
Comparing Block Cipher Modes of Operation on MICAz Sensor Nodes

Gernot R. Bauer, Philipp Potisk, and Stefan Tillich
Institute for Applied Information Processing and Communications

Graz University of Technology
Inffeldgasse 16a, A–8010 Graz, Austria

{gernot.bauer,philipp.potisk}@student.TUGraz.at, Stefan.Tillich@iaik.tugraz.at

Abstract

Wireless sensor networks are a key technology for “ubiq-
uitous computing” applications. The challenges of securing
such networks are tremendous. On the one side, sensor nodes
are commonly deployed in potentially hostile environments,
which requires additional protection in comparison to tradi-
tional computing systems. On the other side, the capabilities
of sensor nodes in terms of computing power, memory,
and available energy are severely limited, which makes it
hard to adapt existing security solutions. In this paper, we
examine different options for providing confidentiality and
message authentication to sensor network communication.
More specifically, we examine four modern block cipher
modes of operation regarding their applicability in sensor
networks. These are the Offset Codebook mode (OCB), the
Counter Cipher Feedback with Header mode (CCFB+H),
the EAX mode, and the Galois/Counter mode (GCM). Our
practical evaluation targets the MICAz sensor node and
accounts for the typically small packet size of sensor network
traffic. Our results indicate that the CCFB+H mode is the
best choice for a large range of applications.

1. Introduction

Wireless sensor networks (WSNs) constitute an interesting
field of application where the benefits of digital computing
are closely integrated with our every-day environment. Such
networks typically consist of a number of low-cost sensor
nodes, often called motes, which are connected to their
environment through sensors and/or actuators, can perform
computations and communicate wirelessly. A common fea-
ture of sensor nodes is an autonomous and limited power
supply, usually in the form of batteries.

For most WSN applications, security is an important or
even crucial requirement. The range of potential attacks
faced by such networks is typically much broader than in
traditional desktop or server computing systems. The broad-
cast nature of wireless communication makes it inherently
prone to eavesdropping and message spoofing. Moreover,
the deployed sensor nodes might be physically accessible
to an attacker and therefore potentially subject to physical
tampering.

The low-cost nature and resource constraints of sen-
sor nodes make the implementation of adequate security
measures a very challenging task. The overhead incurred
through added protection must not “eat away” too much
of the precious resources of computing power, program
and working memory and energy. A base of strong cryp-
tographic algorithms (primitives) is the cornerstone of any
sound security solution. Efficient implementation of existing
algorithms of constrained devices as well as the design of
new cryptographic primitives suited for on such devices are
a matter of ongoing research.

While cryptographic primitives are indispensable compo-
nents, they alone cannot provide security. For example, a
block cipher only determines the encryption and decryp-
tion of fixed-size data blocks, but it does not give any
further provisions, e.g., on how to protect the authenticity
of variable-sized messages. In order to achieve such security
provisions, the correct utilization of cryptographic primitives
is defined in so-called modes of operation. Various primitives
in various modes can then be employed in cryptographic
protocols to build up system-wide security measures.

Block ciphers are a versatile primitive with a large range
of modes of operation defined for them. These modes pre-
dominantly deal with encryption and message authentication
(MAC generation). Traditionally, a single mode only deals
with a single security provision, e.g., CBC mode for en-
cryption, and CBC-MAC for message authentication1. When
several security provisions are required, these modes have
to be combined in a secure fashion (through proper generic
composition [1]). If the same cryptographic primitive is to be
used in several different modes, it is generally problematic
to exploit synergies. For example, using the same key for
CBC mode encryption and CBC-MAC can break message
authentication.

Nevertheless, in the face of scarce resources it is desirable
to exploit all possible synergies. If a single key suffices
for encryption and MAC generation, memory can be saved
and computational overhead due to key expansion can be
limited. This is one of the reasons that some modern modes
of operation allow to encrypt and authenticate messages with
a single key (Authenticated Encryption (AE)). Some flexible

1. Note that CBC-MAC is only secure for fixed-size messages.



modes even offer the possibility of adding data which
is only authenticated, but not encrypted (associated data).
Such functionality is commonly denoted as Authenticated
Encryption with Associated Data (AEAD) [2]. The AEAD
constructs are especially suited for the protection of network
packets: The data payload of the packet (message) can be
encrypted and authenticated while it is normally sufficient
to authenticate the packet header2.

