
Keynote for DATA 2012 

ON KNOWLEDGE DISCOVERY AND INTERACTIVE 
INTELLIGENT VISUALIZATION OF BIOMEDICAL DATA 

Challenges in Human–Computer Interaction & Biomedical Informatics 

Andreas Holzinger 
Research Unit Human-Computer Interaction, Institute for Medical Informatics,Statistics & Documentation,  

Medical University Graz, Austria 
andreas.holzinger@medunigraz.at 

Keywords: Complex data, Biomedical data, Weakly-structured data, Information, Knowledge, Human–Computer 
Interaction, Data visualization, Biomedical informatics, Life sciences 

Abstract: Biomedical Informatics can be defined as “the interdisciplinary field that studies and pursues the effective 
use of biomedical data, information and knowledge for scientific inquiry, problem solving, and decision 
making, motivated by efforts to improve human health.” However, professionals in the life sciences are 
facing an increasing quantity of highly complex, multi-dimensional and weakly structured data. While 
researchers in Human-Computer Interaction (HCI) and Knowledge Discovery in Databases (KDD) have for 
long been working independently to develop methods that can support expert end users to identify, extract 
and understand information out of this data, it is obvious that an interdisciplinary approach to bring these 
two fields closer together can yield synergies in the application of these methods to weakly structured 
complex medical data sets. The aim is to support end users to learn how to interactively analyse information 
properties and to visualize the most relevant parts – in order to gain knowledge, and finally wisdom, to 
support a smarter decision making. The danger is not only to get overwhelmed by increasing masses of data, 
moreover, there is the risk of modelling artifacts. 

1 INTRODUCTION 

Data exploration has recently been hailed as the 
fourth paradigm in the investigation of nature, after 
empiricism, theory and computation (Bell, Hey & 
Szalay, 2009). Whether in astronomy or the life 
sciences, the flood of data requires sophisticated 
methods of handling. For example, researchers in 
bioinformatics collect, process and analyze masses 
of data, or in computational biology, they simulate 
biological systems, metabolic pathways, the 
behavior of a cell or how a protein is built (Hey, 
Tansley & Tolle, 2009).  

In clinical medicine, the end users are confronted 
with increased volumes of highly complex, noisy, 
high-dimensional, multivariate and often weakly-
structured data (Holzinger, 2011c).  

The field of biomedical informatics concerns the 
information processing by both humans and 
computers, dealing with biomedical complexity 
(Patel, Kahol & Buchman, 2011) to support decision 
making which is still a central topic in biomedical 
informatics (Shortliffe, 2011). 

Whereas Human-Computer Interaction (HCI) 
concentrates on human intelligence, and Knowledge 
Discovery in Data Mining (KDD) concentrates on 
machine intelligence, the grand challenge is to 
combine these diverse fields to support the expert 
end users in learning to interactively analyze 
information properties thus enabling them to 
visualize the relevant parts of their data. In other 
words, to enable effective human control over 
powerful machine intelligence and to integrate 
statistical methods with information visualization, to 
support human insight and decision making 
(Holzinger, 2011a). The broad application of 
business enterprise hospital information systems 
amasses large amounts of medical documents, which 
must be reviewed, observed, and analyzed by human 
experts (Holzinger et al., 2008a). All essential 
documents of the patient records contain a certain 
portion of data which has been entered in non-
standardized format (aka free text). Although text 
can easily be created by the end users, the support of 
automatic analysis is extremely difficult (Gregory, 
Mattison & Linde, 1995), (Holzinger et al., 2000), 
(Lovis, Baud & Planche, 2000).  
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2 LOOK AT YOUR DATA 

Each observation can be seen as a data point in 
an ݊-dimensional Euclidian vector space Թ௡: 

 
࢞௜ ൌ ሾݔ௜ଵ, 	 … ,  ௜௡ሿ (1)ݔ	

 
In an arbitrarily high dimensional space, 

methods from algebraic topology have proved to be 
compelling, because topological data abstractions let 
us investigate structures in a semantic context 
(Pascucci et al., 2011); this can be seen as one step 
towards sensemaking (Blandford & Attfield, 2010).  

