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Abstract. Man-made environments contain many
weakly textured surfaces which are typically poorly
modeled in sparse point reconstructions. Most no-
table, wiry structures such as fences, scaffolds, or
power pylons are not contained at all. This paper
presents a novel approach for generating line-based
3D models from image sequences. Initially, camera
positions are obtained using conventional Structure-
from-Motion techniques. In order to avoid explicit
matching of 2D line segments in the various views
we exploit the epipolar constraints and generate a
series of 3D line hypotheses, which are then verified
and clustered to obtain the final result. We show that
this approach can be used to densify various sparse
occupied point clouds of urban scenes in order to ob-
tain a meaningful model of the underlying structure.

1. Introduction

Generating 3D models from a set of images has
become a widely studied field of research over the
last few years. The majority of available algorithms
is based on point correspondences between multi-
ple views using various local descriptors such as the
Scale-Invariant Feature Transform (SIFT) [13] in or-
der to obtain a 3D point cloud while simultaneously
estimating the camera parameters. This process
is called Structure-from-Motion (SfM). The density
of the resulting point cloud highly depends on the
amount of texture available in the images. There-
fore, point-based SfM may fail in man-made envi-
ronments with a low amount of distinctive interest
points (e.g. urban scenes, indoor scenes). To tackle
this issue, many line-based approaches have been
presented over the years, due to the fact that espe-
cially man-made objects (e.g. buildings) can usually
be represented by a set of 3D line segments. Similar

Figure 1. Two examples for wiry structures. The left im-
age shows a power pylon and the right image a scaffold in
front of a house.

to traditional SfM it is usually necessary to match 2D
line segments from various views to triangulate a 3D
line segment. This can be done using appearance-
based similarity measures, e.g. normalized-cross-
correlation (NCC) or line descriptors [12, 21], which
can be combined with additional geometric con-
straints [3]. Since the endpoints of matched line seg-
ments usually do not correspond to each other due to
inexact line segment detection or occlusions, creat-
ing 3D line segments from matched 2D lines is much
more difficult than traditional point-to-point match-
ing.

Most of the previous approaches rely on an accu-
rate line matching process between the various views
using some appearance-based similarity measures.
This usually works fine if the lines are located on
a planar surface with constant background, for in-
stance when matching window frames. However,
when dealing with wiry structures such as power py-
lons, bridges or scaffolds (see Figure 1 for some ex-
amples), appearance-based matching is hardly pos-
sible due to changing surroundings of the line seg-
ments in different views (see Figure 2). We present
an approach which is especially designed to handle
such cases but also performs well on solid objects.



Figure 2. An example were no appearance based line
matching can be performed. Note that corresponding line
segments have different surroundings in both views (yel-
low lines).

2. Related Work

In the following we present selected papers from
the field of line-based 3D reconstruction. We
start with an overview of appearance-based methods
which cannot directly be applied to our problem but
share some ideas with our approach.

Baillard et al. [1] presented a method which
makes use of the epipolar constraint by estimating
line correspondences along the epipolar beam. To
find the correct match they evaluate the NCC score
for candidate lines using patches around the line seg-
ments. The estimated 3D line segment is the inter-
section of the half-planes through the lines of sight
of the two endpoints in both views. They further ver-
ify their hypotheses by minimizing the reprojection
error using the trifocal tensor [6].

Bay et al. [2] use optional region matches in ad-
dition to line matches based on color histograms in
order to establish an initial set of candidates. They
apply a topological filter in order to remove wrong
candidates and increase the candidate set by adding
unmatched line segments which fit to the topological
structure of the already matched hypotheses. They
further estimate the epipolar geometry using copla-
nar subsets of their candidate set. Very accurate re-
sults are reported, even for sparsely textured scenes.

In order to generate 3D line models for urban
scenes, Schindler et al. [16] proposed an approach
which takes vanishing point information into ac-
count. They assume that relevant edges are lo-
cated along mutually orthogonal vanishing directions
which reduces the degrees of freedom for 3D line es-
timation. Their approach delivers pleasant results for
urban structures but unfortunately is limited to pic-
tures taken at near-ground level due to their assump-
tions.