In this paper, we analyze AEAD modes of operations re-
garding their suitability for implementation on MICAz motes.
These modes are the OCB mode [3], the EAX mode [4], the
CCFB+H mode [5], and the GCM mode [6].

The rest of this paper is organized as follows. Section 2
gives a brief description of our target platform. Section 3
covers the used modes, describing their most important parts
as well as limitations and legal issues. We compare the
implemented modes for their performance and suitability
in Section 5. Section 6 contains some implementation opti-
mizations which are applicable for our target platform. We
discuss our results and their implications in Section 7.

2. Target Platform (MICAz)

For our practical evaluations we have targeted the MI-
CAz sensor nodes from Crossbow [7]. MICAz motes are
a popular sensor node platform equipped with an Atmel
ATmega128L microcontroller, a TI/Chipcon CC2420 radio
module, and a battery pack containing two standard AA-size
batteries. Various plugboards with sensors and/or actuators
can be attached to the MICAz mote. Figure 1 depicts a
typical MICAz mote.

Figure 1. MICAz mote

The ATmega128L microcontroller has a simple yet pow-
erful 8-bit RISC architecture (AVR) and features 128 KB
program memory, 4 KB EEPROM and 4 KB working mem-
ory (SRAM). It is clocked at a rate of 16 MHz. The wireless
interface works in the 2.4 GHz band and is able to send at
rates of up to 250 Kbps.

2. In fact, encryption of header fields is not possible in many protocols.

An important development environment for MICAz motes
is the TinyOS open-source operating system [8]. It is
based on nesC language, which allows to develop sensor
network applications by composition of various software
components. These components are normally abstractions
of existing hardware modules (e.g., radio interface, sensors,
UART, LEDs).

3. Description of the Surveyed Modes of Op-
eration

Table 1 compares the most important properties of the
investigated AEAD modes.

An important distinction is between one-pass and two-
pass modes. The first can provide confidentiality and mes-
sage authentication with a single pass over the message.
The latter takes two passes. One-pass modes are potentially
faster, but the approach is covered by several patents. As a
consequence, the research community has turned towards
fast two-pass modes. We have also concentrated on un-
patented two-pass modes and have included OCB mode as
a typical representant of a one-pass mode for comparison.

Encryption overhead refers to a potential expansion of
the ciphertext in comparison to the plaintext (message ex-
pansion). All surveyed modes have a minimal encryption
overhead, i.e., the length of the ciphertext equals the length
of the plaintext. This is a very desirable property for sensor
nodes, where each additional bit sent over the wireless
interface is very costly in terms of energy.

The encryption functionality of the examined AEAD
modes consists of adaptations and expansions of traditional
encryption modes of operations like Electronic Codebook
mode (ECB), Cipher Block Chaining mode (CBC), Cipher
Feedback mode (CFB), and Counter mode (CTR) [10].
Message authentication is achieved by the use of secure
CBC-MAC variants (PMAC and OMAC) with the exception
of the GCM mode, which uses an universal hash function
construct (GHASH). The rest of the properties of the modes
are largely similar.

For encryption, each AEAD mode takes as input an
Initialization Vector (IV), along with a message and a
header. The message is then encrypted, resulting in the
ciphertext. The IV must be different for every encryption in
order to prevent identical messages from yielding identical
ciphertexts.

A so-called Message Authentication Code (MAC) tag of
a specific size is calculated from the message and the
header. The MAC tag is then attached to the header and the
ciphertext in order to allow verification of the authenticity. It
is usually allowed to pick a part of the MAC tag to limit the
amount of data to be transferred. For decryption, the original
message is recovered from the ciphertext and the MAC tag
is regenerated and compared to the received one. The exact
order of these operations depends on the mode.



