclusion

We proposed a new method to generate abstract 3D models for built environ-
ments. We have shown how a significant amount of 3D information about a
scene can be encoded very efficiently, by using line segments in contrast to a
large point-cloud. However, our goal was not to replace dense 3D reconstruc-
tion, but rather to provide an alternative for all scenarios in which 3D edge
information is preferred over a point-cloud.

At the moment, our method can be seen as an SfM post-processing tool,
which takes camera poses and images as an input, and returns a 3D model.
In our future work, we intend to use the obtained 3D line segments (and their
2D residuals) to refine the camera poses from the SfM. We believe that using
a combination of points and lines has the potential to improve SfM for indoor-
and urban environments, where distinctive feature-points are rare.

Acknowledgements: This work has been supported by the Austrian Research
Promotion Agency (FFG) project FreeLine (Bridge1/843450) and OMICRON
electronics GmbH.

Line3D: Efficient 3D Scene Abstraction for the Built Environment 11

References

1. Akinlar, C., Topal, C.: EDLines: Real-Time Line Segment Detection by Edge Draw-
ing (2011), International Conference on Image Processing (ICIP)

2. Ayache, N., Faverjon, B.: Efficient Registration of Stereo Images by Matching
Graph Descriptions of Edge Segments (1987), International Journal of Computer
Vision (IJCV)

3. Bay, H., Ferrari, V., van Gool, L.: Wide-Baseline Stereo Matching with Line Seg-
ments (2005), International Conference on Computer Vision and Pattern Recog-
nition (CVPR)

4. Donoser, M.: Replicator Graph Clustering (2013), British Machine Vision Confer-
ence (BMVC)

5. Elqursh, A., Elgammal, A.: Line-Based Relative Pose Estimation (2011), Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR)

6. Felzenszwalb, P., Huttenlocher, F.: Efficient Graph-Based Image Segmentation
(2004), International Journal of Computer Vision (IJCV)

7. Frahm, J.M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C.,
Jen, Y.H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building Rome on a
Cloudless Day (2010), European Conference on Computer Vision (ECCV)

8. Furukawa, Y., Ponce, J.: Towards Internet-Scale Multi-View Stereo (2010), Inter-
national Conference on Computer Vision and Pattern Recognition (CVPR)

9. von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: A Fast Fine Segment
Detector With a False Detection Control (2010), Transactions on Pattern Analysis
and Machine Intelligence (PAMI)

10. Havlena, M., Schindler, K.: VocMatch: Efficient Multiview Correspondence for
Structure from Motion (2014), European Conference on Computer Vision (ECCV)

11. Hofer, M., Donoser, M., Bischof, H.: Semi-Global 3D Line Modeling For Incremen-
tal Structure-from-Motion (2014), British Machine Vision Conference (BMVC)

12. Hofer, M., Maurer, M., Bischof, H.: Improving Sparse 3D Models for Man-Made
Environments Using Line-Based 3D Reconstruction (2014), International Confer-
ence on 3D Vision (3DV)

13. Hofer, M., Wendel, A., Bischof, H.: Incremental Line-based 3D Reconstruction
using Geometric Constraints (2013), British Machine Vision Conference (BMVC)

14. Hofer, M., Wendel, A., Bischof, H.: Line-based 3D Reconstruction of Wiry Objects
(2013), Computer Vision Winter Workshop (CVWW)

15. Irschara, A., Zach, C., Bischof, H.: Towards Wiki-Based Dense City Modeling
(2007), International Conference on Computer Vision (ICCV)

16. Jain, A., Kurz, C., Thormaehlen, T., Seidel, H.: Exploiting Global Connectivity
Constraints for Reconstruction of 3D Line Segments from Images (2010), Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR)

17. Labatut, P., Pons, J., Keriven, R.: Efficient Multi-View Reconstruction of Large-
Scale Scenes using Interest Points, Delaunay Triangulation and Graph Cuts (2007),
International Conference on Computer Vision (ICCV)

18. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints (2004), In-
ternational Journal of Computer Vision (IJCV)

19. Micusik, B., Wildenauer, H.: Structure from Motion with Line Segments Under Re-
laxed Endpoint Constraints (2014), International Conference on 3D Vision (3DV)

20. Raposo, C., Antunes, M., Barreto, J.: Piecewise-Planar StereoScan: Structure and
Motion from Plane Primitives (2014), European Conference on Computer Vision
(ECCV)

12 Manuel Hofer, Michael Maurer, Horst Bischof

21. Rothermel, M., Wenzel, K., Fritsch, D., Haala, N.: SURE: Photogrammetric Sur-
face Reconstruction from Imagery (2012), LCD Workshop

22. Rumpler, M., Daftry, S., Tscharf, A., Prettenthaler, R., Hoppe, C., Mayer, G.,
Bischof, H.: Automated End-to-End Workflow for Precise and Geo-accurate Re-
constructions using Fiducial Markers (2014), Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences (ISPRS)

23. Schindler, G., Krishnamurthy, P., Dellaert, F.: Line-Based Structure from Motion
for Urban Environments (2006), International Symposium on 3D Data Processing,
Visualization, and Transmission (3DPVT)

24. Snavely, N., Seitz, S., Szeliski, R.: Photo Tourism: Exploring image collections in
3D (2006), ACM Transactions on Graphics (SIGGRAPH)

25. Strecha, C., von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On Bench-
marking Camera Calibration and Multi-View Stereo for High Resolution Imagery
(2008), International Conference on Computer Vision and Pattern Recognition
(CVPR)

26. Wu, C.: Towards linear-time Incremental Structure-from-Motion (2013), Interna-
tional Conference on 3D Vision (3DV)

27. Zhang, L., Koch, R.: Line Matching using Appearance Similarities and Geometric
Constraints (2012), Lecture Notes in Computer Science: Pattern Recognition

28. Zhang, L., Xu, C., Lee, K.M., Koch, R.: Robust and Efficient Pose Estimation from
Line Correspondences (2012), Asian Conference on Computer Vision

29. Zhang, Y., Yang, H., Liu, X.: A Line Matching Method based on Local and
Global Appearance (2011), International Congress on Image and Signal Processing
(ICISP)

30. Zhiheng, W., Fuchao, W., Zhanyi, H.: MSLD: A Robust Descriptor for Line Match-
ing (2009), Pattern Recognition

