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Abstract
We show that an open fermionic system coupled to a continuous environment with unitary system-
environment evolution can be exactlymapped onto an auxiliary system consisting of the physical
fermion system and a set of discrete fermionicmodes subject to non-unitary Lindblad-type system-
modes evolution in such away that reduced dynamics of the fermionic system in the two cases are the
same. Conditions for equivalence of reduced dynamics in the two systems are identified and a proof is
presented. Our study extends recent work on Bose systems (Tamascelli et al 2018Phys. Rev. Lett. 120
030402) to the case of open quantumFermi systems and tomulti-time correlation functions.
Numerical simulations within a generic junctionmodel are presented for illustration.

1. Introduction

Open nonequilibirum systems are at the forefront of experimental and theoretical research due to the rich and
complex physics they provide access to as well as due to applicational prospects of building nanoscale devices for
quantumbased technologies and computations [1–3]. Especially intriguing in termof both fundamental science
and potential applications are effects of strong correlations. A number of impurity solvers capable of treating
strongly correlated systems coupled to continuumof baths degrees of freedomwere developed. Among them are
numerical renormalization group in the basis of scattering states [4, 5],flow equations [6, 7], time-dependent
densitymatrix renormalization group [8, 9], multilayermulticonfiguration time-dependentHartree (ML-
MCTDH) [10, 11], and continuous time quantumMonteCarlo [12–14] approaches. These numerically exact
techniques are very demanding and so far aremostly applicable to simplemodels only.

At the same time, accurate numerically inexpensive impurity solvers are in great demand both as standalone
techniques to be applied in simulation of, e.g. nanoscale junctions and as a part of divide-and-conquer schemes
such as, e.g. dynamicalmean-field theory (DMFT) [15, 16]. In this respect ability tomap complicated non-
Markovian dynamics of a systemontomuch simplerMarkov consideration is an important step towards
creating new computational techniques applicable in realistic simulations. In particular, suchmappingwas used
in auxiliarymaster equation approach (AMEA) [17, 18] introducing numerically inexpensive and pretty
accurate solver for the nonequilibriumDMFT.WithinAMEA the original unitary evolution is substitutedwith a
Lindblad-type quantummaster equation consideration of an expanded system (systemplus set of auxiliary
modes). Another example is the recent formulation of the auxiliary dual-fermion (aux-DF)method [19]. Aux-
DF technique complements themappingwith a procedure correcting for deviation of original hybridization
functions from those in the auxiliary system.Wenote that similarmapping ideas are employed also in the
reaction coordinate formalism [20–22].While themappings appear to be very useful and accurate, inmost cases
only semi-quantitative arguments to justify themappingwere presentedwithmain supporting evidence being
benchmarking versus numerically exact computational techniques. In particular, a justification for themapping
was put forward in [23–25] based upon the singular coupling derivation of the Lindblad equation.
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Recently, a rigorous proof of non-Markov toMarkovmapping for open Bose quantum systemswas
presented in the literature [26]. It was shown that the evolution of reduced densitymatrix in non-Markov system
with unitary system-environment evolution can be equivalently obtained by aMarkov evolution of an extended
system (systemplusmodes of environment) under non-unitary (Lindblad-type) evolution.Here, we extend the
consideration of [26] to fermionic open quantum systems and tomulti-time correlation functions. The
structure of the paper is the following. After introducing physical and auxiliarymodels of an open quantum
Fermi system in section 2we discuss non-Markov toMarkovmapping procedure in section 3. Exact
mathematical proofs are given inAppendices. Section 4 presents numerical illustration of themapping for a
simple genericmodel of a junction.We conclude in section 5.

2.Models

Weconsider an open fermionic system S coupled to an arbitrary numberN of external baths, initially each at its
own thermodynamic equilibrium, i.e. characterized by its own electrochemical potential and temperature (see
figure 1(a)). TheHamiltonian of themodel is

ˆ ( ) ˆ ( ) ( ˆ ˆ ) ( )å= + +
=

H t H t H V . 1S
B

N

B SB
phys

1

Here ˆ ( )H tS and ĤB (Bä{1,K,N}) areHamiltonians of the system and baths. V̂SB introduces coupling of the
system to bathB.While theHamiltonian of the system is general andmay be time-dependent, we follow the
usual paradigmby assuming bi-linear coupling in constructing fermionic junctionmodels

( )†å e=
Î

H c c , 2B
k B

Bk Bk Bk
^ ^ ^

( ) ( )†
åå= +
Î Î

V V d c h.c. , 3SB
k B i S

i Bk i Bk,
^ ^ ^

where ˆ †
di (d̂i) and ˆ†cBk (ĉBk) create (annihilate) electron in level i of the system S and level k of bathB. In the

model, dynamics of the system-plus-baths evolution is unitary. Belowwe call thismodel phys (physical).We
note in passing that extension of the consideration to other types of system–baths couplings is straightforward,
as long as baths are quadratic in the Fermi operators.

