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Abstract—Today’s state-of-the-art work�ow – when encrypting
data for one or more recipients – requires for the sender to select
the respective encryption keys. Naturally, it is crucial for data
security to pick the correct keys with suf�cient security levels.
Yet, for selecting a key, the sender has to trust a recipient-chosen
third party and therefore bears the hardly controllable risk of
choosing a bad key. We propose to redistribute the tasks and
require for a data sender to create an encryption key for himself
and grant the recipient access to the key through authentication.
The sender therefore can select the authentication methods, key
strength, and key lifetime that suits his needs. In order to do this,
we take advantage of the (semi-)centralized key storage solution
CrySIL and add advanced policy enforcement options. We show
the results of our prototypical implementation and present a
discussion on the security of the system.
Index Terms—certi�cation, encryption, key selection, trust,

heterogeneous platform security

I. INTRODUCTION
Nowadays, applications need to support a wide range

of heterogeneous platforms including smartphones, tablets,
browsers and classic desktop-based systems that are provided
by different manufacturers and come with different operating
systems and functionality. Developing in this environment
is challenging in many aspects – especially when security
needs to be considered. For security-aware applications the
deployment of cryptographic functions for data encryption,
electronic signatures etc. is essential. Having the required
high-level or low-level cryptographic functionality available
on the respective device, and distributing, storing and handling
the key material poses signi�cant issues for applications that
are deployed in multiple-platform environments. These issues
can be addresses fairly well by providing central cryptographic
platforms that store the key material in a secure storage place
(e.g. HSM) and provide associated cryptographic functions via
a web-based interface that is consumed by standard APIs such
as PKCS11, JCA/JCE etc. on the respective devices. Such
solutions have already been deployed and offer high-level or
low-level cryptographic functionality. Examples therefor are
quali�ed signatures services within the e-government context
(e.g., [17]) or the Amazon Cloud HSM1, respectively.
Due to missing �exibility in these services we have in-

troduced and deployed the Crypto Service Interoperability
Layer (CrySIL) [20], which in general provides a central
instance that offers cryptographic APIs to arbitrary devices.
The key material never leaves the secure storage place (HSM)

1https://aws.amazon.com/cloudhsm/

and is utilised within cryptographic functions consumed via
standardised cryptographic APIs by the clients. Access to those
functions is regulated via a �exible authentication architecture
that can easily be adapted according to the security needs of
a speci�c deployment scenario2. CrySIL has a highly �exible
architecture, which allowed us to extend the initial use case
of a central-instance by mobile use cases, local installations
and even distributed scenarios, where key material and/or
cryptographic functions are handled by multiple CrySIL nodes.
The current CrySIL functionality plays an important role for a
wide range of data encryption and digital signature scenarios
related to encrypting/signing cloud-storage data, providing
email signing/encryption facilities or offering protection for
keys utilized within remote access systems (e.g. VPNs).
However, the current CrySIL system as well as related

systems lack functionality that is required for use cases where
data has to be encrypted for entities that are not associated with
the CrySIL system. Examples are entities that either do not
have a (trusted) certi�cate, that do not and will never actively
use the CrySIL system, that are not allowed to decrypt the
data at the time of encryption but might be allowed to do so
at a later time due to changed attributes/access policies, or that
are only allowed to temporarily access data (e.g. sharing �les
with external users).
In essence such problems are typically addressed with

identity-based or attribute-based encryption systems. However
schemes like [2] and [8] offer this functionality but are not
compatible to wide-spread standards used for data encryp-
tion/signatures such as CMS, S/MIME, XMLENC, XMLDSIG
etc. A primal aspect of the CrySIL architecture is the �exible
authentication system that allows us to protect cryptographic
operations and the utilization of the stored key material within
these operations via arbitrary authentication methods.
Based on this functionality, we propose an extension to

CrySIL that is based on the following idea: A CrySIL instance
encrypts data for other recipients via keys that are generated
within the same CrySIL instance and de�nes policies – es-
pecially related to authentication – that govern who (which
entities) and how (e.g. time related limitations) a CrySIL key
can be used. Whenever an external entity needs to access
such encrypted data, this entity sends a decryption request
to the CrySIL instance, then – according to the pre-de�ned