OCB EAX CCFB+H GCM
Type One-pass Two-pass Two-pass Two-pass
Encryption mode Tweaked ECB (XEX

construction [9])
CTR CFB with CTR CTR

Needs block cipher
decryption

Yes No No No

Authentication PMAC OMAC OMAC GHASH
Tag verification After decryption Before decryption Before decryption Before decryption
Supported tag length 0 to block size 0 to block size 0 to (block size - IV

length)
0 to block size

Supported IV length Block size Any 0 to (block size - tag
length)

Any (shortcut for 12-
byte IV)

IV requirements Non-repeating Non-repeating Non-repeating Non-repeating
Known patents In USA None None None

Table 1. Main properties of the implemented AEAD modes.

In the following sections, we describe the principal func-
tionality of each of the four surveyed modes of operation. We
try to give a principal understanding of the most important
mechanisms, and omit some of the finer details for the sake
of brevity. For the complete description of each mode we
refer the reader to the respective original publications which
are cited in each section.

In order to facilitate the understanding of the following
sections, we give a very brief description of the basic
encryption modes of operation (ECB, CBC, CFB, and
CTR) by summarizing their encryption functionality. In ECB
mode, the plaintext blocks are encrypted independently with
the block cipher to yield the ciphertext blocks. In CBC
mode, the previous ciphertext block is XORed to the current
plaintext block prior to encryption with the block cipher. The
first plaintext block is XORed with the IV. The outputs of
the block cipher are the ciphertext blocks. In CFB mode,
the previous ciphertext block is encrypted with the block
cipher and the output is XORed to the current plaintext
block to yield the ciphertext block. The first ciphertext block
is produced by XORing the first plaintext block with the
encrypted IV. In CTR mode, a non-repeating sequence of
blocks is encrypted with the block cipher and the output
is XORed to the plaintext blocks in order to create the
ciphertext blocks. Usually, the IV is used to create the first
input block to the block cipher and its value is incremented
to produce the subsequent input blocks.

CBC-MAC uses CBC mode encryption with an IV of all
zeros and uses the last ciphertext block as MAC tag. How-
ever, CBC-MAC is not secure for variable-sized messages.
There are slight tweaks (e.g., PMAC and OMAC) which
make the MAC tag dependent on the message size and thus
secure for messages of arbitrary size.

3.1. Offset Codebook Mode (OCB)

The Offset Codebook mode is a one-pass AEAD scheme
conceived by Rogaway et al. [11]. The original version

from [11] (now denoted OCB 1.0) could not deal with
associated data (i.e., data that is only authenticated). This
feature was added in an updated version, called OCB 2.0,
which is described in [3]. In this paper we will use the term
OCB to stand for OCB 2.0.

OCB encrypts arbitrary length plaintexts without over-
head. The IV must be non-repeating, but can be predictable.
It is based on computations of offsets in GF(2128). These
offsets are XORed with each message block before and
after encryption. For the last block, the block cipher is used
to generate a key stream which is then XORed with the
plaintext. Thus, the ciphertext length equals the length of
the plaintext. The offset computation is dependent on the key
and IV. Prior to the availability of the message, no extensive
precomputations can be done.

The header blocks are XORed with offsets, encrypted
and then XORed together. The message blocks are XORed
together where the length of the last block is specially taken
into account. The final MAC tag is the XOR of the tags
resulting from both the processing of the header and the
message.

Phillip Rogaway offers an implementation of OCB on his
web page3. Due to this implementation and the description
in the paper, we found OCB to be fairly easy to implement.
According to the draft on OCB 2.0 in [3], there are pending
US patents that only allow the use of OCB in projects
conforming to the GNU General Public License4.

3.2. EAX Mode

The EAX mode of operation is a two-pass scheme defined
by Bellare et al. [4]. The encryption is performed in counter
mode (CTR), which allows the encryption of arbitrary length
data without overhead. In addition, only the encryption func-
tion of the underlying block cipher has to be implemented.

3. http://www.cs.ucdavis.edu/∼rogaway/ocb/
4. Note that Phillip Rogaway explicitly states that other royalty-free uses

might be granted on request.



EAX uses OMAC for authentication. This MAC algorithm
is based on CBC-MAC, padding the last block with one
of two constants (depending on its length). These constants
are key-dependent and can be precomputed during an initial
setup phase. The authors also provide a little tweak to MAC
computation by prepending the data with a constant block
before performing the OMAC operation. This variant of
OMAC is called OMACt in the specification.

