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Abstract

We consider discrete pairwise energy minimization prob-
lem (weighted constraint satisfaction, max-sum labeling)
and methods that identify a globally optimal partial assign-
ment of variables. When finding a complete optimal assign-
ment is intractable, determining optimal values for a part of
variables is an interesting possibility. Existing methods are
based on different sufficient conditions. We propose a new
sufficient condition for partial optimality which is: (1) ver-
ifiable in polynomial time (2) invariant to reparametriza-
tion of the problem and permutation of labels and (3) in-
cludes many existing sufficient conditions as special cases.
We pose the problem of finding the maximum optimal par-
tial assignment identifiable by the new sufficient condition.
A polynomial method is proposed which is guaranteed to
assign same or larger part of variables than several ex-
isting approaches. The core of the method is a specially
constructed linear program that identifies persistent assign-
ments in an arbitrary multi-label setting.

1. Introduction
Energy Minimization Given a graph pV, Eq and func-
tions fs : Ls Ñ R for all s P V and fst : Ls � Lt Ñ R
for all st P E , where Ls are finite sets of labels, the prob-
lem is to minimize the energy

Ef pxq � f0 �
¸
sPV

fspxsq �
¸
stPE

fstpxs, xtq, (1)

over all assignments x P L �
±
s Ls (Cartesian product).

Notation st denotes the ordered pair ps, tq for s, t P V . The
general energy minimization problem is APX-hard.

Partial Optimality Let A � V . By xA we denote the
restriction of x to A. An assignment y with domain A is a
partial assignment denoted pA, yq. The pair pA, yq is called
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strong optimal partial assignment if there holds x�A � y for
any minimizer x� of Ef . And weak optimal partial assign-
ment if there exists a minimizer x� of Ef such that x�A � y.

Related Work Several fundamental results identifying
optimal partial assignments are obtained from the proper-
ties of linear relaxations of some discrete problems. An op-
timal solution to continuous relaxation of a mixed-integer
0-1 programming problem is defined by Adams et al. [2] to
be persistent if the set of r0, 1s relaxed variables realizing
binary values retains the same binary values in at least one
integer optimum. A mixed-integer program is said to be
persistent (or possess the persistency property) if every so-
lution to its continuous relaxation is persistent. Nemhauser
& Trotter [19] proved that the vertex packing problem is
persistent. This result was later generalized to optimiza-
tion of quadratic pseudo-Boolean functions (equivalent to
energy minimization with two labels) by Hammer et al. [9].
The relaxed problem in this case is known as the roof dual.
Strong persistency was also proven, stating that if a vari-
able takes the same binary value in all optimal solutions to
the relaxation, then all optimal solutions to the original 0-1
problem take this value. However, it is a rare case that a
relaxation of a particular problem is persistent.

Several works considered generalization of persistency
to higher-order pseudo-Boolean functions. Adams et al. [2]
considered a hierarchy of continuous relaxations of 0-1
polynomial programming problems. Given an optimal re-
laxed solution, they derive sufficient conditions on the dual
multipliers which ensure that the solution is persistent.
This result generalizes the roof duality approach, coincid-
ing with it in the case of quadratic polynomials in binary
variables. Kolmogorov [13, 14] studied submodular and
bisubmodular relaxations and showed that they provide a
natural generalization of the quadratic pseudo-Boolean case
to higher-order terms and possess the persistency property.
Kahl and Strandmar [11] proposed a polynomial time al-
gorithm to find the tightest submodular relaxation. Lu and
Williams [18], Ishikawa [10] and Fix et al. [6] obtained par-
tial optimalities via different reductions to quadratic prob-
lems and subsequent application of the roof dual.
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Multi-label energies The following methods were pro-
posed for the pairwise model (1) with multi-label variables.
Kohli et al. [12] reduced multi-label energy to quadratic
pseoudo-Boolean and applied roof dual. The family of local
methods known as dead end elimination (DEE), originally
proposed by Desmet et al. [5], uses simple sufficient con-
ditions that consider a variable and its immediate neighbors
in the graph. Kovtun [16, 17] proposed to construct an aux-
iliary submodular problem whose solution provides a par-
tial optimal assignment for the original problem. For the
Potts model it was shown that K auxiliary problems can be
solved in time OplogpKqF q, where F is the time to solve
a single auxiliary problem [8]. Swoboda et al. [24] pro-
posed a method for Potts model solving a series of LP relax-
ations approximately and generalized it recently to general
and higher-order energies [25]. Unlike other approaches,
methods [5, 16] are not directly related to relaxation tech-
niques.