The global character of the data requires that the 
domain expert is able to extract information about 
the phenomena represented by the data (Fig. 1). This 
expert asks a question, forms a hypothesis and 
transforms data into knowledge; which can be seen 
as a transfer from the computational space into the 
cognitive space (Kaski & Peltonen, 2011) of 2D or 
3D representations developing in time: 

 
Թ௡ ൅ ݐ → Թଶ ൅ ݐ Թଷ	ݎ݋ ൅  (2) ݐ

 
The time ݐ is an important, yet often neglected 

dimension in medicine (Simonic et al., 2011).  
The expert in Fig. 1 looks for interesting data. 

Interest is a human construct, a perspective on 
relationships between data, and is influenced by 
emotion, personal likings and previous experience. 
Interest is similar to beauty, which is in the eye of 
the beholder (Beale, 2007). It is difficult to make 
knowledge discovery automatic, we need human 
intelligence for sensemaking. For example, fitness 
functionality cannot be formulated generally; hence 
automatic algorithms may not find a solution alone. 

 

 

Figure 1: Human–Computer Interaction bridging the 
cognitive space with the computational space 

 

3 SEEING THE WORLD IN DATA 

Current technological developments offer the 
opportunity to collect, store and process all kinds of 
data in an unprecedented way, in great detail and 
very large scale (Yau, 2011). Although, we are 
aware that data is not information and information is 
not knowledge, we are able to perceive the 
fascinating perspectives of our world in data. Let us 
start with some enthralling macroscopic dimensions: 
the night sky. In Fig. 2, you can see Omega 
Centauri, the most massive globular star cluster in 
our Milky Way galaxy. The core is 17,000 light-
years away with a diameter of 450 light-years 
(Gratton et al., 2011). Globular clusters are dense, 
gravitationally bound collections of millions of stars 
that share a common age and chemical composition. 
Most galaxies are surrounded by systems of multiple 
globular clusters that swarm about them like bees 
around a hive (West et al., 2004). 

 

 

Figure 2: Globular star cluster Omega Centauri. Image 
available at the Eropean Southern Observatory (ESO) 
http://www.eso.org/public/images/eso1119b 

Let us now look into the microscopic dimension 
(Fig. 3): Protein-protein interaction (PPI) plays a 
fundamental role in all biological processes. A 
systematic analysis of PPI networks enables us to 
understand cellular organization, processes and 
function. This is big, complex, noisy data, 
consequently it is a great challenge to effectively 
analyse these massive data sets for biologically 
meaningful protein complex detection (Shi, Lei & 
Zhang, 2011).  

The computational investigation of PPIs starts 
with the network structure represented by a graph 
ܩ ൌ ሺܸ,  ,ሻ, with a set of nodes V and edges Eܧ
where ܧ ⊆ ܸ	 ൈ ܸ.  



 

Proteins interact with each other to perform 
cellular functions or processes. These interacting 
patterns form the PPI network (Zhang, 2009) 

 
ܸ ൈ ܸ ൌ	 ൛൫ݒ௜, ௜ݒ௝൯หݒ ∈ ܸ, ௝ݒ ∈ ܸ, ݅ ് ݆ൟ. (3) 
 

 

Figure 3: First visualization of a human PPI structure; 
Experts gain knowledge of it, e.g. to understand complex 
processes, thereby understand illnesses (Stelzl et al., 2005) 

Protein structures are studied for example with 
crystallographic methods (Fig. 4). Once the atomic 
coordinates of the protein structure have been 
determined, a table of these coordinates is deposited 
into a Protein Data Base (PDB), an international 
repository for 3D structure files. Scientific 
achievements coming from molecular biology 
greatly depend on computational applications and 
data management to explore lab results (Arrais, 
Lopes & Oliveira, 2011).  

In Fig. 4, we see the structure and the data, 
representing the mean positions of the entities within 
the substance and their chemical relationships.  

 

 

Figure 4: Structures of protein complexes, determined by 
X-ray crystallography, and stored in the PDB (Wiltgen & 
Holzinger, 2005) 

 

The structural information, stored in the PDB 
contains: a running number, atom type, residue 
name, the chain identification, the number of the 
residue in the chain, the triplet of coordinates. The 
PDB data files are downloaded from the database as 
input files for protein analysis and visualization. 

Our quest is that an expert can gain knowledge 
from this data; for example by providing an 
interactive visualization of this data (Fig. 5): The 
Tumor Necrosis Factor (TNF - upper part) is 
interacting with the extra cellular domain of its 
receptor (lower part). The residues at the 
macromolecular interface are visualized in a “ball-
and-stick” representation. The covalent bonds are 
represented as sticks between atoms, which are 
represented as balls. The rest of the two chains is 
represented as ribbons. Residue names and numbers 
of the TNF receptor are labelled, hydrogen bonds are 
represented by dotted lines (circled in Fig. 5). 