The IV can be of arbitrary size. To ensure security, it must
be non-repeating, but it can be predictable. The resulting
tag length is customizable with the maximum size being the
block cipher’s block length. If no message is specified, the
EAX mode can be used just for authentication of the header.

EAX uses the computed OMAC value of the IV as initial
counter value for the encryption. This OMAC value as well
as the OMAC values of the ciphertext and the plaintext
header are XORed to compute the authentication tag. Thus,
the tag can be verified by the receiver before decrypting the
ciphertext.

The EAX mode has a clear specification and the authors
provide test vectors for use with AES-128 as well as a
recommended software interface. Moreover, there are quite
a few implementations of EAX available. Another advantage
is that EAX is in the public domain and, according to the
authors, there are no patents covering its use.

3.3. Counter Cipher Feedback with Header Mode
(CCFB+H)

CCFB+H mode is a minimal-expanding AEAD scheme
designed by Stefan Lucks [5]5. Even though the author states
that it is a two-pass scheme, it has a strong resemblance to
a one-pass mode.

CCFB+H uses the block cipher for both encryption and
authentication. The input of the block cipher is assembled
from previous ciphertext blocks and an incrementing counter
value. Likewise, the output of the block cipher is partly used
to generate a keystream which is XORed to the message for
encryption and as a contribution to the MAC tag. The exact
sizes of these two parts are determined by the size of the IV
and the MAC tag respectively. Therefore, the size of these
parameters is important in terms of performance. A longer
tag increases the number of block cipher calls, while a tag
of size 0 effectively reduces CCFB+H to traditional Cipher
Feedback mode (CFB). When a header is present, CCFB+H
calculates the OMAC of the header and uses it, together with
the IV, as input for the first block cipher call.

At the current time, the CCFB+H mode does not seem
to be in significant use, indicated by an absence of imple-
mentations. A further obstacle for implementers is the non-
availability of any test vectors for this mode of operation.

5. Note that there is also a CCFB mode specified in case no header is
present.

Nevertheless, CCFB+H is relatively easy to implement and
is unencumbered by patents.

3.4. Galois/Counter Mode (GCM)

GCM is a two-pass scheme by McGrew et al. [6].
This mode is—with minor modifications but essentially
equivalent—also a recommendation from NIST [12]. In this
paper, we mainly refer to the original specification from [6].

GCM is based on counter mode for encryption and
a polynomial universal hash function called GHASH for
authentication. It is the only one of our surveyed modes
that does not rely on the block cipher for the tag calculation.
Counter mode is employed for encryption, which allows for
parallelization and prevents ciphertext expansion. A zero
length message can be used if there is only the need for
authentication of the header.

The GHASH function consists of additions and multipli-
cations in GF(2128). Each block is multiplied by a special,
key-dependent hash subkey. Except for the creation of the
hash subkey, no block cipher encryption is required for
GHASH. GCM is similar to the Carter-Wegman Counter
mode (CWC), with the only difference that CWC defines
the universal hash function over a prime field GF(p) [13].

The IV is used to create the initial counter for the
encryption. There are no limitations on the length of the IV.
For a length of 12 bytes, a substantial shortcut is provided
by padding the IV instead of calculating the GHASH of it.
The IV must be a non-repeating value for every key.

The MAC tag can have arbitrary length of up to the
underlying block cipher’s block length. It is calculated by
computing the GHASH of the header and the encrypted
message, complemented with a final XOR with the initial
counter. As the encrypted message is authenticated, the tag
can be verified before decryption.

The authors of GCM provide test vectors including in-
termediate values as well as optimization suggestions. The
NIST specification [12] presents GCM in a more concise
way, thus facilitating implementation. The bit-ordering used
in the GF(2128) computations is little endian, which is a
bit unusual. As further complication, big-endian bit-ordering
is used when incrementing the counter. Furthermore, the
original specification seems to contain some errors in the
optimization section. Thus, for an implementer GCM con-
tains several pitfalls that have to be avoided.