Contribution We observed that in many methods there
is an underlying mapping of labelings p : L Ñ L that
improves the energy of any given labeling: Ef pppxqq ¤
Ef pxq. It follows that there exists a minimizer in the re-
duced search space ppLq. However, even in the case that
such mapping is given, the verification of the improving
property is NP-hard (see below). We propose instead to ver-
ify that a suitable linear extension of this mapping improves
the energy of all relaxed labelings. This constitutes a suf-
ficient condition which is polynomial to verify. It includes
sufficient conditions used in methods [5, 17, 9, 12, 24] as
special cases.

We pose the problem of finding the maximum
weak/strong optimal partial assignment identifiable by the
new sufficient conditions (denoted MAX-WI / MAX-SI, re-
spectively). We propose polynomial algorithms for several
classes of mappings p, which include many of previously
proposed constructions. The algorithms involve solving the
LP-relaxation and an additional linear program of a com-
parable size. We give a method that improves over one-
against-all method of Kovtun [17] (including possible free
choices in this method) and subsumes the method [24]. In
the case of two labels, our method reduces to known QPBO
results. Experimental verification of correctness and quan-
tification of achieved improvement is performed on difficult
random instances. Preliminary experiments with large-scale
vision problems are reported in [22].

2. Background
We will assume that st P E ñ ts R E . Let us denote

the set Ls � Lt as Lst and the pair of labels pi, jq P Lst as
ij. The following set of indices is associated with the graph
pV, Eq and the set of labelings: I � t0u Y tps, iq | s P
V, i P Lsu Y tpst, ijq | st P E , ij P Lstu. A vector

(1,0)

(0,1)

(0,0)

(1,1)

M

¹s (1)

¹t (1)

¹st (1; 1)

¹t (1)

¹s (1)
¹st (1; 1)

mapping ±

Figure 1. Mapping δ embeds discrete labelings as points in the
space RI . Projection onto components µsp1q, µtp1q, µstp1, 1q is
shown, the other components are dependent.

f P RI has components (coordinates) f0, fuplq, fstpi, jq
for all u P V, l P Lu, st P E , ij P Lst. We further de-
fine that ftspj, iq � fstpi, jq. Let Ẽ � E Y tts | st P Eu,
the symmetric closure of E . The neighbors of a pixel s are
pixels in the set N psq � tt | st P Ẽu.

LP Relaxation Let δpxq P RI be the vector with compo-
nents δpxq0 � 1, δpxqspiq � rrxs�iss and δpxqstpi, jq �
rrpxs, xtq�ijss, where rrss is the Iverson bracket. Let x�, �y
denote the scalar product in RI . We can write the energy as

Ef pxq � xf, δpxqy. (2)

The energy minimization can be expressed and relaxed as

min
xPL

xf, δpxqy � min
µPδpLq

xf, µy � min
µPM

xf, µy ¥ min
µPΛ

xf, µy,

(3)
where M � conv δpLq and Λ is the local polytope that
makes an outer approximation of M. We consider the stan-
dard Schlesinger’s LP relaxation [23], where the polytope Λ
is given by the primal constraints in the following primal-
dual pair:

(LP-primal) (LP-dual)
minxf, µy � maxψ°
j µstpi, jq � µspiq � 0, ϕstpiq P R,°
i µstpi, jq � µtpjq � 0, ϕtspjq P R,°
i µspiq � µ0 � 0, ϕs P R,

µ0 � 1, ψ P R,
µspiq ¥ 0, fspiq �

°
tPN psq ϕstpiq � ϕs ¥ 0,

µstpi, jq ¥ 0, fstpi, jq � ϕstpiq � ϕtspjq ¥ 0,
µ0 ¥ 0; f0 �

°
s ϕs � ψ ¥ 0.