2By deploying adequate authentication methods and parameters related to
session life time, number of allowed key operations per time frame etc.
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policy – needs to stand the authentication challenge and �nally
is allowed to use the CrySIL key for decryption. To add
additional �exibility, the generated keys and the key-usage
policy can be protected with internal CrySIL keys and exported
as a container that can be stored together with the encrypted
data and the CrySIL instance’s URL at an external location
(cloud storage, transfer via email etc.).
When comparing this idea with existing solutions such as

CAs, webs of trust (PGP) or other methods, the following
differences can be observed. While in existing solutions the
level of authenticity/trust for a published public key is deter-
mined by the recipient, in the proposed system it is de�ned
by the sender. By de�ning an authentication policy that is
associated with the respective key and cryptographic function,
the sender determines which trust-level the recipient needs
to ful�ll. Another key issue is that within such a system
the recipient does not need to have a key at the time of
the encryption process (comparable to identity/attribute based
encryption schemes). The recipient only needs to be able
to stand the de�ned authentication challenge at the time of
decryption. Furthermore, encrypting data for the recipient can
be based on speci�c attributes that need to be proven with a
speci�c authentication method.
To gain a better understanding of the consequences of such

systems and to analyze an initial CrySIL prototype that will
act as test-bed for later implementations, this work describes
CrySIL, the proposed extension, demonstrates the system with
a simple encryption use case, and discusses the security of the
proposed system.
The remainder of the work is structured as follows.

section II discusses related work such as certi�cation authority
or web-of-trust approaches to the trust challenge. We present
our approach to the trust challenge in section III and discuss
our prototypical implementation in section IV. We give a
security discussion in section V and conclude the work in
section VI.

II. RELATED WORK

Public key infrastructure (PKI) systems like PGP or certi�-
cation authorities (CAs) still are the state-of-the-art solutions
in standing the above-mentioned challenges. Their �aws, how-
ever, motivated other solutions such as OTR and advanced
cryptographic schemes to complement and replace existing
solutions.
PKI systems have been around a long time now and thus,

evolved and matured over time. They overcame many of
their limitations and became the state-of-the-art approach to
tackling the trust challenge. Their trust models [14] offer great
�exibility and therefore makes them suitable for many use
cases. Subsequently, PKI solutions are widely used today [9]
as they are well understood and mature.
The main players for PKI implementations are CAs and

the pretty-good-privacy (PGP) solution. While both rely on
the same cryptographic methods for securing communications,
they address the challenges of distributing keys and creating
trust relationships differently. The CA approach relies on

having a trusted third party that issues a certi�cate only
after verifying the identity of the requester. The resulting
certi�cate can be distributed freely and used for cryptography.
The trust level for such a certi�cate relies solely on the CA
and its identity check. However, CAs and their checks are
not infallible [25]. In contrast, the PGP solution relies on
the community to build a trust network. Members of the
community vote for the trustworthiness of a public-key-to-
identity-binding and therefore form a web of trust. The trust
levels therefore depend solely on the community and the
system only works if most of the community members are
trustworthy. PGP is free of charge but much more complex to
use [21][26] and has some �aws too [5][16].
There are alternative approaches to stand the trust chal-

lenge. [10] proposes a “PKI design for the real world”
and addresses shortcomings and culprits of current designs,
[24] uses postcards or voice messages to establish message
authentication, [1] proposes a PKI for peer-to-peer networks,
[28] veri�es certi�cates with a trust matrix, [13] propose a
PKI-less solution for trust establishment utilizing mobility and
physical interaction, [4] and [7] build entire trust networks
which calculate a trust rating out of the PGP web of trust,
advanced encryption schemes offer novel ways to approach the
trust challenge, e.g. identity-based encryption [27], distributed
private-key generators [22] and proxy-reencryption schemes
[15][29]. Last but not least, [3] proposed the “off-the-record”
encryption methodology, an easy to set up encryption scheme
for short-lived communications. Yet, most of them rely on a
PKI-like scheme with all of its trust issues.