4. Discussion of Security and Efficiency

Regarding the protection of sensor network packets,
Karlof et al. provide an excellent discussion of the relevant
issues like MAC tag length and IV structure in the context of
the TinySec link-layer security architecture [14]. Applying
one of the analyzed modes of operation, most of TinySec’s
parameters could be used to implement security for sensor



network communication. In the following, we will briefly
discuss the significant differences between a scheme using
one of the surveyed modes and TinySec.

TinySec is a generic composition of CBC mode for
encryption and a CBC-MAC variant for authentication. It
requires two separate block cipher keys in order to ensure
both confidentiality and authenticity of network packets. On
the other hand, our surveyed AEAD modes of operation
are designed to work with a single cipher key. Having to
handle only a single key can reduce memory requirements;
especially when key schedules are precomputed and stored
for performance reasons.

The security of any packet protection will be dependent
on the security of the underlying block cipher. TinySec uses
the Skipjack block cipher, which has a block size of 64 bit.
However, TinySec could be used with any block cipher6.
In our evaluations, we have employed AES, which has a
block size of 128 bit. Advantages of AES are that is has
an arguably higher security margin than Skipjack and that
it can also be implemented faster on the target platform 7.

The block size of the block cipher plays a role for
the message expansion in TinySec. TinySec encrypts in
CBC mode and uses so-called ciphertext stealing to prevent
message expansion. However, ciphertext stealing requires
the availability of at least one complete ciphertext block.
Therefore, the minimal size of the ciphertext is the block size
and any smaller plaintexts get expanded under encryption.
In contrast, our surveyed modes of operation all produce
ciphertext of the same size as the corresponding plaintext,
i.e., they effect no message expansion.

Another important issue is the reuse of IVs. As a general
rule, IVs should never be used twice under the same key.
Normally, the size of IVs is sufficient, so that reuse will
not occur within longer periods of time. However, Karlof
et al. argue that sensor networks cannot afford to include
IVs of such size due to the energy overhead of wireless
communication [14]. They propose an IV structure using
existing packet header fields and with only a 16-bit counter
field to guarantee uniqueness of IVs (cf. Figure 2). In the
worst case, IVs will therefore repeat after 216 packets8.
TinySec encryption is designed in a way that an attacker
will gain just minimal information about the two plaintexts
in the case that IVs repeat. More precisely, only the length
(in blocks) of the longest shared prefix of the two plaintexts
will leak.

Our targeted modes of operation do not exhibit such a
graceful degradation in the face of repeating IVs. The most

6. In fact, the authors mention in [14] that AES is likely to be a good
replacement for Skipjack.

7. Skipjack encryption performance is reported at about 3,000 cycles
per 64-bit block (about 380 cycles/byte), while our AES implementation
requires about 4,000 cycles per 128-bit block (about 250 cycles/byte).

8. IVs reoccur only if the counter value repeats and all other header fields
of the packet (source address, destination address, active messaging field,
packet length are also identical.

catastrophic consequences are exhibited by the EAX mode
and GCM, which both have a stream cipher encryption
mode (CTR mode). Both consequently leak the XOR of the
two plaintexts, which normally presents a serious threat to
security. The CCFB+H mode behaves a bit more robust:
Although the XOR of the first plaintext segments leaks,
subsequent segments suffer the same fate only if all previous
plaintext segments had been identical. OCB mode has the
most favorable properties in the event of recurring IVs.
Only if the length of the two plaintexts is identical, then
the XOR of the last plaintext blocks leaks. For all other
blocks, identical plaintext blocks will just result in identical
ciphertext blocks.

Although OCB mode and CCFB+H mode are more robust
than EAX mode and GCM in the face of repeating IVs,
this situation should be strictly avoided in any of the four
examined modes. Whenever the counter value is about to
repeat, the key should be changed with the help of a key
update protocol. Additionally, the size of the counter could
be extended (e.g., by adding extra bytes to the packet header
or by “borrowing” a few unused bits from other header
fields) so that more packets can be sent without IV repetition.

5. Practical Results

We implemented the four described modes of operation
from scratch in C and some core parts in assembly. Com-
pilation was done with avr-gcc 3.2 with -O2 optimization.
We have obtained our performance figures with simulation
in AVR Studio 4.13.