This relaxation is illustrated in Figure 1. We write it com-
pactly as

minxf, µy � maxψ ,
Aµ � 0
µ0 � 1
µ ¥ 0

ϕ P Rm
ψ P R

f �ATϕ� e0ψ ¥ 0

(LP)
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where A is m � |I| and e0 P RI is the basis vector for
component 0. Vector fϕ :� f � ATϕ is called an equiv-
alent transformation (reparametrization) of f . There holds
xfϕ, µy � xf, µy�xϕ,Aµy � xf, µy for all µ P Λ. Because
Λ � δpLq, it follows that Ef pxq � Efϕpxq for all x P L. If
there exists ϕ such that g � fϕ we write g � f . In this case
vectors f and g are different but they define equal energy
functions Ef � Eg . See, e.g., [26] for more detail.

Let pµ, pϕ,ψqq be a feasible primal-dual pair. Comple-
mentary slackness for (LP) states that µ is optimal to the
primal and pϕ,ψq to the dual iff

µspiq ¡ 0 ñ fϕs piq � 0, (4a)
µstpi, jq ¡ 0 ñ fϕstpi, jq � 0, (4b)

µ0 ¡ 0 ñ ψ � f0 �
¸
s

ϕs. (4c)

Because a feasible dual solution satisfies p@i1q fϕs pi
1q ¥ 0,

condition on the RHS1 of (4a) imply that label i is minimal
for fϕ. Similarly, in case of (4b) we say that ij is a minimal
pair. Implication (4c) has its premise always satisfied.

3. Improving Mapping
Definition 1. A mapping p : L Ñ L is called (weakly)
improving for f if

p@x P Lq Ef pppxqq ¤ Ef pxq, (5)

and strictly improving if

pppxq � xq ñ Ef pppxqq   Ef pxq, (6)

We will consider pixel-wise mappings, of the form ppxqs �
pspxsq, where p@s P Vq ps : Ls Ñ Ls. Furthermore, we
restrict to idempotent mappings, i.e., satisfying p � p � p,
where � denotes composition.
Statement 1. Let p be an improving pixel-wise idempotent
mapping. Then there exists an optimal solution x� such that

p@iq pspiq � i ñ x�s � i. (7)

In case p is strictly improving any optimal solution x�

satisfies (7).
Proof. Let x be optimal. Then x� � ppxq is optimal as
well. By idempotency, x� satisfies ppx�q � x�. Condi-
tion (7) is equivalent to p@iq x�s � i ñ pspiq � i. If p is
strictly improving, for any optimal solution x� there must
hold ppx�q � x�, otherwise Ef pppx�qq   Ef px

�q.
It follows that knowing an improving mapping, we can

eliminate labels ps, iq for which pspiq � i as non-optimal.
Given a mapping p, the verification of the improving prop-
erty is NP-hard: in case of binary variables it includes NP-
hard decision problem of whether a partial assignment is an

1RHS = Right-hand side of an equation.

(1,0)

(0,1)

(0,0)

(1,1)

M

¹1(1)

¹2(1)

¹12(1; 1)

p s p t

mapping ± P(M)

Figure 2. Discrete map p sends some labelings to other (the green
labeling to red and the blue one to black). There is a corresponding
linear map P : RI Ñ RI (unique on affpMq) wit this action – the
oblique projection onto the red facet.

autarky [4]. We need a simpler sufficient condition. It will
be constructed by embedding the mapping into the linear
space and applying a relaxation there.

3.1. Relaxed Improving Mapping

Definition 2. A linear extension of p : L Ñ L is a linear
mapping P : RI Ñ RI that satisfies

p@x P Lq δpppxqq � Pδpxq. (8)

See Figure 2 for illustration. We will only use the fol-
lowing particular linear extension for a pixel-wise mapping
p : L Ñ L, which will be denoted rps. For each ps define
matrix Ps P RLs�Ls as Ps,ii1 � rrpspi

1q � iss. The linear
extension P � rps is given by

pPµq0 � 1,

pPµqspiq � Psµs,

pPµqstpijq � PsµstP
T
t .