III. INVERTING THE TRUST RELATIONSHIP

In this work we propose to invert the trust relationship be-
tween the recipient and the sender. Within classic approaches,
the sender is the entity who has to verify the authenticity of
the cryptographic primitive (i.e. the recipients key) he is going
to use for encrypted communication. Having to trust a third
party (a CA or a web-of-trust or alike) to �nd the correct key
might be against the sender’s interest of having the data only
readable by a distinct recipient. Therefore, with having (semi-)
centralized key management solutions available, we propose
to invert this constellation. The sender creates his own key
and allows the recipient to use it if and only if the recipient
can authenticate herself directly against the sender. Thus, there
is no pre-sharing of certi�cates necessary, the authenticity of
the key data is ensured by the sender/key owner, and the
sender can authenticate the recipient(s) through authentication
challenges that meet his cause.
The process �ow in a nut shell (Figure 1 illustrates the

involved entities and their relationships): In order to encrypt
the data, the sender needs to create a key which he subse-
quently owns. The key is protected by a central key storage
service throughout its lifetime and hence, only the central key
storage can use the key for cryptography. The sender then uses
the key to blind the data and sends the data to the receiver.
Additionally, the sender attaches some policy to the key that
protects it and allows the receiver to use it after standing
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Fig. 1. Entities and relationships

an authentication challenge. In order to decrypt the data, the
recipient needs to satisfy the policy and thereafter can use the
key.
Sending large amounts of data across the internet to be

received by a (semi-) central key management service is not
feasible for large quantities of data. Therefore, we suggest
to use hybrid encryption schemes such as key wrapping to
enable bulk encryption of data while the data encryption keys
remain at the client and the sender’s key remains at the key
management service. Using asymmetric keys as key encryption
keys enables compatibility with widely deployed methods of
encryption such as CMS [11] or S/MIME [23].
All in all, moving the challenge from securely distributing

and storing the key data to restricting access to web-accessible
keys brings a number of advantages. First and foremost,
the recipient does not have to have a suitable (public) key
available for the world to use. Thus, a sender does not have
to accept trust issues as they occur for example when a
CA is compromised or a PGP key is wrongly tagged as
trusted/veri�ed or the recipient simply missed to provide her
certi�cate to the public. Next, the sender can easily manage
data recipients without any additional cryptographic effort. In
order to add a recipient, the sender simply has to add access
permission to the key and does not need to re-encrypt and
redistribute the data. Revoking data access, as with any other
encryption solution, is not possible since the recipient can de-
crypt and memorise the plain data. He thereafter does not need
crypto to read the data. Next, the sender can choose whether
unidirectional or full-�edged bidirectional communication is
available to the recipient. Allowing the recipient to use the key
only for decryption initiates a uni-directional communication.
Granting the recipient encryption capabilities too allow the
sender to participate in a bidirectional conversation with an
authenticated recipient. Last but not least, the sender remains
anonymous in terms of certi�cates and key data. If the sender
uses an anonymity framework like [6] against being traced, the
sender might even participate in these communications without
revealing his own identity at all.
The major drawback is the number of keys a busy sender

might have to maintain. To approach this challenge, we

propose to wrap (i.e. encrypt) the encryption key and send
it to the recipient along with the data. The sender therefore
has to maintain only the wrapping key(s). Another drawback
is that the trust relationship towards the (semi-) central key
management service is to be solved by the sender. For the
sender, that might be enough, because he can host such a
service all by himself.

IV. IMPLEMENTATION

In order to evaluate our proposal we did a prototypical
implementation based on the CrySIL architecture [20]. CrySIL
offers (semi-) centralised key storage that can be deployed to
be publicly accessible and has built-in authentication features
available. The easy to extend architecture made integration
efforts low. The option of deploying the CrySIL key storage
on a smart phone [19] �ts the anonymity use case well. We
complemented the CrySIL infrastructure by a key store imple-
mentation that features a lifetime key management, protection,
and key usage policies.
In this section, we give a brief summary of CrySIL, discuss

the custom key store as well as give a detailed work �ow
description.

A. Building Blocks
1) Crypto Service Interoperability Layer: The Crypto Ser-

vice Interoperability Layer (CrySIL) concept has been created
to meet today’s heterogeneous device landscape and allows the
user to use her keys within cryptographic operations regardless
where the key resides and where it is needed. In a nutshell, the
user takes one of her devices and launches an application to
perform some cryptographic task. The application interfaces
with the interoperability layer, CrySIL, which connects to
another device. This other device has access to the actual
cryptographic primitive, creates and validates authentication