We concentrated on the most expensive operations for
optimization and we consider our implementations to be
at an equal level of optimization. Whenever possible, we
strived to reuse as much code as possible in order to preserve
program memory.

An AES-128 implementation optimized for AVR micro-
controllers has been used. It has an on-the-fly key expansion
in order to limit the amount of RAM required for holding
the key schedule.

5.1. Packet Structure and Size

We benchmarked the four AEAD modes with test data
which is similar in structure and size to the packet format
used in TinySec [14]. In general, these packets consist of an
8 byte header which is only authenticated9, a message of up
to 29 bytes10 which is both authenticated and encrypted and
a resulting 32-bit MAC tag. The packet format is depicted
in Figure 2. Three different scenarios for the message size
(header size is always 8 byte) were examined:

9. Note that in TinySec, the header is also used as IV.
10. The current limit of TinyOS for the packet payload is 29 bytes.



AM

(1)

Len

(1)

Dst

(2)

Ctr

(2)

Src

(2)

MAC

(4)

Data

(0..29)

Header

(also used as IV)

Message

(payload)

Authenticated Encrypted & authenticated Tag

Figure 2. TinySec packet structure (according to [14]).

• 1 byte message: Short packets which convey very
simple information (e.g., yes/no response).

• 17 byte message: Medium-size packets.
• 29 byte message: Full message size used for bulk

communication.
In general, we used an 8-byte nonce as IV and generated

a MAC tag of 4 bytes. For GCM and CCFB, we used an
IV of 12 bytes11. GCM provides a considerable shortcut for
nonces of this length. CCFB requires fewer encryption calls
for longer IVs, due to its internal structure.

5.2. Performance Comparison

Table 2 gives the performance figures for our implemen-
tations on the MICAz motes. Net mode overhead stands
for the cost of the particular mode minus the cycles for
the block cipher operations12. Setup costs are the number
of cycles needed for precomputations and caching of the
results, which only occurs once per key (see Section 6.2).

CCFB+H performs best for short and a medium-sized
messages. Additionally, it ties with OCB for long messages.
EAX is behind both modes by at least 5,000 cycles. GCM
does not perform well on our architecture.

The most interesting result is the good performance of
CCFB+H compared to the one-pass scheme OCB. It man-
ages to save one block cipher encryption for messages of
up to 24 bytes because of its internal structure: The block
cipher is used for encryption and authentication at the same
time, reducing the second pass to an XOR operation on
several blocks with the size of the resulting tag. For a tag
size of 4 bytes, up to a maximum of 12 bytes of an AES-128
output can be used as a key stream to encrypt the message.
This increases CCFB+H performance for short messages.
For longer messages, the performance deteriorates.

OCB gets more competitive for long packets. EAX needs
more block cipher calls in order to authenticate header and
payload and thus is behind CCFB+H and OCB. EAX also

11. Padding with a fixed value was used for modes which require a longer
IV.

12. The cost per AES-128 block cipher invocation was about 4,000 clock
cycles.

needs several XOR operations on block-size data, which is
a further penalty.

GCM does not perform well on the target platform. The
high setup costs are due to the precomputation of a lookup
table, as described in Section 6.1. Since the MAC function
GHASH does not use the block cipher encryption, it needs
the least block cipher calls of all four modes. However, the
polynomial multiplication in GF(2128) is very expensive on
an 8-bit architecture and it cannot be optimized well due to
memory constraints.

We did not measure decryption costs separately, since they
are the same for all modes except OCB. OCB is the only
mode using the block cipher decryption (for OCB mode
decryption). This makes OCB less attractive, as it requires
more program memory to realize the block cipher decryption
and also renders OCB decryption slower whenever the block
cipher decryption is slower than encryption13.

5.3. Memory Requirements

Table 3 contains a comparison of the working memory
required to cache precomputed data. All values are given
in bytes. The block size of the assumed block cipher is 16
bytes, which affects the required memory.

As can be seen in Table 3, CCFB+H needs the least mem-
ory to store pre-computed values. OCB uses one additional
16-byte buffer. EAX comes in third but could be improved
by leaving out the precomputation of seldomly used values,
which can save 48 bytes in total (see 6.2 for details). GCM
needs the most memory, which is due to the lookup table
used (as described in Section 6.1).