(9)

Linear maps of the form (9) with general matrices Ps sat-
isfying Ps ¥ 0 and 1TPs � 1 will be called pixel-wise.
To verify that (8) holds true we expand the components
as follows. pPδpxqqspiq �

°
i1PLs

rrpspi
1q�issrrxs�i

1ss �
rrpspxsq�iss � δpppxqqspiq. Similarly, for pairwise com-
ponents, pPδpxqqstpi, jq � rrpspxsq�issrrptpxtq�jss �
δpppxqqstpi, jq.

Using the linear extension P of p we can write

Ef pppxqq � xf, δpppxqqy � xf, Pδpxqy. (10)

This allows to express condition (5) as

p@x P Lq xf, Pδpxqy ¤ xf, δpxqy. (11)

We introduce a sufficient condition by requiring that this
inequality is satisfied over a larger subset Λ.
Definition 3. A linear mapping P : RI Ñ RI is a (weak)
Λ-improving mapping for f if

p@µ P Λq xf, Pµy ¤ xf, µy; (12)
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and is a strict Λ-improving mapping for f if

p@µ P Λ, Pµ � µq xf, Pµy   xf, µy. (13)

The set of mappings for which (12) (resp. (13)) is sat-
isfied will be denoted Wf (resp. Sf ). For convenience, we
will use the term relaxed improving map, meaning it w.r.t.
polytope Λ. Note, this definition and some theorems are
given for arbitrary linear maps, at the same time for the pur-
pose of this paper it would be sufficient to assume pixel-
wise maps of the form (9). Clearly, (12) implies (11) be-
cause δpLq � Λ and for the linear extension rps it implies
that p is improving. Sets Wf and Sf are convex as they are
intersections of half-spaces (respectively, closed and open).
Verification of (12) for a given P can be performed via solv-
ing

min
µPΛ

xpI � PTqf, µy (14)

and checking that the result is non-negative, i.e. can be de-
cided in polynomial time.

4. Special Cases
The new sufficient condition generalizes several previ-

ously proposed sufficient conditions. We will show here
improving mappings corresponding to each method. Proofs
that the mapping is actually relaxed improving in each case
(which is a stronger requirement) is given in [22].

DEE There is a number of local sufficient conditions
proposed [5, 7], etc. We can show to include Goldstain’s
simple DEE condition. The condition allows to eliminate
label α P Ls if there is label β P Ls such that replacing
α with β does not increase the energy for all configurations
of neighboring pixels. Clearly, we have the map p which is
pixel-wise, it’s component pt is identity for all t � s and
component ps has pspαq � β and pspiq � i for i � α.

QPBO [19, 9] As mentioned above, in the case of 2
lables the LP relaxation has persistency property. The par-
tial assignment of the integral part py,Aq is globally opti-
mal. Moreover, it has the autarky property: for any labeling
x there holds Ef pxrAÐ ysq ¤ Ef pxq, where xrAÐ ys is
the labeling obtained from x by switching its A components
to y [4]. Clearly, the map p : x ÞÑ xrA Ð ys is improving.
The relaxed improving property does not hold for autarkies
in general, but for the solution of the LP relaxation.

MQPBO [12] This method extends partial optimality
properties of QPBO to multi-label problems via the reduc-
tion of the problem to 0-1 variables. The method outputs
two labelings xmin and xmax with the guarantee that there
exists optimal labeling x that satisfy xs P rxmin

s , xmax
s s.

The improving mapping for this method is given by p : x ÞÑ
px_ xminq ^ xmax.

Auxiliary Submodular Problems [16, 17] These meth-
ods construct an auxiliary submodular (in a given ordering

of labels) energy Eg . A minimizer y of Eg has the property
that Egpx_ yq ¤ Egpxq, implied by submodularity. It fol-
lows that mapping p : x ÞÑ x _ y is improving for g. The
construction of the auxiliary function g ensures the inequal-
ity Ef px _ yq � Ef pxq ¤ Egpx _ yq � Egpxq. It follows
immediately that p is improving for f .