 

 

Figure 5: Gaining knowledge from the data by interactive 
visualization (Wiltgen, Holzinger & Tilz, 2007) 

A non-natural structure is the virtual “cosmos”, 
which has been visualized in a number of ways. 
After six weeks of observation, Matthew Hurst 
mapped a visualization of the Blogosphere: “By 
showing only the links in the graph, we can get a far 
better look at the structure than if we include all the 
nodes” (Hurst, 2007). The most densely populated 
areas represent the most active portions of the 
blogosphere (Fig. 6). Here, we are looking at the 
core of the Blogosphere: The dark edges show the 
reciprocal links (where A has cited B and B has 
cited A), the lighter edges indicate a-reciprocal links. 
The larger, denser area of the graph is that part of 
the Blogosphere generally characterized by socio-
political discussion (the periphery contains some 
topical groupings).  



 

 
Figure 6: A visualization of the blogosphere (Hurst, 2007) 

 
Natural structures can also be used in a 

completely different context: a final example should 
further demonstrate this: Fig. 7 shows the principle 
of viral marketing. The idea is to spread indirect 
messages which suggest spreading them farther. If 
you press the “Like-button” in Facebook, a process 
starts, which is similar to an epidemic in medicine, 
an illness spreading through a population. 
Consequently, Aral (2011) calls it behavior 
contagion and this is of importance for research to 
know how behavior can spread. We can mine 
masses of social network data in order to gain 
knowledge about the contagion of information. This 
is of particular interest for the health area, due to its 
remarkable similarity to the epidemic spreading of 
diseases (Risau-Gusman, 2012). 

 

Figure 7: The principle of viral marketing – similar to 
contagious processes (Aral, 2011) 
 

Such complex network theory can be traced back 
to the first work on graph theory, developed by 
Leonhard Euler in 1736. However, stimulated by 

works as from Barabási, Albert and Jeong (1999), 
research on complex networks has only recently 
been applied to biomedical informatics. As an 
extension of classical graph theory, complex 
network research focuses on the characterization, 
analysis, modeling and simulation of complex 
systems involving many elements and connections, 
examples including the internet, gene regulatory 
networks, PPI-networks, social relationships, the 
Web, and many more. Attention is given not only to 
the identification of special patterns of connectivity, 
such as the shortest average path between pairs of 
nodes (Newman, 2003), but also to the evolution of 
connectivity and the growth of networks, an 
example from biology being the evolution of PPI-
networks in different species (as shown in Fig. 3).  

In order to understand complex biological 
systems, the three following key concepts have to be 
considered: 

(i) emergence: the discovery of links between 
elements of a system as the study of individual 
elements (genes, proteins, metabolites) to explain 
the whole system’s behavior;  

(ii) robustness: biological systems maintain their 
main functions even under perturbations imposed by 
the environment; and  

(iii) modularity: vertices sharing similar 
functions are highly connected.  

Due to the ready availability of various network 
visualization tools (Costa, Rodrigues & Cristino, 
2008), network theories can be applied to 
biomedical informatics.  

 

4 TAXONOMY OF DATA 

Let us list some definitions first: 
Def. 1: A relational system is a pair 

:ܣ〉 ܴଵ, …ܴ௡〉	where ܣ is a set of elements, and 
ܴଵ,…ܴ௡ are relations defined on ܣ. 

Def. 2: An attribute is a homomorphism ࣢ from 
a relational system 〈ܣ: ܴଵ, …ܴ௡〉	into a relational 
system 〈ܤ: ଵܵ, … ܵ௡〉; 

 
The set ܣ is a set of (visual) elements and the set 

 is either a set of (visual) elements or a set of ܤ
attribute values such as the set Թ, Ժ or a set of 
strings. The homomorphism ࣢ guarantees that 
every relation an attribute induces on elements has 
identical structural properties as its characterizing 
relations.  