Fig. 2. CrySIL’s basic architecture

challenges if required and performs the requested operation.
The result is returned to the interoperability layer and back to
the application running on the device of the user. A graphical
illustration of the work�ow is given in Figure 2.
Most conventional cryptographic service providers receive

commands, perform the required actions, and return the re-
sult to the caller. To achieve CrySIL’s interoperability goal,
CrySIL breaks the classic cryptographic provider apart. The
resulting parts – modules – have different jobs and work
together to form the actual cryptographic service provider.
Receivers, actors, a router, and other modules handle inter-
node communication, protocol mappings, crypto, advanced
crypto and authentication. A receiver for example acts as a
protocol bridge to the interoperability layer with pre-build
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implementations for Java’s Cryptographic Extension (JCE),
the Windows CNG, or the W3C Web Cryptography API as
well as PKCS#11 and a SOAP-based web interface. An actor
makes the services of a crypto provider, e.g. a smart card
or an HSM, available to the layer and collects authentication
information as they are required. The router connects the
modules together. Anyhow, all modules are considered as
building blocks and are not restricted to any technology,
platform, or programming language. Every con�guration of
a router and other modules is referred to as a CrySIL node
and forms the heart of the concept. The modular node design
enables the �exibility and extensibility of the concept while
keeping the overall architecture simple. An illustration of
modules and their interconnections is given in Figure 3.

Fig. 3. CrySIL node architecture overview

Cloud-scenarios with multi-device users require for crypto-
graphic primitives and services to be available anywhere and at
any time. CrySIL’s answer is transparent off-device cryptogra-
phy, which mandates inter-node communication. The commu-
nication modules are in charge of inter-node communication.
They simply take a request and send it to another off-device
communications module. The most basic implementation is
HTTP(s). Yet, arbitrary transport protocols, such as HTML5
Web Messaging, Web-sockets, or IPSec are suitable.
Putting the pieces together, CrySIL renders off-device

crypto completely transparent to the user, the developer, and

Fig. 4. Interoperability architecture view

to the application while maintaining a simple architecture.
The resulting architecture is depicted in Figure 4. A user
bene�ts from her ability to use a variety of keys within
different cryptographic operations provided by different crypto
providers from a variety of applications on different devices.
The off-device crypto feature of CrySIL requires for key

usage constraints as the keys are potentially available to the
public. As CrySIL can interface with key providers that may
already require for authentication information, CrySIL has to
collect and provide the authentication data. Within CrySIL

only the actor knows about the authentication requirements
of its key provider and has to challenge the user accordingly.
CrySIL can support a multitude of authentication methods,
such as simple PIN challenges, external identity providers
(OAuth, OpenID Connect) or multi-factor authentication meth-
ods. The CrySIL infrastructure gathers authentication data
from the user as well.

2) A Policy-enabled Key Store Actor for CrySIL: As
CrySIL does not come with an actor that meets our re-
quirements, we implemented a prototypical policy-enabled key
store actor on our own.
The cryptographic basis of the actor is a simple RSA

encryption scheme engine. First and foremost, its versatility
and �exibility meets our research scenario well and lets us ex-
periment with different ideas. Second, having RSA encryption
scheme implementations freely available for Java did keep our
integration efforts low. The engine is designed to use hardware
security modules (HSMs) as back-end and therefore the key
data is protected from disclosure throughout its lifetime. An
illustration of a key’s lifetime is given in Figure 5.

Fig. 5. Key lifetime

The key management is done via a graphical user interface.
Basic features like creating and revoking keys are provided
as well as attaching policies to a key. Policies specify which
authentication challenges are being raised and which authen-
tication outcome is expected to satisfy the policy. We used
a simple database-backed scheme for our prototypical imple-
mentation but recommend mature policy modelling languages
like XACML [18] or alike for productive services.
As for authentication options, we included methods of

different strength to test the �exibility of the system. First, we
included a simple password authentication option with one
expected value. Everyone who knows the correct password
can stand the challenge. Further, we modi�ed the password
option to incorporate a username too and let the authorization
process utilize a Microsoft Active Directory (AD) service via
LDAP protocol for credentials validation. With this option, we
succeeded in introducing the system into an existing corporate
network infrastructure with minimal efforts. Furthermore, we
enabled oAuth/OpenID Connect authentication option to work
with Twitter/Facebook/Google as an authentication source.
And last but not least, we incorporated strong multi-factor
authentication in the form of the national mobile eID imple-
mentation [12][17] which features strong identity binding as
well.
To approach the issue of a busy sender who might need to