Iterative Pruning [24] This method is applicable to
the Potts model and constructs a partial optimal assignment
pA, yq. It turns out that the mapping p : x ÞÑ xrA Ð ys is
relaxed improving. A recent generalization of this method
to arbitrary energies [25] in the pairwise model satisfies our
sufficient condition as well.

5. Maximum Improving Mapping
Having a more powerful sufficient condition, which can

be verified in polynomial time, how do we find a map that
satisfies it? How do we find the map that delivers the largest
partial optimal assignment, or, equivalently, eliminates the
maximum number of labels as non-optimal? Recall that
the label ps, iq is eliminated by pixel-wise mapping p if
rrpspiq�iss. We therefore formulate the following maximum
persistency problem:

max
p

¸
s,i

rrpspiq� iss s.t. rps PWf . (MAX-WI)

The strict variant, with constraint rps P Sf , will be denoted
MAX-SI. The problem may look difficult, however, we will
be able to solve it in polynomial time for some types of
maps covering nearly all types that appeared in the previous
section:

 all-to-one maps. Set P1,y of maps of the form p : x ÞÑ
xrAÐ ys for all A � V and fixed y P L.


 subset-to-one maps. Let V � tps, iq | s P V, i P Lsu.
Let ξ P t0, 1uV . Mapping pξ in every pixel either
preserves the label or switches it to ys:

pξpxqs �

#
ys if ξsxs

� 1,

xs otherwise.
(15)

Vector pξsi | i P Lsq serves as the indicator of a subset
of labels in pixel s that are mapped to ys. The set P2,y

of all such maps is considered.

 all-to-one-unknown maps. Set P1 �

�
yPL P1,y.

Additionally, we define subset-to-one-unknown maps as the
set P2 �

�
yPL P2,y . This set is considered merely to

draw the boundary between solvable and unsolvable cases
of maximum persistency problem. All complexity results
are summarized in Table 1. We see that as soon as K ¡ 3
the problem with unconstrained maps becomes intractable.
We also see that the complexity jumps with the number of
possible destinations for each label increased. Note, in case
of all-to-one-unknown maps the difference between strict
and weak conditions results in a different complexity class!
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problem type MAX-SI MAX-WI

K � 2 P (QPBO) P (QPBO)
K � 3 ? NP-hard
K ¡ 3 NP-hard NP-hard
P1,y P (ε-L1) P (L1)
P2,y P (ε-L1) P (L1)
P1 P (nec. cond. + ε-L1) NP-hard
P2 NP-hard NP-hard

Table 1. Complexity of maximum persistency problem. Notation
K � 2 means the class of problems with 2 labels and arbitrary
maps. In brackets we denote the respective polynomial method,
see §6.

6. Algorithms
For the case of two labels (K � 2), problem MAX-SI

(resp. MAX-WI) can be solved by finding solution to (LP)
with the minimum (resp. maximum) number of integer
components. This corresponds to finding specific cuts in
the network flow model [3], [15, §2.3]. Finding the relaxed
solution with the maximum number of integer components
was proven polynomial by Picard and Queyranne [20] in
the context of vertex packing problem. We give more detail
in [22].

To show that forK ¥ 3 problem MAX-WI is NP-hard we
notice that (LP) is tight iff there exists y P L such that map-
ping p : L ÞÑ y is relaxed-improving. Clearly, this mapping
is a (non-unique) solution to MAX-WI. Verifying tightness
of (LP) is a pairwise constraint satisfaction problem which
is NP-hard for K ¥ 3.