Dastani (2002) described a special type of visual 
attributes which concerns various uses of topological 
properties of the space, i.e. perceptual structures that 
are constituted by perceivable topological relations, 



 

for example used in network visualizations (inside, 
outside, overlap, …). This goes back to Egenhofer 
(1991), who distinguished between spatial/non-
spatial perceptual structures that are constituted by 
characterizing the relations of spatial and non-spatial 
attributes, and topological structures that are based 
on two or more topological attributes (Fig. 8). He 
used the nine-intersection model (Egenhofer & 
Herring, 1990), which provides a framework and a 
relation algebra, for the description of topological 
relations between objects of area type, line, and 
point. This is based on the principles of algebraic 
topology, a branch of mathematics which deals with 
the manipulation of symbols that represent 
geometric configurations and their relationships to 
each other (Aleksandrov, 1961). The data model is 
based on primitive objects, called cells, defined for 
different spatial dimensions: A 0-cell is a node (0-
dimensional object); a 1-cell is the link between two 
0-cells; a 2-cell is an area described by a closed 
sequence of three non-intersecting 1-cells and a face 
݂ is any cell that is contained in ܣ. The relevant 
topological primitives include interior ܣ௢, boundary 
 of a cell; e.g., the boundary ିܣ and exterior ܣ߲
denoted by ߲ܣ is the union of all ݎ-faces ݎ െ ݂ 
where 0 ൑ ݎ ൑ ݊, i.e. 

 

ܣ߲ ൌራݎ െ ݂ ∈ ܣ

௡ିଵ

௥ୀ଴

 
 

(4) 

 
The topological relation between two such 

geometric objects, A and B, is characterized by the 
binary values (empty, non-empty) of the 9-
intersection, represented as a 3 ൈ 3 matrix: 

 

ܴሺܣ, ሻܤ ൌ ൭
௢ܣ ∩ ௢ܤ ௢ܣ ∩ ܤ߲ ௢ܣ ∩ ିܤ

ܣ߲ ∩ ௢ܤ ܣ߲ ∩ ܤ߲ ܣ߲ ∩ ିܤ

ିܣ ∩ ௢ܤ ିܣ ∩ ܤ߲ ିܣ ∩ ିܤ
൱

 
(5) 

 
 

 
Figure 8: Selected topological relations 

An important invariant is the number of 
components. Following the definition of Egenhofer 
and Franzosa (1995) a component is based on the 
topological concepts separation and connectedness, 
i.e., for a set Y, a component is the largest connected 
(non-empty) subset of Y. Whenever any of the 9-set 
intersections is separated into disconnected subsets, 
these subsets are the components of this set 
intersection. Hence, any non-empty intersection may 
have several distinct components, each of which 
may be characterized by its own topological 
properties. This leads us to the definition of: 

Weakly-structured data. This must not be 
confused with weakly-structured information (e.g. 
(Stuckenschmidt & Harmelen, 2005), instead we 
follow the notions of topological relations (Fig 8): 
Let ܻሺݐሻ be an ordered sequence of observed data, 
e.g., of individual patient data sampled at different 
points ݐ ∈ ܶ over a time sequence. We call the 
observed data ܻሺݐሻ weakly structured, if and only if 
the trajectory of ܻሺݐሻ resembles a random walk 
(Kapovich et al., 2003), (de Silva & Carlsson, 2004). 

Well-structured data has been seen to be the 
minority of data and an idealistic case when each 
data element has an associated defined structure, 
e.g., relational tables.  

Ill-structured is a term often used for the 
opposite of well-structured, although this term 
originally was used in a different context of problem 
solving (Simon, 1973). 

Semi-structured is a form of structured data that 
does not conform with the strict formal structure of 
tables and data models associated with relational 
databases, but contains tags or markers to separate 
both structure and content, i.e. these data are 
schema-less or self-describing; a typical example is 
a markup-language such as XML.  

Non-structured data or unstructured data is an 
imprecise definition often used for data expressed in 
natural language, when no specific structure has 
been defined. Yet, this is not true: Text has also 
some structure: words, sentences, paragraphs. To be 
precise, unstructured data would mean completely 
randomized data – which is usually called noise. 
Duda, Hart and Stork (2000) define it as any 
property of data which is not due to the underlying 
model but instead to randomness (either in the real 
world, from the sensors or the measurement 
procedure). In Informatics, particularly, it can be 
considered as unwanted non-relevant data without 
meaning, or, even worse: with a – not detected – 
wrong meaning – typical artifacts.  