The other configurationwewill consider is amodel we shall call aux (auxiliary; see figure 1(b)). Here, the
same system S is coupled to a number of auxiliarymodesA, which in their turn are coupled to two baths. There
are two Fermi baths in the configuration: one (L) is completely full (m  +¥L ), the other (R) is completely
empty (m  -¥R ). TheHamiltonian of the total system is

ˆ ( ) ˆ ( ) ˆ ˆ ( ˆ ˆ ) ( )å= + + + +
=

H t H t V H H V , 4S SA A
C L R

C AC
aux

,

where ĤS is the same as in (1), ĤA represents set ofmodes

ˆ ˆ ˆ ( )†å=
Î

H H a a 5A
m m A

m m
A

m m
,1 2

1 2 1 2

and V̂SA their interactionwith the system

ˆ ( ˆ ˆ ) ( )
†

å å= +
Î Î

V V d a h.c. . 6SA
i S m A

im
SA

i m

Here ˆ †am (âm) creates (annihilates) electron in the auxiliarymodem inA.

Figure 1. Sketch of an open fermionic system S. Shown are (a) physical system coupled toN baths and (b) illustration for an auxiliary
systemwith coupling to full (left) and empty (right) baths.
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ĤC represents continuumof states in contactC

ˆ ˆ ˆ ( )†å e=
Î

H c c 7C
k C

Ck Ck Ck

with constant density of states

( ) ( ) ( )å d eº - =
Î

N E E const 8C
k C

Ck

and V̂AC couples auxiliarymodesA to bathC (L orR)

ˆ ( ˆ ˆ ) ( )†å å= +
Î Î

V t a c h.c. . 9AC
k C m A

m
C

m Ck

Dynamics of thewhole configuration is unitary.
In the next sectionwe show that the reduced time evolution of S inmodels phys and aux is the same (subject

to certain conditions) and that the reduced dynamics of S+A inmodel aux satisfies an appropriate Lindblad
Markov evolution. This establishes procedure forMarkov non-unitary Lindblad-type treatment of S+A in aux
exactly representing overall (i.e. systemplus baths) unitary non-Markov dynamics of S in phys by tracing outA
degrees of freedom.

3.Non-Markov toMarkovmapping

Consideration of themapping consists of three levels of description: (1)overall (S plus baths) unitary dynamics
of the physical system (phys); (2)overall (S+A plus baths)unitary dynamics of the auxiliary system (aux);
(3)non-unitary Lindblad-type dynamics of S+A in the auxiliary system (aux). Belowwe first discuss
equivalence of the unitary dynamics of S in phys and aux systems, thenwe prove equivalence of unitary and
Lindblad-type evolutions in the aux system.

First, we are going to prove thatwith an appropriate choice of parameters of aux the dynamics of S can be
equivalently represented in the originalmodel phys and auxiliarymodel aux, under assumption that the
dynamics of thewhole system is unitary. Because non-interacting baths are fully characterized by their two-time
correlation functions, equivalence of system-bath(s) hybridizations (i.e. correlation functions of the bath(s)
dressedwith system-bath(s) interactions) for the twomodels indicates equivalence of the reduced system
dynamics in the two cases. For example, hybridization function is the only information about baths in
numerically exact simulations of strongly correlated systems [13]. Nonequilibrium character of the system
requiresfitting two projections of the hybridization function (also called self-energy in the literature). In
particular, thesemay be retarded andKeldysh projections. Let ( )S EB

r and ( )S EB
K bematrices introducing the

corresponding hybridization functions for bathB of the physical problem (figure 1(a)). Retarded projection
carries information on bath’s spectral function and strength of system-bath coupling yielding dissipation rates
for the systemdue to coupling to the bath. Keldysh projection yields information on bath’s populationwhich by
Pauli principle defines possibility of electron exchange between system and bath

( ( )) ( ) ( )åS =
Î

E V g E V , 10B
r

ij
k B

i Bk Bk
r

Bk j, ,

( ( )) ( ) ( )åS =
Î

E V g E V , 11B
K

ij
k B

i Bk Bk
K

Bk j, ,

where ( )( )g E
Bk
r K are the Fourier transforms of retarded (Keldysh) projections of the decoupled ( ˆ =V 0SB ) electron

Green’(s) function ( ) ˆ ( ) ˆ ( )†t t t t¢ = - á ¢ ñg T c c, iBk c Bk Bk in contactB. The parameters of the auxiliarymodel should
then be chosen such that the total hybridization functions for the system

( ) ( ) ( )åS = S
=

E E , 12r

B

N

B
r

1

( ) ( ( )) ( ) ( )åS = - S
=

E f E E2 i 1 2 Im 13K

B

N

B B
r

1

are as close as possible to the corresponding hybridization functions, ˜ ( )S Er and ˜ ( )S EK , of S in the auxiliary
model (figure 1(b)) [17, 18, 24]. The latter have contribution from full (L) and empty (R) baths, and from
auxiliarymodes (A)

˜ ( ) ˜ ( ) ˜ ( ) ( )S = S + SE E E , 14r
L
r

R
r

˜ ( ) ( ˜ ( ) ˜ ( )) ( )S = S - SE i E E2 Im , 15K
R
r

L
r

wherewe assumemodesA initially in equilibriumwith its contact (or in stationary state if coupled to L andR).
Requirement of equivalence can be expressed as
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˜ ( ) ( ) ( ) ( )S =
S + S

E
E E

i
Im

2 i Im

4
, 16L

r
r K

˜ ( ) ( ) ( ) ( )S =
S - S

E
E E

i
Im

2 i Im

4
. 17R

r
r K

Thus, the problem reduces tofitting known functions in the right side of the expressionwithmultiple
contributions from auxiliarymodes to the hybridization functions in the left side.We note that the knowledge of
total (sumof contributions from all baths) hybridization function (retarded andKeldysh components) allows to
fully determine interacting correlation functions in the S subspace of phys. That is, no information on
contribution from each separate bath is required. Thus, any number of baths B in physical system can be
represented by only two baths (one full and one empty) in the auxiliary system. The exactmapping we prove
below allows to evaluate correlation functions (and in particular, single particle Green’s functions) in the S
subspace of the physical system by considering Lindblad-type evolution in the aux system. After the
correlation functions has been evaluated fluxes between the system S and baths B can be evaluated utilizing
the well-known exact Jauho–Meir–Wingreen and similar expressions.