The size of the programs themselves is between 5.4 KB
and 5.8 KB. This is approximately 4.3% of the total program
memory available on the MICAz motes.

6. Optimization Measures

We made several approaches in order to optimize the
performance of the benchmarked modes. These approaches

13. The measurements of our AES implementation showed that decryp-
tion is about 50% slower than encryption, averaging at roughly 6,000 cycles
compared to the 4,000 cycles of encryption.



OCB CCFB+H EAX GCM
Setup costs 8,076 4,636 26,679 504,486
1 byte message, 8 byte header

Total cycles 18,991 14,450 20,061 162,190
Block cipher calls 4 3 4 2
Net mode overhead 2,803 2,309 3,873 154,096
17 byte message, 8 byte header
Total cycles 23,430 18,919 28,528 196,567
Block cipher calls 5 4 6 3
Net mode overhead 3,195 2,731 4,246 184,426
29 byte message, 8 byte header
Total cycles 23,810 23,356 28,672 196,711
Block cipher calls 5 5 6 3
Net mode overhead 3,575 3,121 4,390 184,570

Table 2. Performance comparison of the four modes of operation on MICAz. Note that the performance figures for
CCFB+H for 17-byte messages have been erroneous in the original publication and are corrected in this table.)

OCB CCFB+H EAX GCM
Memory usage 96 80 176 352

Table 3. Memory requirements (in bytes) for precomputed data.

can be divided into several categories:
• Use of lookup tables
• Precomputation of key-dependent results
• Memory optimizations
• Assembler-level optimizations
In this section, we describe some of the measures we have

taken in order to speed up our implementations.

6.1. Lookup Tables in GCM

GCM is the only mode that relies on a polynomial multi-
plication for the MAC tag generation. This multiplication is
dependent on the so-called hash subkey, whose value in turn
only depends on the used key. It is possible to exploit this
property by creating a precomputed table that stores some
of the multiplication results.

Due to memory restrictions, we implemented only 4-bit
tables. With these tables, the required GF(2128) multiplica-
tions can be done considering 4-bit chunks (instead of single
bits), thus leading to an increase in performance. With 4-bit
tables, the additional required memory is a fixed buffer of
32 bytes plus a key-dependent table of 256 byte in total.

Nevertheless, this optimization did not result in compet-
itive performance for GCM. We did not implement bigger
tables due to the added storage costs, which we considered
unsuitable for our target platform.

6.2. Precomputation of Key-Dependent Results

If the key is valid for a number of packets, some key-
dependent operations can be precomputed to increase per-
formance. We applied this method wherever sensible, and

every mode can gain at least some increase in performance.
In addition to an initial encryption of a fixed-value string,
which all modes need, we removed additional duplicate
calculations in the MAC functions PMAC, OMAC and
OMACt.

In both OMAC and PMAC, we did a pre-calculation of the
key-dependent buffers, which included the expensive encryp-
tion as well as several shifting operations. For the tweaked
OMAC version OMACt in EAX, up to three encryption
calls as well as some shift operations could be saved due
to its special structure. This optimization pre-calculates the
first CBC message block which is used in OMAC. Because
of padding problems regarding empty headers or messages,
this optimization calculates three additional buffers of block
length. If an application does not use empty data or does
not use it often, this additional optimization can be skipped,
resulting in a reduced memory usage.

6.3. Assembler-Level Optimization

We implemented several core functions in assembly. Op-
timized block-shift operations offered the best gains. This
optimization is very effective for GCM, where the shifting
operation is heavily used. OCB, EAX and CCFB+H receive
a smaller, but still noticeable performance boost.

6.4. Additional Optimizations

There are additional optimization measures, which we did
not incorporate. McGrew et al. describe in [6] a way to
calculate the lookup table of GCM more efficiently. Since



the performance of GCM is too far behind its contestants,
we did not pursue this optimization.

Furthermore, we did not make heavy use of assembler-
level code, but concentrated only on some core routines.
Thus, rewriting parts of the implementation (or all of it)
in assembly is likely to improve the performance of the
modes. However, we do not expect the ranking to change if
all modes are optimized equally.