Another approach presented by Kim et al. [8]
is based on the intersection context of coplanar line

pairs. They match line intersection context features
across multiple views using NCC as similarity mea-
sure and reject false intersections using coplanarity
constraints on the corresponding line segments. The
proposed method works well for a wide range of sce-
narios even when only little texture is available.

Unfortunately, all of these appearance-based ap-
proaches usually do not perform well for wiry struc-
tures, since they technically do not match the line
itself, but rather its surroundings. In our case, ex-
plicit matching may be impossible, since the ever
changing background is not coplanar with the line
and often very far away from the object to be recon-
structed. In order to create 3D models without the
need of explicit line matching, Jain et al. [10] de-
veloped a sweeping based approach which defines
the unknown 3D locations of the endpoints of 2D
line segments as random variables. They estimate
3D line hypotheses by generating all possible end-
point locations in a certain depth interval (assuming
known camera intrisics and extrinsics) and keep the
one with the highest score based on the gradient im-
ages of many neighboring views. Hence, they create
a 3D line for every 2D line in every view. In order
to delete outliers and cluster corresponding line seg-
ments together, they group 3D line segments which
lie close in space and discard all segments which do
not have at least one such neighbor. They also per-
form an optimization based on 2D line connections
using loopy belief propagation to enforce connected
3D lines. Even though their approach delivers very
accurate results and is very robust against noise and
partial occlusions, it is very slow compared to previ-
ous approaches.

In our approach we build upon the principles pre-
sented in [10] but use a different matching strat-
egy. Instead of using a time consuming sweeping
approach we generate hypothetical 3D line segments
using epipolar constraints, which drastically limits
the number of possible 3D locations for each 2D line
segment. We will show that this leads to a significant
performance increase while still creating accurate re-
sults.

3. Sparse Structure-from-Motion

Given an unordered set I = {I1, ..., In} of
n images and the corresponding cameras C =
{C1, ..., Cn} we want to generate a set of 3D line
segments S = {S1, ..., Sk}. Since we do not per-
form explicit line matching and line-based relative



pose estimation the cameras have to be known be-
forehand. For this purpose we use a point-based SfM
system. This limits the application to scenes where
interest points can be found, but we have seen that
we can usually find enough correct correspondences
for an accurate relative pose estimation in the back-
ground of wiry structures.

We follow the approach of Wendel et al. [20]
and Irschara et al. [9] which enables us to perform
sparse SfM for unordered image sets. The three nec-
essary processing steps are feature extraction, feature
matching, and geometry estimation. In the first step
we extract SIFT [13] features from all images. SIFT
has been shown to work well in general scenes [14],
but it also works surprisingly well in scenarios with
wiry structures. The reason is that matches are ob-
tained either in the background, or in the foreground
in case of a homogeneous background such as sky.
Afterwards, we match the resulting keypoint descrip-
tors between all possible image pairs and perform
a geometric verification procedure using the Five-
Point algorithm [15]. In order to eliminate possi-
ble outliers we use RANSAC [5] for robust estima-
tion. The resulting pairwise reconstructions are then
merged to obtain a sparse reconstruction of the scene.
Finally, bundle adjustment [17] is applied to mini-
mize the global reprojection error over all measure-
ments. See [19] and [7] for further details.

As a result we know the relative positions of all
cameras C in a common coordinate frame, and we
can thus proceed to the task of 3D line segment esti-
mation.

4. Reconstruction of 3D Line Segments

Our algorithm consists of three steps: 2D line seg-
ment detection extracts line segments from each in-
put image, 3D line segment hypotheses generation
tries to estimate the 3D position of these segments,
and finally 3D line grouping and outlier removal
merges corresponding segments from different views
and removes incorrect estimates. In the following
sections these steps will be explained in detail.

4.1. 2D Line Segment Detection

In order to generate triangulated 3D line segments
from a set of images, we first have to apply a line
segment detection algorithm onto our input images.
We employ the Line Segment Detector (LSD) [18]
algorithm to extract all relevant line segments with
as few incorrect detections as possible. The authors

Figure 3. Line Segment Detection. The line segments
extracted using the LSD [18] algorithm are visualized in
pseudo-colors. The underlying wiry structure is repre-
sented very well, except for a few outliers due to noisy
gradients, cause for instance by grass.

report their algorithm to be significantly faster than
previous methods while producing very accurate re-
sults. Their approach is based on the grouping of
points with a high gradient and similar level line an-
gle, followed by a least squares line fit. All detections
are validated using the Helmholtz principle [4] which
proves to be very effective for the general case. Fig-
ure 3 shows the detected line segments for a power
pylon image.