In principle fitting (16), (17) can be done inmany different ways [24]. For example, possibility of exactfitting
of an arbitrary functionwith set of Lorentzianswas discussed in [27]. In auxiliary systems such fitting
corresponds to a constructionwhere each auxiliarymode is coupled to its own bath.Note that in practical
simulations accuracy of the results can be improved either by increasing number of auxiliarymodes or by
consideringmore general (nondiagonal) level-bath geometries in the auxiliary system, as is implemented in, e.g.
AMEA [28], or by employing diagrammatic expansion related to the difference between true andfitted
hybridization functions, as is realized in, e.g. dual fermion approach [29], or both.

After having established the equivalence of reduced system (S) dynamics in phys and aux, we now turn to
consideration of evolution of the auxmodel.Wewill show that reduced S+A dynamics derived fromunitary
evolution of the auxmodel can be exactly represented by a suitable non-unitary Lindblad-type evolution.

Following [26]we consider the reduced density operator of S+A in aux, r̂SA, which is defined by
integrating out the baths degrees of freedom from the total density operator ˆ ( )r taux

ˆ ( ) [ ˆ ( )] ( )r rºt tTr 18SA LR
aux

r̂aux follows an unitary evolutionwith initial condition given by S+A decoupled from the baths

ˆ ( ) ˆ ˆ ( ) ˆ ( )r r r r= Ä Ä0 0 , 19L SA R
aux

where ˆ ∣ ∣r = ñáfull fullL , ˆ ∣ ∣r = ñáempty emptyR , and ˆ ( )r 0SA arbitrary.
In appendix Awe prove that ˆ ( )r tSA satisfies the followingMarkov Lindblad-type equation ofmotion

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

ˆ ( ) [ ˆ ( ) ˆ ( )]

ˆ ˆ ( ) ˆ {ˆ ( ) ˆ ˆ }

ˆ ˆ ( ) ˆ {ˆ ( ) ˆ ˆ }

( )∣ ( ) ( )

† †

† †

å

r r

r r

r r

r

=-

+ G -

+ G -

º ññ

Î



t
t H t t

a t a t a a

a t a t a a

t t

d

d
i ,

1

2
,

1

2
,

, 20

SA SA SA

m m A
m m
R

m SA m SA m m

m m
L

m SA m SA m m

SA SA

,1 2

1 2 2 1 1 2

1 2 1 2 2 1

where

ˆ ( ) ˆ ( ) ˆ ˆ ( )º + +H t H t V H , 21SA S SA A

SA is the Liouvillian superoperator defined on the S+A subspace of the auxmodel and

( ) ( ) ( )pG º =t t N C L R2 , 22m m
C

m
C

m
C

C1 2 1 2
*

is the dissipationmatrix due to the coupling to contactC.
Next we turn tomulti-time correlation functions of operators in the S+A subspace of the auxmodel.

Following [26]we start consideration from two-time correlation function on real time axis. For arbitrary
operators Ô1 and Ô2 in S+Awedefine two-time (t1�t2�0) correlation function as

ˆ ( ) ˆ ( ) [ ˆ ˆ ( ) ˆ ˆ ( ) ˆ ( ) ˆ ( )] ( )†rá ñ ºO t O t O U t t O U t U tTr , , 0 0 , 0 . 231 1 2 2 1
aux

1 2 2
aux

2
aux aux

1

Here Û
aux

is the evolution operator in the aux system

⎡
⎣⎢

⎤
⎦⎥ˆ ( ) ˆ ( ) ( )ò¢ º -

¢
U t t T s H s, exp i d 24

t

t
aux aux
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andT is the time-ordering operator. In appendix Bwe show that (23) can be equivalently obtained from reduced
Lindblad-type evolution in the S+A subspace

ˆ ( ) ˆ ( ) ∣ ( ) ( )∣ ( ) ( )rá ñ = áá ññ- -   O t O t I t t t, , 0 0 . 25SA SA SA1 1 2 2 1 1 2 2 2

Here ∣ááI is Liouville space bra representation of theHilbert space identity operator, ∣ ( )r ññ0SA is Liouville space
ket representation of theHilbert space operator ˆ ( )r 0SA ,i is the Liouville space superoperator corresponding to

theHilbert space operator Ôi (seefigure 2)

⎪

⎪

⎧
⎨
⎩

∣
∣ ˆ ˆ
∣ ˆ ˆ ( )r
r r

r r
ññ =

ññ º

ññ º

-

+






O

O

forward branch

backward branch
26i

i i

i i

and SA is the Liouville space evolution superoperator

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )ò¢ º

¢
 t t T s s, exp d . 27SA

t

t

SA

Finally,we extend consideration tomulti-time correlation functions of arbitrary operators Ôi (iä{1,K,N})
defined on theKeldysh contour (seefigure 2) as