7. Recommendations

Our measurements show that CCFB+H performs best for
the assumed packet format. It has little overhead and makes
clever use of the block cipher, thus reducing the number
of block cipher invocations. Similarly to the other modes,
it provides minimum overhead (which is a crucial factor
on the target platform). It is rather easy to implement and
there are no pending patents. On the downside, up to now
there seem to be no free implementations of CCFB+H and
there is little support for this mode (e.g., no available test
vectors). Still, we would recommend this mode due to its
good performance (especially for short packets) and its small
memory requirements.

OCB performs well with long packets, but it is patented.
Furthermore, OCB decryption has some drawbacks. While
EAX is free, it generally requires more block cipher calls
than its contestants.

In contrast to CCFB+H, OCB, and EAX, we do not deem
GCM suitable for the target platform. A decent optimization
cannot be achieved due to the limited memory. With the
possible optimizations, the overhead is too large compared
to the other modes.

Acknowledgment

We would like to thank Christoph Herbst for providing an
optimized AES implementation and Peter Holzer for support
regarding TinyOS.

The research described in this paper has been supported
by the European Commission under grant number FP6-IST-
033563 (Project SMEPP). The information in this document
reflects only the authors’ views, is provided as is and no
guarantee or warranty is given that the information is fit for
any particular purpose. The user thereof uses the information
at its sole risk and liability.

References

[1] M. Bellare and C. Namprempre, “Authenticated Encryption:
Relations among Notions and Analysis of the Generic Com-
position Paradigm,” in Proceedings of ASIACRYPT 2000,
Springer, December 2000, pp. 531–545.

[2] P. Rogaway, “Authenticated-encryption with associated-data,”
in Proceedings of CCS 2002, ACM Press, November 2002,
pp. 98–107.

[3] T. Krovetz and P. Rogaway, “The OCB
Authenticated-Encryption Algorithm,” Available on-
line at http://www.cs.ucdavis.edu/∼rogaway/papers/
draft-krovetz-ocb-00.txt, March 2005.

[4] M. Bellare, P. Rogaway, and D. Wagner, “The EAX Mode of
Operation,” in Proceedings of FSE 2004, Springer, February
2004, pp. 389–407.

[5] S. Lucks, “Two-Pass Authenticated Encryption Faster Than
Generic Composition,” in Proceedings of FSE 2005,
Springer, February 2005, pp. 284–298.

[6] D. A. McGrew and J. Viega, “The Ga-
lois/Counter Mode of Operation (GCM),” Avail-
able online at http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/proposedmodes/gcm/gcm-revised-spec.pdf, May
2005, revised Submission to NIST Modes of Operation
Process.

[7] Crossbow Technology, Inc., “MICAz Wireless Measurement
System,” Available online at http://www.xbow.com/Products/
Product pdf files/Wireless pdf/MICAz Datasheet.pdf.

[8] TinyOS Community, “The TinyOS Website,” http://www.
tinyos.net.

[9] D. Chakraborty and P. Sarkar, “A General Construction
of Tweakable Block Ciphers and Different Modes of
Operations,” in Information Security and Cryptology,
Springer, 2006, pp. 88–102.

[10] National Institute of Standards and Technology (NIST),
“Special Publication 800-38A 2001 ED, Recommendation
for Block Cipher Modes of Operation - Methods and
Techniques,” December 2001, available online at http:
//csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

[11] P. Rogaway, M. Bellare, J. Black, , and T. Krovetz, “OCB: A
Block-Cipher Mode of Operation for Efficient Authenticated
Encryption,” in Proceedings of CCS 2001), ACM Press,
2001, pp. 196–205.

[12] National Institute of Standards and Technology (NIST),
“Special Publication 800-38D, Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM)
and GMAC,” Available online at http://csrc.nist.gov/
publications/nistpubs/800-38D/SP-800-38D.pdf, November
2007.

[13] T. Kohno, J. Viega, and D. Whiting, “CWC: A high-
performance conventional authenticated encryption mode,” in
Proceedings of FSE 2004, Springer, February 2004, pp.
408–426.

[14] C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link
Layer Security Architecture for Wireless Sensor Networks,”
in Proceedings of SenSys 2004. ACM Press, November
2004, pp. 162–175.