 



 

In addition to the above described 
structurization, data can also be standardized (e.g. 
numerical entries in laboratory reports) and non-
standardized (e.g. non-standardized text – wrongly 
called “free text” in an electronic patient record, see 
e.g. (Kreuzthaler et al., 2011).  

Standardized data is a basis for accurate 
communication. In the medical domain, many 
different people work at different times in various 
locations. Data standards can ensure that information 
is presented in a form that facilitates interoperability 
of systems and a comparability of data for a 
common end user interpretation. It supports the 
reusability of the data, improves the efficiency of 
healthcare services and avoids errors by reducing 
duplicated efforts in data entry. Data standardization 
refers to  

a) the data content;  
b) terminologies used to represent the data;  
c) how data is exchanged; and  
iv) how knowledge is applied; 
The last entry “knowledge” means e.g. clinical 

guidelines, protocols, decision support rules, 
checklists, standard operating procedures, etc. 

Technical elements for data sharing require 
standardization of identification, record structure, 
terminology, messaging, privacy etc. The most used 
standardized data set to date is the international 
Classification of Diseases (ICD), which was first 
adopted in 1900 for collecting statistics (Ahmadian 
et al., 2011).  

Non-standardized data, as the majority of all 
data impedes data quality, data exchange and 
interoperability (Batini & Scannapieco, 2006). 

Uncertain data is a challenge in the medical 
domain, since the aim is to identify which covariates 
out of millions are associated with a specific 
outcome such as a disease state. Often, the number 
of covariates is orders of magnitude larger than the 
number of observations, involving the risks of false 
knowledge discovery and overfitting. The possibility 
that important information may be contained in the 
complex interactions, along with the huge number of 
potential covariates that may be missed by simple 
methods, can be addressed by new and improved 
models and algorithms for classification and 
prediction (Richman, 2011).  

This concept has developed over the years from 
a basic idea. To represent a set of discrete symbols 
with associated probabilities, we postulate a box 
containing one colored ball: yellow, blue or red. If 
one blindly removes the ball, we are dealing with 
uncertainty and may ask: Is the ball red? NO. Is the 
ball yellow? NO. THEN it must be blue, so we need 

a minimum of 2 questions to provide the right 
answer. Because it is a binary decision (YES/NO) 
the maximum number of (binary) questions required 
to reduce the uncertainty is logଶሺܰሻ, where ܰ is the 
number of possible outcomes. If there are ܰ events 
with equal probability ݌ then: ܰ ൌ 1 ⁄݌ . If we have 
only 1 black ball, then: logଶሺ1ሻ ൌ 0 which means 
there is no uncertainty. Shannon (1948) used this 
idea to propose a measure of uncertainty in a 
discrete distribution based on the Boltzmann entropy 
of classical statistical mechanics. He called it the 
information entropy ܪ and defined it as: 

݃݋݈
ଵ

௣
ൌ 	െ logሺ݌ሻ wherein ݌ is the probability of 

the event occurring. If this ݌ is not identical for all 
events then ܪ is a weighted average of all 
probabilities: 

 

ܪ ൌ෍݌௜݈݃݋	ଶሺ݌௜ሻ

ே

௜ୀଵ

 (6) 
 

 
This measure of uncertainty has many important 

properties in line with the intuitive notion of 
randomness (Rao et al., 2004): 

1) It is always positive;  
2) It vanishes if and only if the event is certain; 
3) Entropy is increased by the addition of an 

independent component, and decreased by 
conditioning; 

For practical use it is important to know that 
highly structured data contain low entropy; ideally, 
when everything is in order the entropy is zero. 

5 SPECIFICS OF MEDICAL DATA 

Biomedical data covers various structural 
dimensions, ranging from microscopic structures 
(e.g. DNA) to whole human populations (disease 
spreading). Clinical-medical data are defined and 
collected with a remarkable degree of uncertainty, 
variability and inaccuracy. Komaroff (1979) stated 
that “medical data is disturbingly soft”. Three 
decades later, the data still falls far short of the 
exactness that engineers prefer.  

What did Komaroff mean with soft? The way 
patients define their sickness, questions and answers 
between clinicians and patients, physical 
examinations, diagnostic laboratory tests etc. Even 
the definitions of the diseases themselves are often 
ambiguous; some diseases cannot be defined by any 
available objective standard; other diseases do have 
an objective standard, but are variably interpreted.  