ˆ ( ) ˆ ( ) ˆ ( ) [ ˆ ˆ ˆ ˆ ˆ ( )] ( )t t t rá ¼ ñ º ¼T O O O T O O O UTr 0 , 28c N N c N c1 1 2 2 1 2
aux

where τi are the contour variables,Tc is the contour ordering operator, and

⎡
⎣⎢

⎤
⎦⎥ˆ ˆ ( ) ( )ò t t= -U T Hexp i d 29c c

c

aux

is the contour evolution operator. Note subscripts of operatorsOi in the right side of (28) indicate operators on
either side of the contour. In appendix Cwe prove thatmulti-time correlation functions (28) can be evaluated
solely fromMarkov Lindblad-type evolution in S+A subspace of the auxmodel

ˆ ( ) ˆ ( ) ˆ ( )
( ) ∣ ( ) ( ) ( )∣ ( ) ( )

t t t
r

á ¼ ñ

= - áá ¼ ññq q q q q q q q     
T O O O

I t t t t t1 , , , 0 0 . 30

c N N

P
SA SA SA SA

1 1 2 2

N N1 1 2 2 2 3

HereP is number of Fermi interchanges in the permutation of operators Ôi byTc, θi are indices of operators Ôi

rearranged is such away that > > >q q qt t t...
N1 2
( qt i

is real time corresponding to contour variable tqi
), q i

are the
superoperators defined in (26), and SA is the Liouville space evolution superoperator defined in (27).

Equivalence of S dynamics derived fromunitary evolution ofmodels phys and aux together with (20) and
(30) completes the proof of the possibility ofMarkov treatment for non-Markovian dynamics in open quantum
Fermi systems.

4.Numerical illustration

Application of themapping in realistic simulations relies on ability tofit hybridization function of the phys
systemwith a set of auxiliarymodes in the aux system, equations (16), (17). In general, tofit arbitrary function
one needs infinite number of auxiliarymodes, while in realistic calculations one can account for only final
number ofmodes. Thus, when applying themapping one is looking for a trade-off between accuracy and
efficiency: themore auxiliarymodes are considered the better is the fit and themore involved is procedure to
solve the auxiliary quantummaster equations (QME). For example, in [28] high accuracy offittingwith 16
auxiliarymodeswas demonstrated for theAnderson impuritymodel. However, for aux systemof this size
application of thematrix product states was necessary to solve theQME.

Alternative (or complementary) strategy is utilization of small number of auxiliarymodes (thus, relying on
relatively poorfitting)with implementation of a procedure accounting for the difference between hybridization

Figure 2.TheKeldysh contour.
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functions of the phys and aux systems. Such approachwas implemented in [19]within the dual fermion
technique. The technique employs an auxiliary fermionic degree of freedom—dual fermion—which provides a
way to account for the difference in the formof diagrammatic expansion. This allows to get accurate results
employing smaller number of auxiliarymodes. However, additional procedure (superperturbation theory) is
required on top of theQME solution (see [19] and references therein for technical details).We note in passing
that the dual fermion approach relies on ability to evaluatemulti-time correlation function in the aux system
representing phys dynamics. Thus, proof of equivalence ofmulti-time correlation functions in phys and aux
systems presented above is important for building theoretical foundation for the aux-DFmethod of [19].

Here we present a numerical simulation illustrating the equivalence of original unitary and Lindblad-type
Markov treatment for the open quantumFermi system.Wenote that the example is a simple illustration only
and that realistic simulationswill requiremore than two auxiliarymodes and/or procedure to correct for
approximate hybridization function to reproduce dynamics in the physical system. Such considerations have
been done by us previously [19, 24].

We consider the Anderson impuritymodel (figure 3(a))

ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ ) ( )
{ }

†

{ }

† † †å å åe e= + + + +
s

s s
s

s s s s s s
Î  

 
Î Î  

H d d Un n c c V d c V c d , 31
k L R

k k k k k k k
,

0
, ,

*

where ˆ ˆ ˆ†
=s s sn d d .We calculate the system evolution after connecting initially empty site to baths at time t=0.

Parameters of the simulations are (numbers are in arbitrary units of energy E0): ε0=0 andU=1.We assume

( )
( ) ( )

( )g
e g

G =
- +

E
t

E 2
, 32K K

K

K K

2

2 2

where ( ) ∣ ∣ ( )p d eG º å -ÎE V E2K k K k k
2 is the electron escape rate into contactK (K=L,R), εL=εR=0,

γL=γR=0.2, and tL=tR=1.
For simplicity, we consider infinite bias, so that auxiliarymodel with only two sites (figure 3(b)) is sufficient

to reproduce dynamics in the physical system. Aftermapping, εL and εR become on-site energies of the auxiliary
sites and γL and γR are taken as dissipation rates due to coupling to the L andR baths, respectively. In the
auxiliarymodel we compare unitary evolution calculatedwithin numerically exact td-DMRG [8, 9, 30, 31]with
LindbladQME results. Time is shown in units of = t E0 0, currents in units of = I E0 0 , and  is assumed
to be 1. Figure 4 shows level population, ˆ= á ñsn n0 , as well as left, IL, and right, IR, currents in the system after
quench. Close correspondence between the two numerical results is an illustration for exact analytical
derivations presented in section 3.