manage a lot of keys, we added a feature for wrapped export
of keys. Wrapped export means that the data encryption key
(i.e. the key that is used in a hybrid encryption scheme like
CMS or S/MIME to encrypt the symmetric content encryption
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key) and the respective set of (aforementioned) policies is
put into a data structure. This data structure gets encrypted
(wrapped) by another key of the sender. This key encryption
key resides on the key management service. The wrapped key
structure is sent to the recipient alongside the blinded payload
data with the URL of the key management service where the
wrapped key can be used. In order to decrypt the payload
data, the recipient has to provide the data encryption key and
the wrapped key structure to the service to get the content
encryption key and to subsequently decrypt the data. The
advantage of this feature is that the key management service
does not get cluttered with lots of keys, yet, the data protection
work�ow holds. Drawbacks are that once the key is wrapped
and sent, it is not possible to change the policy, i.e. adding
additional recipients without re-encrypting and resending the
key. The second drawback is that there is no “revocation” of
single keys possible as it is when the key resides at the key
management service and gets deleted.

B. Process Flows

To demonstrate the procedure an example work�ow is given.
In this work�ow, we assume that a person or a company (fur-
ther denoted as sending entity) wants to transfer a document
securely to another person or company (further denoted as
receiving entity) which does not provide a public key in some
way. However, the sending entity knows that the receiving
entity has at least one authentication method available that
offers adequate security levels. Depending on the required
security level, examples could be an authentication method
provided by a social network, a combination of multiple
methods, or even a strong e-Id method as it is used within
e-government processes. For this demonstration work�ow we
assume that the receiving entity is a person who has social
networks accounts at Facebook and Twitter. We also assume,
that the receiving entity has a strong interest to protect these
pro�les and thus the associated credentials. An overview about
the process is depicted in Figure 6.
Preparing CrySIL: The sending entity has a local CrySIL

installation setup that offers a publicly available web interface
via HTTPS. The CrySIL installation has already been set-up
with a key pair3. This key pair will be further denoted as static-
crysil-key. The public/private keys will be denoted as static-
public-key and static-private-key, respectively. Depending on
the use case/deployment scenario, the static-private-key should
be stored in a hardware element.
Preparing the document: The sending entity utilizes some

software capable of encrypting the document following the
CMS standard.
Determining the authentication policy: Prior to generating

the key data for encrypting the document, an authentication
policy needs to be chosen that allows the receiving entity
to later authenticate against the CrySIL node ((1) De�ne
authentication-policy). In this example a policy is de�ned that

3The public key could be represented within an X509 certi�cate. There are
no requirements concerning the trust level of this certi�cate/public key.

requires the receiving entity to authenticate via her Twitter and
Facebook accounts.
Generate key pair: The sending entity instructs the local

CrySIL node to generate a key pair which will be used
for the encryption/decryption process ((2) Generate-Wrapped-
Key). This key pair will further be denoted as generated-
key and is comprised of private key (generated-private-key)
and a public key (generated-public-key). The generated-key
and the prede�ned authentication policy is arranged in a data
structure which is then signed with the static-private-key and
then encrypted with the static-public-key. The resulting blob
is further denoted as protected-generated-key-structure. The
protected-generated-key-structure and the generated-public-
key are the handed over to the sending entity.
Encrypting the document: The document is then encrypted

via the CMS standard by generating a random AES key, which
is used for encrypting the document ((3) Encrypt document).
The plain-AES-key is then encrypted (wrapped) with the
generated-public-key. The wrapped-AES-key and the encrypted
document are then arranged in a container according to the
CMS standard.
Transferring the encrypted document: The encrypted

document, the protected-generated-key-structure and the
CrySIL node URL are arranged in a data structure (data-
package). This data-package is then transferred via some
channel (e.g. via an unprotected email) to the receiving entity
((4) Hand over encrypted document).
Preparing the decryption request: The receiving entity re-

ceives the data-package and extracts the protected-generated-
key-structure, CrySIL node URL and the encrypted document.
Also, the wrapped-AES-key is extracted from the CMS struc-
ture of the encrypted document ((5) Extract wrapped-AES-
key). The receiving user then prepares a CrySIL decryption
request containing the wrapped-AES-key and the protected-
generated-key-structure. The decryption request is then sent
to the CrySIL node URL of the sending entity ((6) Decrypt
request). The authenticity of the CrySIL node URL is ensured
via the TLS protocol and trusted server (CrySIL) certi�cates4.
Processing of the decryption request: The CrySIL node