 

Another complication inherent in the data is that 
most medical information is incomplete, with wide 
variation in the degree and type of missing 
information. In both the development and the 
application of statistical techniques, analysis of data 
with incomplete or missing information can be much 
more difficult than analysis of corresponding data 
with all the information available – interestingly this 
was known before the term medical informatics was 
defined (Walsh, 1960).  

Let us give a last example for the size aspect of 
medical data: In 1986, the INTERNIST-1 
knowledge base (for diagnosis in internal medicine) 
contained 572 disorders, approx. 4,000 possible 
patient findings and links detailing the causal, 
temporal and probable interrelationships between the 
disorders (Miller et al., 1986). Ten years ago, in 
2002, a typical primary care doctor was kept 
informed of approximately 10,000 diseases and 
syndromes, 3,000 medications, and 1,100 laboratory 
tests (Davenport & Glaser, 2002). In 2008, there 
were 18 million articles catalogued in the biomedical 
literature.  

Working with big data requires certain issues to 
be addressed, such as data security, intellectual 
property and, particularly in the case of medical 
data, privacy issues (Manyika et al., 2011). 

 

6 VISUALIZATION OF DATA 
 
How can visual representations of abstract data 

be used to amplify the acquisition of knowledge? 
(Card, Mackinlay & Shneiderman, 1999). 

Unfortunately, the creation of visualizations for 
complex data still remains more of a personal effort 
than a commercial enterprise. So many sophisticated 
visualization concepts have been developed, e.g. 
Parallel Coordinates (Inselberg, 2009), RadViz 
(Novakova & Stepankova, 2009), or Glyphs (Meyer-
Spradow et al., 2008), to mention only a few, but in 
business enterprise hospital information systems 
they are still not in use. 

An interesting example is from the publication 
by Hey et al. (2009) from the introduction to this 
paper, wherein from 30 essays on the emerging area 
of data-intensive science, all including visualizations 
of scientific results, only one is on visualization 
needs (Fox & Hendler, 2011). 

Fig. 9 shows the User Interface Model for 
Infovis (UIMI), developed by Ren et al. (2010). In 
this approach, the developers can construct a model 
by answering four questions. The answers to this 
questions are then used to construct three declarative 
models of data, visualization and control. 

 
 

Figure 9: The conceptual model of UIMI (Ren et al., 2010) 
 
A final practical example shall demonstrate this: 

Interactive computer simulations to teach complex 
concepts have become very popular (de Jong, 2006). 
The nature of such simulations ranges from 
compelling visualizations (Chittaro, 2001; Johnson 
et al., 2004) to educational computer games (Ebner 
& Holzinger, 2007; Kickmeier-Rust et al., 2007). A 
recent example is Foldit (Cooper et al., 2010), where 
gamers can play cellular architect and build proteins. 
Scientists can crowdsource the data and design 
brand-new molecules in the lab. Such exploratory 
learning with interactive simulations is highly 
demanding from the perspective of limited cognitive 
processing capabilities and the research on 
interactive simulations (Mayer et al., 2005; 
Holzinger, Kickmeier-Rust & Albert, 2008b) has 
revealed that learners need further support and 
guidance.  

Learning in the area of physiology is difficult for 
medical students, because mostly they are lacking 
the mathematics necessary to understand the 
dynamics of complex mathematical rules related to 
physiological models.  

In our application HAEMOSIM, we make 
complicated physiological data (Hessinger et al., 
2006) interactively visible to medical learners (Fig. 
10), so that they gain insight into the behavior of 
blood circulation dynamics, and to simulate certain 
defects (Fig. 11) and the dangers of diseases. The 
application simulates mathematical models 
(McDonald, 1955; Womersley, 1955; Pedley, 1980; 
Leitner et al., 2006) and presents these models in 
form of dynamic 2D and 3D visualizations. Special 
focus during the development was directed on user-
centered design (Holzinger & Ebner, 2003; 
Holzinger, 2004; Holzinger, 2005), for example, to 
understand the context and to adapt the various 
applets to the previous knowledge of the end users. 



 

 
 

Figure 10: Real data are used for the simulation of certain 
clinical relevant solutions and can be interactively 
displayed by a learner (Holzinger et al. 2009)  
 

 
 

Figure 11: The visualized data allows insights into medical 
contexts and sensemaking (Holzinger et al., 2009) 

6 CONCLUSION AND  
FUTURE OUTLOOK 

Life sciences and human health are 
fundamentally biological, and biology is often 
described as the information science (Schrödinger, 
1944). 