5. Conclusions

Weconsider an open quantumFermi system S coupled to a number of external Fermi baths each at its own
equilibrium (each bath has its own electrochemical potentialμi and temperatureTi). The evolution of themodel
(systemplus baths) is unitary.We show that reduced dynamics of the system S in the original unitary non-
Markovmodel can be exactly reproduced byMarkov non-unitary Lindblad-type evolution of an auxiliary
system,which consists of the system S coupled to a number of auxiliarymodesAwhich in turn are coupled to
two Fermi baths L andR: one full (m  +¥L ) and one empty (m  -¥R ). The proof is performed in two
steps:first we show that reduced S dynamics in the physicalmodel is equivalent to reduced dynamics of S in the
auxiliarymodel, whenA degrees of freedom and the two baths are traced out; second, we show that reduced
dynamics of S+ A in the auxiliarymodel with unitary evolution of themodel can be exactly reproduced by the
Lindblad-typeMarkov evolution of S+ A. The correspondence is shown to hold for reduced densitymatrix and
formulti-time correlation functions defined on theKeldysh contour. Our study extends a recent work about
Bose systems [26] to open Fermi systems and beyond only reduced densitymatrix consideration. Establishing
the possibility of exactmapping of reduced unitary non-Markov dynamics tomuch simpler non-unitary
Markov Lindbald-type treatment setsfirmbasis for auxiliaryQMEmethods employed in, e.g. AMEA [17] or

Figure 3.Original Anderson impurity (a) and corresponding auxiliary (b)models.
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aux-DF [19] approaches.We note that in practical implementations improving the quality ofmapping can be
based on increasing number ofAmodes, as is done in advanced AMEA implementations [28], or by utilization
of expansion in discrepancy between physical and auxiliary hybridization functions, as is done in the dual
fermion formulation [29], or both. Scaling performance of the two approaches tomapping quality enhancement
is a goal for future research.
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Science Foundation under grant CHE-1565939 (MG). EA gratefully acknowledges financial support by the
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AppendixA.Derivation of equation (20)

Herewe prove that reduced densitymatrix of S+A in the auxmodel satisfiesMarkov Lindblad-type equation-
of-motion (EOM), equation (20).

We start by considering unitary evolution of the auxmodel. Heisenberg EOM for bath annihilation operator

ĉCk is

Figure 4.Unitary (filled circles, red) and Lindblad-type (solid line, blue) evolution in auxiliarymodel offigure 3(b) after connecting
initially empty central site to filled L and emptyR baths. Shown are population of the level (a) and left (b) and right (c) currents. See text
for parameters.
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ˆ ( ) [ ˆ ( ) ˆ ( )] ˆ ( ) ( ) ˆ ( ) ( )åe= = - -
Ît

c t H t c t c t t a t
d

d
i , i i . A.1Ck Ck Ck Ck

m A
m
C

m
aux *

Its formal solution is

ˆ ( ) ˆ ( ) ( ) ˆ ( ) ( )( )òå= -e e-

Î

-c t c t s a se 0 i d e . A.2Ck
t

Ck
m A

m
C

t
t s

m
i

0

iCk Ck*

Thus,Heisenberg EOM for an arbitrary operator Ô on S+A can bewritten as

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎫
⎬
⎭

ˆ ( ) [ ˆ ( ) ˆ ( )] [ ˆ ( ) ˆ ] ˆ ( ) ( ) ˆ ( )

( ) ˆ ( ) ˆ ( ) [ ˆ ( ) ˆ ( )]

( ) [ ˆ ( ) ˆ ( )] ˆ ( ) ˆ ( )

ˆ ( ) ( ) ˆ ( ) [ ˆ ( ) ˆ ( )]

( )

† ( )

† ( ) †

† ( ) †

( ) †

ò

ò

ò

ò

å å å

å

å å

å

z

z

= - -

+ +

- +

+ -

z
e e

e e
z

z
e e

e e
z

Î Î

-

¢Î
¢

- -
¢

¢Î
¢

-
¢

Î ¢Î
¢

-
¢

-

¢Î
¢

- -
¢

t
O t H t O t t O t a c t s a s

t c t s a s O t a t

t O t a t c t s a s

t c t s a s O t a t

d

d
i , i , e 0 i d e

e 0 i d e ,

, e 0 i d e

e 0 i d e , ,

A.3

SA
m A k R

m
R

m
t

Rk
m A

m
R

t
t s

m

m
R t

Rk
m A

m
R

t
t s

m m

k L
m
L

m
t

Lk
m A

m
L

t
t s

m

m
L t

Lk
m A

m
L

t
t s

m m

i

0

i

i

0

i

i

0

i

i

0

i

Rk Rk

Rk Rk

Lk Lk

Lk Lk

*

*

*

*

where ζ=±1 if Ô contains even/odd number of fermion operators, and [,]ζ is (anti)commutator
for ( )z = - 1.