of the sending entity receives the decryption request and ex-
tracts the wrapped-AES-key and the protected-generated-key-
structure. The protected-generated-key-structure is decrypted
via the static-private-key and the signature of the decrypted
data structure is veri�ed via the static-public-key. The authen-
tication policy is extracted and parsed. Here the authentication
policy requires the successful Twitter and Facebook authenti-
cation of the receiving entity. CrySIL generates authentication
requests for both methods and transmits one of them to the
receiving user ((7) Auth challenge). The receiving entity stands
the challenge of the request and by responding the correct
data back to the CrySIL node ((8) Auth response)5. The
same procedure is carried out with the second authentication

4This can be either achieved via standard CAs that are shipped with web
browser or custom trust-relationships. Regardless of the method, trusting the
CrySIL node is essential for avoiding possible man-in-the-middle attacks.

5The details of this procedure depend on the chosen authentication method.
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Fig. 6. Processes for sending an encrypted document.

method . If both were successful the CrySIL node extracts the
generated-private-key of the protected-generated-key-structure
and decrypts the wrapped-AES-key. The plain-AES-key is then
sent as response to the decryption request to the receiving
user ((9) Decrypt response). The CMS library of the receiving
user utilizes the plain-AES-key to decrypt the document ((10)
Decrypt document).

V. DISCUSSION

A. Security and Trust
1) Trusting the Receiving Entity: Apart from the encryption

algorithm that ensures the con�dentiality of the transferred
data, the authenticity of the receiving entity is essential for
ensuring that the correct entity receives the data. Typically, the
authenticity of the receiving entity is bound to a cryptographic
(public) key by a (signed) certi�cate. There are, however,
different methods to sign (certify) a certi�cate. A certi�cate
can be self-signed, i.e. the certi�cate is signed by the very
(public) key that it binds to the entity. Thus, the quality of the
binding is merely a claim by the entity itself. Alternatively,
a certi�cate can be signed by a CA after the CA assesses
the entity’s identity. In this case, the quality depends on the
chosen CA. All in all, the quality of the binding, i.e. the
trust level and therefore the quality of the authentication of
the entity, solely relies on the binding method the receiving
entity chose. In contrast, the CrySIL enabled process de�nes
the required trust level by choosing authentication methods for
the receiving entity that provide adequate security levels for
a speci�c document exchange process. This results in several
primal differences to the standard methods: (1) By selecting
authentication methods, the sending entity de�nes the desired
quality of authentication. In classic methods, the receiving
entity selects the quality of authentication by choosing the
binding method. (2) With classic methods, the deployed trust-
model is typically chosen at some point in time and remains
static. I.e. when using certi�cate authorities (CA) to certify
(public) keys, a CA is chosen and a certi�cate is issued. The

chosen CA determines the level of trust that can be achieved.
The issued certi�cate remains static until it is revoked or
becomes invalid. This implies that the sending entity does
not have the option to de�ne the required trust level. It can
either trust the existing certi�cation and use the public key
for encryption or stop the process. In the proposed method,
the decision on the required level of trust can be made every
by the sending entity every time a document is encrypted for
the receiving entity.6 (3) Therefore, the level of trust is not
de�ned via the certi�cation policy (e.g. the requirements of
a CA that issues certi�cates to its users), but by the authen-
tication method. Each authentication method has a different
maximum level of trust. This level depends on security of the
authentication method and the level of authenticity it is able
to provide. E.g. a social network account will have a much
lower level of authenticity than e.g., an eGovernment related
eId method. By choosing the authentication method or an
arbitrary combination of multiple methods, the sending entity
can decide how the required level of trust can be achieved for
the protection of the transmitted data.

2) Trusting the Sending Entity: In this work we focus
on the encryption of documents for receiving entities. The
authenticity of the encrypted document – e.g., via digital
signatures – is not considered. However, trusting the sending
entity is an important aspect when analyzing the security
of the communication channel used to transmit decryption
and authentication requests/responses. The relevance of the
authenticity of the CrySIL node will be discussed in the
following section.