We will now derive some properties of MAX-WI/SI prob-
lem that will enable our main result – reduction to a single
linear program for subset-to-one maps. The problem will be
gradually reformulated in terms of linear extension P � rps
only. The constraint P P Wf is complicating because set
Wf is defined with quantifier p@x P Λq, see (12). How-
ever, since Λ is polyhedral, this set can be reformulated as a
projection of a higher-dimensional polytope:
Statement 2 (Dual W). Set Wf can be expressed as

tP : RI Ñ RI | pDϕ P Rmq fϕ � PTf ¥ 0u. (16)

Proof. Denote g � pI � PTqf . Condition (14), equivalent
to (12), can be stated for the conic hull of Λ:

inf
µPconipΛq

xg, µy ¥ 0. (17)

This is because for any µ P Λ and any α ¥ 0 vec-
tor αµ will satisfy RHS of (12) as well. Observe that
conipΛq � tµ |Aµ � 0, µ ¥ 0u (in the specific repre-
sentation of the polytope we used we just have to drop the
constraint µ0 � 1). We can write minimization problem
in (17) and its dual as

infxg, µy max 0 .
Aµ � 0
µ ¥ 0

ϕ P Rm
g �ATϕ ¥ 0

(18)

Inequality (17) holds iff the primal problem is bounded, and
it is bounded iff the dual is feasible, which is the case iff
pDϕ P Rmq pf �ATϕq � PTf ¥ 0.

With this reformulation we can write MAX-WI as

max
p,ϕ

¸
s,i

rrpspiq� iss s.t.: pI � rpsTqf �ATϕ ¥ 0. (19)

Notice, quantifier pDϕq turned into an extra minimization
variable. To handle the strict case, we would need a simi-
lar dual reformulation for the set Sf . This set has a more
complicated quantifier p@µ P Λ, Pµ � µq. Fortunately, the
following reformulation holds for pixel-wise maps:
Statement 3 (Dual S). Let p : L Ñ L be pixel-wise. Then
rps P Sf iff pDε ¡ 0q pDϕ P Rmq

p@s, @iq fϕs piq � fsppspiqq ¥ εrrpspiq�iss, (20a)
p@st, @ijq fϕstpi, jq � fstppspiq, ptpjqq ¥ 0. (20b)

Proof. Let h P RI with components hspiq � rrpspiq�iss,
hstpi, jq � 0. For µ P Λ there holds xh, µy � 0 iff rpsµ �
µ. Conditions (13) are equivalent to

p@µ P Λq xpI � rpsTqf, µy ¥ εxh, µy (21)

for some ε ¡ 0. We apply now the same inference as
in Statement 2 for vector g � f � PTf � εh. It follows
that (21) is equivalent to pDϕ P Rmq pf � ATϕq � PTf �
εh ¥ 0.

Additionally, the following lemma provides necessary
conditions for sets Wf , Sf . It will help to narrow down
the set of maps over which the optimization is carried out.
Lemma 1 (Necessary Conditions). Let P : RI Ñ RI ,
P pΛq � Λ and O � argminµPΛxf, µy. Then

(a) P PWf ñ P pOq � O.
(b) P P Sf ñ p@µ P Oq P pµq � µ.

Proof. (a) Assume pDµ P Oq Pµ P ΛzO. Then xf, Pµy ¡
xf, µy, therefore P R Wf . (b) Assume pDµ P Oq Pµ � µ.
Then xf, Pµy ¥ xf, µy and therefore P R Sf .

Subset-to-One Maps Let us consider the class of maps
P2,y , in which mapping pξ is defined by the indicator
variable ξ P t0, 1uV . We will first consider problem
(MAX-WI). The constraint rpξs P Wf in the dual form
is still complicated by that rpξs defined by (9) involves
products ξsiξtj . We are going to linearize these terms by
introducing additional variables ξstij . Let Σ be set the of
vectors ξ with components ξsi, ξstij such that

0 ¤ξsi ¤ 1,

maxp0, ξsi � ξtj � 1q ¤ξstij ¤ minpξsi, ξtjq.
(Σ)
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If ξ P Σ and all ξsi are integral, there holds ξstij � ξsiξtj .
Set Σ is convex, polyhedral. For ξ P Σ we introduce the
following corresponding mapping Pξ by replacing products
ξsiξtj with ξstij in (9):

pPξµqspiq �
¸
i1

Ps,ii1µspi
1q, (22a)

pPξµqstpi, jq �
¸
i1,j1

Pst,ii1,jj1µstpi
1, j1q, (22b)

Ps,ii1 �rrpspi
1q�iss � (23a)

rrys�issξsi1 � rri1�issp1� ξsi1q,

Pst,ii1,jj1 �rrys�issrryt�jssξsti1j1 (23b)
�rri1�issrryt�jsspξtj1 � ξsti1j1q

�rrys�issrrj
1�jsspξsi1 � ξsti1j1q

�rri1�issrrj1�jssp1� ξsi1 � ξtj1 � ξsti1j1q.