For future reference we introduce

ˆ ( ) ˆ ( ) ( )( ) å
p

º e

Î

-c t
N

c
1

2
e 0 A.4C

C k C

t
Ck

in i Ck

which satisfies anti-commutation relations

{ˆ ( ) ˆ ( )} ( ) ( )( ) ( ) † d d= -c t c s t s, , A.5C C C C
in in

,1 2 1 2

{ˆ ( ) ˆ ( )} {ˆ ( ) ˆ ( )} ( )( ) ( ) ( ) † ( ) †= =c t c s c t c s, , 0. A.6C C C C
in in in in
1 2 1 2

The delta in time is due to the fact that the contact density of statesNC is constant, and, thus

( ) ( ) ( )òå e e p dº =e e

Î

- -N N te d e 2 A.7
k C

t
C

t
C

i iCk

is satisfied.Note also that

( ) ( ) ( ) ( )ò d - =s t s f s f td
1

2
A.8

t

0

holds for arbitrary function f (t).
Using (A.4), (A.7), and (A.8) in (A.3) leads to

ˆ ( ) [ ˆ ( ) ˆ ( )]

{ [ ˆ ( ) ˆ ( )] ˆ ( ) ( ) ˆ ( )[ ˆ ( ) ˆ ( )]

( ) [ ˆ ( ) ˆ ( )] ˆ ( ) ˆ ( )[ ˆ ( ) ˆ ( )] }

{ [ ˆ ( ) ˆ ( )] ˆ ( ) ˆ ( ) [ ˆ ( ) ˆ ( )]

ˆ ( )[ ˆ ( ) ˆ ( )] [ ˆ ( ) ˆ ( )] ˆ ( )} ( )

† ( ) ( ) †

( ) † ( ) †

† †

† †

å

å

z

z

z

z

=

- +

- -

- G - G

- G + G

z z

z z

z z

z z

Î

Î

t
O t H t O t

t O t a t c t t c t O t a t

t O t a t c t t c t O t a t

O t a t a t a t O t a t

a t O t a t O t a t a t

d

d
i ,

i , ,

, ,

1

2
, ,

, , , A.9

SA

m A
Rj m R m

R
R m

m
L

m L m
L

L m

m m A
m m
R

m m m m
R

m m

m m
L

m m m m
L

m m

in in

in in

,1 2

1 2 1 2 2 1 2 1

1 2 2 1 2 1 1 2

*

*

wherewe employed definition of the dissipationmatrix, equation (22).
Next we are going towrite EOM for expectation value of Ô

ˆ ( ) [ ˆ ( ) ˆ ( )] ( )rá ñ ºO t O tTr 0 A.10aux

by averaging (A.9)with initial density operator of the auxmodel, equation (19). Because initially S+A is from
the baths and because bath L is full andR is empty (see figure 1(b))

ˆ ( ) ˆ ˆ ˆ ( ) ˆ ( ) ˆ ˆ ˆ ( ) ( )( ) † ( ) ( ) ( ) †r r r r= = = =c t c t c t c t 0 A.11L L L L R R R R
in in in in
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holds. Thus, second and third lines in (A.9) do not contribute, and EOM for the expectation value of ˆ ( )O t is

ˆ ( ) [ ˆ ( ) [ ˆ ( ) ˆ ( )]

[ ˆ ( ){ [ ˆ ( ) ˆ ( )] ˆ ( ) ˆ ( )[ ˆ ( ) ˆ ( )]

[ ˆ ( ) ˆ ( )] ˆ ( ) ˆ ( )[ ˆ ( ) ˆ ( )] }] ( )

† †

† †

å

r

r z

z

= -

´ G - G

+ G - G

z z

z z

Î

t
O t H t O t

O t a t a t a t O t a t

O t a t a t a t O t a t

d

d
Tr 0 i ,

1

2

Tr 0 , ,

, , . A.12

SA

m m A
m m
R

m m m m
R

m m

m m
L

m m m m
L

m m

aux

,

aux

1 2

1 2 1 2 1 2 1 2

1 2 2 1 1 2 2 1

Because Ô is arbitrary in S+A, after transforming to Schrödinger picture (A.12) can be rewritten as EOM for
ˆ ( )r taux

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

ˆ ( ) [ ˆ ( ) ˆ ( )]

ˆ ˆ ( ) ˆ {ˆ ( ) ˆ ˆ }

ˆ ˆ ( ) ˆ {ˆ ( ) ˆ ˆ } ( )

† †

† †

å

r r

r r

r r

=-

+ G -

+ G -

Î

t
t H t t

a t a t a a

a t a t a a

d

d
i ,

1

2
,

1

2
, . A.13

SA

m m A
m m
R

m m m m

m m
L

m m m m

aux aux

,

aux aux

aux aux

1 2

1 2 2 1 1 2

1 2 1 2 2 1

Finally, because only operators in S+A subspace appear in the right side of (A.13), tracing out baths degrees of
freedom leads to equation (20).

Appendix B.Derivation of equation (25)

Herewe prove that two-time correlation function of two arbitrary operators in S+A, ˆ ( ) ˆ ( )á ñO t O t1 1 2 2

(t1�t2�0), equation (23), can be equivalently obtained from reduced Lindblad-type evolution in the S+A
subspace of the auxmodel.