Consequently, research in computational biology 
may yield many beneficial results for medicine and 
health. A very intriguing question is to what extent 
randomness and stochasticity play a role. By 
adopting the computational thinking approach 
(Wing, 2006) to studying biological processes, we 
can improve our understanding and at the same time 
improve the design of algorithms (Fisher, Harel & 
Henzinger, 2011). 

The ability to define details of the interactions 
between small molecules and proteins promises 
unprecedented advances in the exploration of 

rational therapeutic strategies, for example, to 
combat infectious diseases and cancer. The 
opportunity to probe large macromolecular systems 
offers exciting opportunities for exploring the nature 
of PPIs and the mechanisms of trafficking of 
molecules to different regions of a cell, a process 
involving transport through membranes and 
diffusion over significant distances in the cytoplasm 
(Vendruscolo & Dobson, 2011).  

Following the quest “Science is to test ideas, 
engineering is to put these ideas into practice” 
(Holzinger, 2010), not only the scientific aspects 
will be challenging, but also the engineering ones, to 
support human intelligence with computational 
intelligence in the clinical domain. One challenge is 
in contextual computing; i.e. a medical professional 
may ask the business enterprise hospital information 
system: “Show me the similarities between patients 
with symptoms X and patients with symptoms Y”. 
This brings us immediately back to the deep 
questions in computing (Wing, 2008), including: 
What is information? What is computable? What is 
intelligence? And most of all: (How) can we build 
complex systems in a simply? 

Decision making is the key topic in medical 
informatics. For this we need to follow the three 
column approach: data – information – knowledge, 
with emphasis on the latter. Successful knowledge 
discovery and information retrieval systems will be 
those that bring the designer's model into harmony 
with the end user's mental model. We can conclude 
that combining HCI together with KDD will provide 
benefits to the medical domain. For this purpose, we 
must bridge Science and Engineering in order to 
answer fundamental questions on information 
quality (Holzinger & Simonic, 2011) and to 
implement the findings on building information 
systems simply at the engineering level. A few 
important examples of future research aspects 
include:  

1) Research on the physics of (time-oriented) 
information to contribute to fundamental research;  

2) Considering temporal and spatial information; 
in networks, spatially distributed components raise 
fundamental issues on information exchange since 
available resources must be shared, allocated and re-
used. Information is exchanged in both space and 
time for decision making, therefore timeliness along 
with reliability and complexity constitute the main 
issues and are most often ignored;  

3) We still lack measures and meters to define 
and appraise the amount of information embodied in 
structure and organization – for example the entropy 
of a structure;  



 

4) Considering information transfer: how we can 
assess, for example, the transfer of biological 
information; 

5) Information and knowledge: In many 
scientific contexts we are dealing only with data – 
without knowing precisely what these data are 
representing; 

6) and most of all, we must gain value out of 
data – making data valuable. 

 
Concluding, we can say that the future in the life 

sciences will be definitely data-centric. This will 
apply equally to the medical clinical domain and 
health care. Mobile, ubiquitous computing, sensors 
everywhere, computational power and storage at 
very low cost will definitely produce an increasing 
avalanche of data and there definitely will be the 
danger of drowning in data, but starving for 
knowledge. Herbert Simon pointed out 40 years ago, 
when medical informatics was in its infancy: “A 
wealth of information creates a poverty of attention 
and a need to allocate that attention efficiently 
among the overabundance of information sources 
that might consume it” (Simon, 1971). 

Consequently, Human-Computer Interaction and 
Knowledge Discovery along with Biomedical 
Informatics are of increasing importance to 
effectively gain knowledge, to make sense out of the 
big data. This is our central quest – the holy grail – 
for the future. Let us put together all efforts to 
jointly make advances in this interesting, 
challenging and important area – to benefit 
medicine, to benefit humans, to benefit us all. 

 
However, even the best team is ineffective if 

there is no funding. A substantial budget is required 
to cover staff costs, premises and basic equipment, 
travel, computers and software, a scientific software 
portfolio, hosting, special equipment, literature, 
workshop organization, visiting researcher 
invitations, etc. In an environment of decreasing 
public budgets, external funding becomes 
increasingly important in order to sustain 
international competitiveness, quality and to 
maintain excellence (Holzinger, 2011b).  

 
What price health? (Nature, 458, 7234, 7) 
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