3) Con�dentiality: When analyzing the processes for en-
crypting, transferring and decrypting a document, the security
of the communication channel needs to be considered with
different impacts during the whole process. Thereby, the core
processes of sending the document, handling authentication
procedures, and decrypting the document need to be con-

6Obviously, the receiving entity needs to have authentication methods
available for the sending entity to pick.
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sidered. (1) Sending the document: This process transfers
the encrypted document, the wrapped AES key, the protected
asymmetric key pair and the CrySIL URL on an arbitrary

channel to the receiving entity . Since the data (except for the
URL) is encrypted, there are no security requirements on the
channel used for this transfer. The authenticity of the sending

entity , however, needs to be ensured in order to foreclose
man-in-the-middle attacks. In our demonstration work�ow the
con�dentiality is ensured by using the TLS protocol, and the

authenticity of the sending entity is guaranteed by using cer-

ti�cates issued by trusted CAs. (2) Handling authentication

challenges/responses: When the receiving entity starts the
document decryption process it sends the decryption request

to the sending entity. This entity then responds with the pre-
de�ned authentication challenges. The receiving entity replies
with the speci�c authentication responses. The requirements
in terms of con�dentiality and authenticity strongly depend
on the used authentication method, but in general, a channel
that guarantees the authenticity of the sending entity and the
con�dentiality of the authentication data is required. However,
when certain authentication methods are used these require-
ments might be lower due to the involvement of trusted third
parties that carry out the authentication processes. (3) Un-

wrapping the AES key : After authentication, the wrapped

AES key is decrypted by the sending entity and the plain AES

key is then transmitted to the receiving entity. The AES key

must be kept con�dential.
B. Performance and Integration Efforts
A classic performance analysis cannot be applied to our

concept as CrySIL is about bringing crypto to devices and
not to create yet another high performance implementation.
The prototypical implementation, however, gave us a rough
understanding on how ef�cient, fast, and functional our ap-
proach is. The key store extension to CrySIL has about 800
lines of prototypical code. None of the lines are optimised
for speed and parallel execution. However, the speed is as
expected. There is the time required to do the cryptographic
operation itself, be it done by an HSM or a software solution,
some round-trip times in order to get the commands through
the internet and back and of course the latencies induced by

the user.As for the client side integration efforts, whenever an
application utilises well-known crypto APIs, CrySIL can be in-
tegrated with a minimal effort. As of today, there are receivers
for PKCS11, JCE (for desktop and Android), MS CNG, W3C
Crypto API, OpenSSL and OpenSC available as prototypical
code. In case a platform does not have the required modules
available, one can easily implement such a module. The Java
JCE receiver module for example is implemented using only
1000 lines of prototypical code including some functionalities
that are not supported by the JCE framework. The router and
sending communications modules of the Java implementation
do have 80 loc each with a common protocol de�nition of
1500 loc. The lines of codes of dependencies are not included

in the numbers given.

VI. CONCLUSIONS

CrySIL has already been deployed in environments for
providing platform-independent cryptographic APIs in het-
erogeneous application environments. The �exibility of the
architecture of CrySIL allowed for the simple integration of
additional facilities that allows us to circumvent two main
challenges of classic encryption schemes: (1) How can the
public key of the receiver be trusted and (2) how to deal with
receivers that do not have a public key available (yet). To
address these questions the sender of the proposed system
encrypts the data with its own and well-protected keys and
allows the receiver to use these keys remotely in the decryption
process by standing one or multiple authentication challenges
de�ned by the sender.
Shifting the de�nition of achievable authenticity from the

certi�cation process of the receiver (e.g. via a CA) to the
sender, who de�nes the trust level by choosing adequate au-
thentication methods, is interesting from multiple perspectives:
The sender is now able to determine the required trust level
on a per-document basis and can even encrypt data for entities
which do not have the required authentication credentials and
attributes yet. This is similar to attribute-based encryption but
uses standard methods that are widely used. Furthermore, by
using temporary asymmetric keys that are stored in addition to
the required key usage policies, the server CrySIL infrastruc-
ture can be kept rather simple. The extensions to the CrySIL
infrastructure provide an important basis for future use cases
that require sharing encrypted documents with external entities
that are not members of the CrySIL infrastructures or are
chosen by their identity or attributes. We plan to extend the
current prototype with a fully �edged policy language (such
as XACML), improve the emulation of the attribute/identity-
based encryption functionality, and add additional use cases
(e.g. emulation of proxy-reencryption).
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