Let introduce t≡t1−t2�0, then ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )= +O t O t O t t O t1 1 2 2 1 2 2 2 and using equation (A.9)we get

ˆ ( ) ˆ ( ) { [ ˆ ( ) ˆ ( )]

( [ ˆ ( ) ˆ ( )] ˆ ( )

( ) ˆ ( )[ ˆ ( ) ˆ ( )]

( ) [ ˆ ( ) ˆ ( )] ˆ ( )

ˆ ( )[ ˆ ( ) ˆ ( )] )

( [ ˆ ( ) ˆ ( )] ˆ ( )

ˆ ( )[ ˆ ( ) ˆ ( )]

[ ˆ ( ) ˆ ( )] ˆ ( )

ˆ ( )[ ˆ ( ) ˆ ( )] )} ˆ ( ) ( )

† ( )

( ) †

( ) †

( ) †

†

†

†

†

å

å

z

z

z

z

+ = + +

- + + +

+ + + +

- + + +

- + + +

- G + + +

- G + + +

+ G + + +

- G + + +

z

z

z

z

z

z

z

z

Î

Î

t
O t t O t H t t O t t

t O t t a t t c t t

t c t t O t t a t t

t O t t a t t c t t

t c t t O t t a t t

O t t a t t a t t

a t t O t t a t t

O t t a t t a t t

a t t O t t a t t O t

d

d
i ,

i ,

,

,

,

1

2
,

,

,

, . B.1

SA

m A
m
R

m R

m
R

R m

m
L

m L

m
L

L m

m m A
m m
R

m m

m m
R

m m

m m
L

m m

m m
L

m m

1 2 2 2 2 1 2

1 2 2
in

2

1
in

2 1 2 2

1 2 2
in

2

1
in

2 1 2 2

,
1 2 2 2

1 2 1 2 2

1 2 2 2

1 2 1 2 2 2 2

1

1

1

1

1 2

1 2 1 1 2

1 2 1 2 1

1 2 2 1 1

1 2 2 1 1

*

*

Note that for t>0

[ˆ ( ) ˆ ( )] [ˆ ( ) ˆ ( )] ( )( ) † ( )+ = + =z zc t t O t c t t O t, , 0. B.2C C
in

2 2 2
in

2 2 22 2

Indeed, because from equation (A.9) it is clear that ˆ ( )O t2 2 depends on ˆ ( )O s2 and ˆ ( )( )(†)c sC
in only at earlier times

(s<t2) and because equation (A.5) shows that ˆ ( )( )(†)c sC
in taken at different times anti-commutewith each other,

equation (B.2) holds.
Thus, while taking the expectation value of (B.1)with respect to ˆ ( )r 0aux , equation (19), ˆ ( )( ) † +c t tL

in
2 and

ˆ ( )( ) +c t tR
in

2 can bemoved over ˆ ( )O t2 2 for any t>0. So as in appendix A, termswith ˆ ( )( )(†)c tC
in in (B.1) again

don’t contribute (see equation (A.11)), andwe get for t>0
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ˆ ( ) ˆ ( ) [{ [ ˆ ( ) ˆ ( )]

( [ ˆ ( ) ˆ ( )] ˆ ( )

ˆ ( )[ ˆ ( ) ˆ ( )]

[ ˆ ( ) ˆ ( )] ˆ ( )

ˆ ( )[ ˆ ( ) ˆ ( )] )} ˆ ( ) ˆ ( )] ( )

†

†

†

†

å

z

z r

á + ñ = + +

- G + + +

- G + + +

+ G + + +

- G + + + ´

z

z

z

z

Î

t
O t t O t H t t O t t

O t t a t t a t t

a t t O t t a t t

O t t a t t a t t

a t t O t t a t t O t

d

d
Tr i ,

1

2
,

,

,

, 0 . B.3

SA

m m A
m m
R

m m

m m
R

m m

m m
L

m m

m m
L

m m

1 2 2 2 2 1 2

,
1 2 2 2

1 2 1 2 2

1 2 2 2

1 2 1 2 2 2 2
aux

1 2

1 2 1 1 2

1 2 1 2 1

1 2 2 1 1

1 2 2 1 1

Rearranging evolution operators, equation (24), and separating traces over S+A and L+R yields

ˆ ( ) ˆ ( ) { ˆ [ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )]} ( )†rá + ñ = + +O t t O t O U t t O t U t tTr Tr , 0 0 , B.4SA LR1 2 2 2 1
aux

2 2 2
aux aux

2

{ }ˆ ( ) ˆ ( ) ˆ [ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )] ( )†rá + ñ = + +
t

O t t O t O
t

U t t O t U t t
d

d
Tr

d

d
Tr , 0 0 . B.5SA LR1 2 2 2 1

aux
2 2 2

aux aux
2

So that (B.3) can be rewritten as

{ }ˆ [ ] {( ( ) ˆ ) [ ]}

{ ˆ ( ) [ ]} ( )

†¼ = ¼

º ¼





O
t

t O

O t

Tr
d

d
Tr Tr Tr

Tr Tr , B.6

SA LR SA SA LR

SA SA LR

1 1

1

where ( )† tSA is adjoint [32] of the Liouvillian ( ) tSA defined in (20), andwhere [ ]¼TrLR is used as a shorthand
notation for the full expression in (B.4), (B.5).

Taking into account that Ô1 is an arbitrary operator, we get

[ ] [ ] ( )¼ = ¼
t

d

d
Tr Tr B.7LR SA LR

which has solution

[ ]( ) ( ) [ ]( ) ( ) ˆ ˆ ( ) ( )r¼ = ¼ º t t t O tTr , 0 Tr 0 , 0 . B.8LR SA LR SA SA2 2

Substituting (B.8) into (B.4) leads to

ˆ ( ) ˆ ( ) [ ˆ ( )( ˆ ˆ ( ))] ( )rá + ñ = O t t O t O t t O tTr , . B.9LR SA SA1 2 2 2 1 1 2 2 2

This relation expresses two-time correlation function defined fromunitary evolution of the auxmodel in terms
of Lindblad-type evolution of S+A subspace of the auxmodel. Finally, we note that while we had restriction
t>0 in derivation of (B.3), the result is correct also for t=0, as one can see by direct comparison of the two
sides in (B.9). Equation (B.9) togetherwith (20) leads to (25).