Mapping Pξ is linear in ξ and for integer ξ it coincides
with rpξs. We can now formulate (MAX-WI) as the follow-
ing mixed integer linear program:

max
ξ,ϕ

¸
s,i

ξsi (IL1)

pI � PT
ξ qf �ATϕ ¥ 0

ξ P Σ; ξsi P t0, 1u; ξsys � 0.

By relaxing the integrality constraints we obtain linear
program (L1). We will prove in Theorem 1 that this relax-
ation is tight2. We first need the following lemma.
Lemma 2. Polytope Λ is closed under mapping Pξ, ξ P Σ.
Proof. We verify that p@µ P Λq Pξµ P Λ. Denote µ1 �
Pξµ. By constraints of Σ, all numbers (23a), (23b) are non-
negative, therefore µ1 ¥ 0. Constraints 1Tµ1s � 1 hold
due to 1TPs � 1. Constraints 1Tµ1st � pµ1tq

T hold due to°
ii1 Pst,ii1,jj1 � Pt,jj1 .

Theorem 1. In a solution pξ, ϕq to (L1) vector ξ is integer.
Proof. We will show that rounding ξ up results in a feasible
solution with equal or better objective. Because ξ is feasi-
ble to (L1), the mapping Pξ is Λ-improving for f . Note,
at this point, unless ξ is integer it is not guaranteed that
PξpMq � M and we cannot draw any partial optimali-
ties from it, neither Pξ is guaranteed to be idempotent. By
Lemma 2, PξpΛq � Λ. Therefore

p@µ P Λq xf, PξPξµy ¤ xf, Pξµy ¤ xf, µy. (25)

It follows that P 2
ξ � PξPξ is Λ-improving. Since PξpΛq �

Λ, it is also P 2
ξ pΛq � PξpΛq � Λ. Moreover, P 2

ξ � Pξ1

2Problem (L1) can be further simplified by expanding the constraints
and optimizing out variables ξstij , this however would occlude the proof.

with the following coefficients ξ1:

ξ1si � 1� p1� ξsiq
2,

ξ1stij � p1� ξsi � ξtj � ξstijq
2 � 1� ξ1si � ξ1tj .

(26)

It can be verified that ξ1 P Σ. Let Pξ� � limnÑ8pPξq
2n

.
Then

ξ�si � lim
nÑ8

1� p1� ξsiq
2n

� rrξsi¡ 0ss. (27)

Since Pξ� is Λ-improving, it is feasible to (L1). Assume for
contradiction that there exist ps1, i1q such that 0   ξs1i1   1.
From (27) we have ξ�si ¥ ξsi for all si and ξ�s1i1 ¡ ξs1i1 .
It follows that ξ� achieves a better objective value, which
contradicts the optimality of ξ. Therefore ξ is integer.

Since the optimal solution to (L1) is integer and unique
(as seen from the objective), it is the solution to (MAX-WI).

Problem (MAX-SI) can be approached similarly, using
the dual definition of S. The inequalities for pairwise
terms (20b) are linearized exactly the same way as for the
weak case, we can write them shortly as

ppI � PT
ξ qf �ATϕqstpi, jq ¥ 0. (28)

The inequalities for univariate terms (20a), by substituting
pξ can be expressed as

pfspiq � fspysqqξsi � pATϕqspiq ¥ εξs,irri � ysss. (29)

Since we assume ξsys � 0, expression (29) is equivalent to

pfspiq � fspysq � εqξsi � pATϕqspiq ¥ 0, (30)

i.e., we obtained the same form of constraints as for the
weak case, but with slightly modified vector f . Namely,
components fspysq are increased by ε for all s. Let us de-
note the problem (L1) with ε-modified vector f as (ε-L1).
Since the solution ξ to (ε-L1) is integer it solves MAX-SI.