4.2. 3D Line Segment Hypotheses Generation

Assuming no false detections in the previous step,
every 2D line segment from image Ii corresponds to
a 3D line segment in world space. Since we can not
perform an explicit appearance-based matching pro-
cedure and triangulation, we have to estimate the cor-
rect 3D location of each segment in a different way.

As we know the projection matrix P i of the cam-
era, we are able to compute the epipolar geometry
between Ii and some other view Ij . Using the epipo-
lar lines ep and eq defined by the two endpoints p
and q of a certain line segment l in view i, we can
limit the possible matches for l to those line seg-
ments whose endpoints lie on ep and eq respectively.
In practice it is unlikely that we will find an exact
match with both endpoints being located exactly on
the epipolar lines, e.g. due to imprecise line detection
or occlusions. Therefore we extend all candidate seg-
ments which overlap with the region between the two
epipolar lines to infinity (from line segments to ac-
tual lines) and intersect them with ep and eq in order
to generate hypothetical matches. This enables us to



find correct matches even if the current line segment
is shorter or longer in Ij (see Figure 4). For every
hypothesis we create a 3D line segment L by trian-
gulating the two corresponding endpoint pairs from
the two views Ii and Ij .

Since we usually have more than one hypothesis
for each 2D line segment (because the epipolar lines
do not provide enough information to perform exact
matching), we have to determine which one is cor-
rect. Therefore we adopt a gradient based scoring
approach similar to [11, 10]. We then backproject
each 3D line segment L into all neighboring views
N(Ii) of Ii with a camera center closer than a cer-
tain distance dc and an absolute viewing angle differ-
ence smaller than dang to the current camera Ci. For
each camera we compute a set of measurement points
M along and perpendicular to the backprojected line,
and compute the image gradient-based score

s(L) =
1

|N(Ii)|
∑

I∈N(Ii)

∑
x∈M(I)

‖∇I(x)‖
|M(I)|

e−(
λ·dist(x,L)

2·distmax(L)
)2

(1)
for every 3D line segment L, where ∇I(x) de-
notes the image gradient at position x, dist(x, L) is
the perpendicular Euclidean distance to the backpro-
jected line in the current image I and distmax(L)
denotes the maximum distance based on the config-
uration of the measurement points. Assuming that
line segments correspond to high gradient areas in
images, this method ensures that we choose the hy-
pothesis which fits best to the image data. Using this
formula we give more weight to measurement points
which are closer to the backprojected line, and less
weight to those perpendicular to it depending on the
distance. An illustration is given in Figure 5.

After computing the score for each hypothesis we
choose the one with maximum score, denoted as
Lbest, which is then added to our 3D line segment
hypotheses set H . Since we generate 3D line seg-
ments for all views individually, we end up with a
quite large hypotheses set which has to be pruned.
Figure 6 shows an example for a 3D line model be-
fore grouping and outlier removal.

4.3. 3D Line Grouping and Outlier Removal

It is possible that the correct matches for 2D line
segments are not among the candidates, for instance
because the line segments are not redetected in any
neighboring view, and therefore we have to remove
possible outliers. The outlier removal process goes
hand in hand with the line grouping step which has
to be performed in order to remove multiple detec-
tions. Since we match and triangulate the 2D line

Figure 5. The left image shows the gradient magnitudes
from a power pylon image with a backprojected 3D line
hypothesis shown in red. The right image shows a close-
up of the line segment with the set of measurement points
M illustrated as yellow lines. The weighted sum of the
gradient magnitudes over all measurement points is com-
puted and then divided by the number of points in order to
compute the score for this view. The average score over
all neighboring views is then used to evaluate the best hy-
pothesis (see Equation 1).

Figure 6. 3D line segment hypotheses before the group-
ing and outlier removal procedure. Our approach gener-
ates 71538 segments from 106 views. Note that there is
a large number of outliers due to incorrect matches, but
the power plyon which appears in the imagery is clearly
recognizable.

segments individually for every view, the same 3D
line might be generated in multiple views. Assuming
a correct matching procedure, all the hypotheses in
H which correspond to the same 3D line should be
located close in space. Hence, a line clustering algo-
rithm is performed in order to generate the final 3D
line model.