These solutions can be applied for one or more test la-
belings y. A polynomial algorithm, for example, can iterate
over labelings pyα | @s ys � αq for α � 0, . . . ,K � 1.
This algorithm subsumes simple Goldstein’s DEE [7] and
the series of Kovtun’s weak one-against-all subproblems for
candidate labelings yα. Most efficient in practice seems to
set ys to one of the immovable labels by the necessary con-
ditions by Lemma 1. This approach in fact allows to solve
optimally MAX-SI problem for the next class of mappings.

All-to-One-Unknown Let us consider the class P1, in
which map pξ is defined by ξ P t0, 1uV and labeling y P L.
Problem (MAX-WI) is NP-hard by our argument above for
K ¥ 3, valid for this class as well. However, we can solve
the MAX-SI problem combining necessary conditions by
Lemma 1 and (ε-L1) problem as proposed in Algorithm 1.
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Algorithm 1: Max Strong all-to-one-unknown

1 µ P argminµPΛxf, µy; /* solve (LP) */

2 For all s if exists i P Ls such that µspiq � 1 then set
ys � i, otherwise set ys arbitrarily;

3 Solve the problem (ε-L1) with y;

Necessary conditions in this case either provide the unique
labeling ys or prove that ps must be identity. The optimality
of the method follows. This algorithm subsumes strict vari-
ant of Kovtun’s one-against-all auxiliary problem, under an
arbitrary choice of a test labeling y and the iterative pruning
method [24].

7. Experiments
We report results on random problems with Potts in-

teractions and full interactions. Both types have unary
weights fspiq � U r0, 100s (uniformly distributed). Full
random energies have pairwise terms fstpi, jq � U r0, 100s
and Potts energies have fstpi, jq � �γstpiqrri�jss, where
γstpiq � U r0, 50s. All costs are integer to allow for ex-
act verification of correctness. Only instances with non-
zero integrality gap w.r.t. standard LP-relaxation are con-
sidered. For each of the methods in Table 2, we measure
solution completeness as nelim

|V|pK�1q100%, where nelim is the
total number of pairs ps P V, i P Lsq eliminated by the
method as non-optimal. The results are shown in Figure 3.

8. Conclusion
We have identified a common mechanism of improving

mappings that works in different methods for partial opti-
mality and proposed how to obtain more general optimal-
ity guarantees from a given linear relaxation. It leads to a
coherent and short description of several methods and anal-
ysis of their common properties. From necessary condi-
tions by Lemma 1 it follows that all the methods reviewed
in §4 (as well as the proposed method) cannot be used to
tighten the LP-relaxation, they can only simplify it in some
cases. While our algorithms work for a restricted class of
mappings, many previous methods are based on more nar-
row classes and use less powerful sufficient conditions. We
therefore have a theoretical guarantee to improve over these
methods and we have verified on difficult random problems
that the improvement is significant.

The difference between week and strict conditions may
seem unimportant in practice and was often neglected in the
previous work. However, the class of mappings for which
the maximum persistency problem is polynomially solvable
is larger for strict conditions. Therefore, the difference is
important for developing algorithms and for the theoretical
comparison of different methods. We believe it is also es-
sential for clarity and completeness to keep track of both.

Moreover, it may be useful in practice to have a threshold
ε, below which (e.g., due to limited numerical or data ac-
curacy) the optimal assignment is not reliable, cf . our strict
conditions.

We can also propose how our method can be applied to
large-scale problems on sparse graphs, where solving full-
size (L1) is numerically intractable. We can solve con-
strained variants of MAX-WI/MAX-SI, where the mapping
is chosen only inside a window W � V . This leads to lin-
ear programs of a smaller size and allows to test the method
on vision problems (details in [22]).

Our approach is readily generalizable to higher order en-
ergies. It would be sufficient to augment the embedding δ
with more components in order to obtain a tighter relaxation
and a tighter partial optimality condition.
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Figure 3. Solution completeness by different methods on random instances of size 10x10 pixels, 4-connected. Bars of different shades
indicate the portion of the sample under the given solution completeness value (statistics over 100 instances). Left: Potts model, right: full
model.
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