In order to remove incorrectly triangulated 3D line
segments and cluster corresponding segments, we
adopt the idea of spatial proximity based grouping
from [10]. First, we order the hypotheses set H by



Figure 4. We match the line segment L in view Ii with line segments from view Ij using its epipolar lines ep and eq . The
blue line segments are possible candidate matches because of their overlap with the region between the two epipolar lines.
The endpoints of the hypothetical line segments used for triangulation are shown as blue dots. The orange line segment
does not overlap with the epipolar lines and is therefore not considered to be a possible match.

Figure 7. To group corresponding 3D line segments to-
gether, the true segment L (green) is expanded by 10%
in each direction. All other line segments with both end-
points within a cylinder of radius r, defined by the new
endpoints, are considered to be in the same group as L
(blue lines). The red line does not belong to the group,
because one of its endpoints is outside the cylinder.

score in descending order to start grouping with lines
which are best aligned with the image gradients. For
each line Lm ∈ H we define a cylinder of a fixed
radius r by expanding the central axis of the line seg-
ment by 10% in both directions. We then try to find
all line segments Ln, n 6= m where both endpoints
are located within the cylinder (Figure 7).

If the final line group (including Lm) has at least
hmin members we consider it to be valid and exclude
all line segments in the group from further grouping,
otherwise Lm is removed from H and we continue
with the next best hypothesis.

After the clustering step, each group is replaced
with one single line segment for our final 3D line
segment set S. To define this line we first compute
the center of gravity of all line segment endpoints
from the group. Afterwards we perform a singular
value decomposition of the scatter matrix containing
all endpoints and take the eigenvector corresponding
to the maximum eigenvalue as new line direction. We
now project all endpoints onto the new line and add
the line segment defined by the two outmost points to
S. Figure 8 illustrates the outcome of the grouping

Figure 8. After the grouping procedure most of the outliers
have been successfully removed resulting in an accurate
3D model (1381 line segments).

procedure. Note that compared to Figure 6 most of
the outliers have been successfully removed.

5. Experiments

In the previous section we have already shown a
resulting 3D model of a power pylon. In this sec-
tion we want to present additional results and finally
compare our algorithm to [10] using one of their test-
cases.

5.1. Parameter Selection

The various steps of our approach require a set
of parameters in order to generate pleasant results.
Most of them are valid for a large number of scenar-
ios and therefore do not need to be especially tuned.

The line segment detection algorithm (LSD [18])
does not need parameters. In order to eliminate out-
liers and speed up the computation we reject 2D line
segments smaller than 1% of the diagonal length of
the image in pixels, which is usually sufficient to cap-
ture the underlying structure of our images.

During hypotheses generation we need to deter-



mine which views are considered neighboring views
N(Ii) for the current view Ii (see Section 4.2). The
maximum viewing angle difference dang = 50◦ and
the maximum distance between the camera centers
dc = 30 for all our experiments. In order for the sec-
ond parameter to make any sense we need to know
the scale of our 3D model. In our experiments the
result achieved during preprocessing (camera estima-
tion) is transformed to a metric scale (1 ≡ 1m), using
either a marker with known size [11] or manual user
interaction. Assuming equidistant camera centers we
usually have a large number of views available for
scoring. In order to increase the performance (since
scoring has to be done for every 2D line segment
in every view) we limit the number of neighboring
views to 20.

For the scoring procedure we choose the set of
measurement points (M ) in a way that the distance
between the points on the backprojected line is 5 pix-
els. The number of perpendicular points is set to 5 in
each direction (with a distance of 1 pixel), meaning
that distmax = 5. The parameter λ is set to 10 (see
Equation 1).

The parameters for the grouping procedure are the
only ones which have to be estimated for each test-
case individually. For most scenarios setting r =
0.05 and hmin = 3 yields good results, meaning that
the grouping radius is 5cm and every 3D line seg-
ment has to be correctly estimated in at least 3 differ-
ent views.

5.2. Results

In traditional point-based SfM it is often the case
that the resulting point cloud is sparsely distributed
due to the lack of distinctive features especially for
man-made structures. Many of the keypoints may be
rather located on the background instead of the ob-
ject. Nevertheless, background features can be used
for relative pose estimation and therefore our line
matching algorithm can be applied in order to den-
sify the 3D model.

Figure 9 shows an example 3D point cloud of
a house surrounded by a scaffold, and Figure 10
shows a model of a staircase. As we can see, the
point clouds are rather sparsely occupied and the vis-
ible objects are difficult to determine for the viewer.
Adding 3D line segments clearly improves the re-
sult and allows the viewer to identify the underlying
structure.

Our algorithm is designed to handle wiry struc-

Figure 9. The top images show an example view from a
house sequence (93 images) and a SfM point cloud. The
bottom image shows the densified 3D model with the re-
constructed line segments.

Figure 10. The left image shows an example view from
a staircase sequence (14 images). The right image shows
the densified 3D model with the reconstructed line seg-
ments.

tures. Nevertheless, it is not limited to such sce-
narios and can also handle solid objects. In order
to compare our approach to [10], we reconstructed
their Timber-frame house sequence1 using our algo-
rithm. The sequence consists of 240 synthetic im-
ages. Figure 11 shows exemplar views from the se-
quence along with our 3D reconstruction and the re-
sult from Jain et al. [10], colored using the Hausdorff
distance as similarity measure (for densely sampled
points along the lines) to the ground truth model. Ta-
ble 1 shows the root mean square (RMS) error for
both reconstructions compared to the CAD model.

As we can see, both algorithms manage to recon-

1http://www.mpi-inf.mpg.de/resources/LineReconstruction/



Method min error max error RMS error
Jain et al. 0.000 0.019 0.0036
Ours 0.000 0.023 0.0013

Table 1. The comparison to the method by Jain et al. [10]
revealed that our method performs better in terms of the
RMS error but their method has a slightly lower maximal
error.

Figure 11. The top images show an example view from
the synthetic Timber-frame house sequence (240 images)
along with the ground truth CAD model. The middle im-
age is the reconstruction achieved by [10], the bottom im-
age is our reconstruction. The color reveals the errors
compared to the CAD model (from 0.01 to 1.00). Best
viewed digitally and in color.

struct the building in a qualitatively accurate way.
Our approach performs better in terms of the RMS
error, while Jain et al. are able to reconstruct a few
more lines, especially on the roof. Even though the
resulting models are similar, the computational time
differs highly. The authors report that their algorithm
often needs several hours to deliver the result, while
our method is able to reconstruct this sequence in
7.5 min using all 240 images and not only a subset
of 72 as [10].

5.3. Performance Evaluation

Since we have to evaluate many possible matches
for each 2D line segment (to avoid appearance-based
matching) our algorithm is more time consuming
than traditional line-matching approaches. Neverthe-
less, we manage to generate accurate results for the
general case in reasonable time. Table 2 shows a
performance evaluation for the three test sequences
presented in this paper. All experiments were per-
formed on a desktop PC equipped with an Intel Core2
4 × 2.66GHz processor. Note that for our own se-
quences (Pylon, House and Staircase) the image size
was significantly larger than for the Timber-frame
house, which explains the difference in speed.

6. Conclusion

We have presented a novel approach for the pur-
pose of generating 3D line models without explicit
appearance-based matching. The proposed algo-
rithm performs well for wiry structures as well as
solid objects. In contrast to a previous approach by
Jain et al. [10], we exploit epipolar constraints to
speed-up the computation while still creating accu-
rate results. We have shown that for scenes with few
keypoints located on the actual foreground object,
3D line segments can be used to densify the result-
ing model. This is of particular importance for urban
scenes and man-made structures which often provide
few distinctive feature points.

While our approach is able to generate 3D line
segments even when a 2D segment is not exactly re-
detected in any other view (due to the matching strat-
egy based on epipolar lines), it usually generates a
large set of outliers. These outliers have to be re-
moved in a computationally expensive grouping step,
which may take a lot of time depending on the num-
ber of hypotheses. Therefore, our future work will
be to formulate the matching procedure in a proba-
bilistic way to allow online hypotheses generation,
in order to further improve the performance.
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