Similarly, for t2�t1�0 one can prove that

ˆ ( ) ˆ ( ) ∣ ( ) ( )∣ ( ) ( )rá ñ = áá ññ- +   O t O t I t t t, , 0 0 . B.10SA SA SA1 1 2 2 2 1 2 1 2

AppendixC.Derivation of equation (30)

Herewe prove thatmulti-time correlation functions of arbitrary operators Ôi in S+A of the auxmodel defined
on theKeldysh contour

ˆ ( ) ˆ ( ) ˆ ( ) ( )t t tá ¼ ñT O O O , C.1c N N1 1 2 2

can be evaluated fromMarkov Lindblad-type evolution in the S+A subspace.Here operators Ôi are in the
Heisenberg picture. Projections (one-the-contour time orderings) ofmulti-time correlation functions (C.1)will
have the following form

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )
[ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )] ( )r

á ñ

=

B s B s B s C t C t C t

C t C t C t B s B s B s

.. ...

Tr ... 0 ... , C.2

m m n n

n n m m

1 1 2 2 2 2 1 1

2 2 1 1
aux

1 1 2 2

where ˆ ( )B sj j and ˆ ( )C ti i are used for operators Ôi on the backward and forward branches of the contour,
respectively (seefigure 2) andwhere

( )
> > >
> > >

-

-




t t t
s s s

... 0
... 0. C.3

n n

m m

1 1

1 1

Note, there is no ordering between the sets {ti} and {sj} (iä{1, 2,K, n} and jä{1, 2,K,m}).
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Let denote the time-ordering of the set {t1, t2,K, tn, s1, s2,K, sm} by {θ1,K, θm+n}. So that

( )q q q¼+ + -    0. C.4m n m n 1 1

Wewant to prove that projections ofmulti-time correlation functions satisfy quantum regression theorem [32]

∣ ( ) ( )
( )∣ ( ) ( )

q q q q
q r

áá ¼
¼ ññ

q q

q

+ + - + - + -+ + -   
 

I , ,

, 0 0 , C.5

SA m n m n SA m n m n

SA SA

1 1 2

1

m n m n 1

1

where q i
is superoperator, equation (26), corresponding to operator B̂ or Ĉ (backward or forward branch of

the contour, respectively) at real time θi.
We prove (C.5) bymathematical induction. First, we note that equations (25) and (B.10) are special cases of

equation (C.5)withm+n=2. Suppose that for any combination (m, n) satisfyingm+n=k, equation (C.5)
holds. Now let consider (k+1)-time correlation function

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )qá ¼ ¼ ñq ++B s B s B s O C t C t C t , C.6m m k n n1 1 2 2 1 2 2 1 1k 1

where θk+1>tn>tn−1>...>t1�0 and θk+1>sm>sm−1>...>s1�0. As previously, we time-order
both sets

( )q q q q> ¼+ -    0, C.7k k k1 1 1

and take the derivative with respect to the latest time

⎧⎨⎩
⎫⎬⎭

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

∣ ( ) ( ) ( )∣ ( )

ˆ ∣ ( ) ( ) ( )∣ ( )

{ ˆ ( ) ∣ ( ) ( ) ( )∣ ( ) } ( )

q
q

q
q q q q q r

q
q q q q q r

q q q q q q r

á ¼ ¼ ñ

º áá ¼ ññ

= áá ¼ ññ

= áá ¼ ññ

q q

q q

q q

+
+ +

+
+ -

+
+ -

+ + -

+

+

+

    

   

    

B s B s B s O C t C t C t

I

O I

O I

d

d

d

d
, , , 0 0

Tr
d

d
, , , 0 0

Tr , , , 0 0 , C.8

k
m m k k n n

k
k k k k

SA
k

LR k k k k LR

SA SA k LR k k k k LR

1
1 1 2 2 1 1 2 2 1 1

1

aux
1

aux
1

aux
1

aux

1

aux
1

aux
1

aux
1

aux

1
aux

1
aux

1
aux

1
aux

k k

k k

k k

1

1

1

wherewe followed the argument leading to (B.5) and (B.6) in appendix B. In (C.8)  aux is the Liouville space
analog of theHilbert space evolution operator Û

aux
defined in equation (24).

Taking into account that ˆ qO
1
is an arbitrary operator, we get

∣ ( ) ∣ ( )

( ) ∣ ( ) ∣ ( ) ( )
q

q r

q q r

áá ¼ ññ

= áá ¼ ññ
+

+

+ +



 

I

I

d

d
, 0 0

, 0 0 , C.9
k

LR k LR

SA k LR k LR

1

aux
1

aux

1
aux

1
aux

where ∣ ( ) ∣ ( )q ráá ¼ ññ+I , 0 0LR k LR
aux

1
aux is shorthand notation for the expression introduced in (C.8).

Solving (C.9) and utilizing quantum regression theorem for its initial condition, θk+1=θk, leads to

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )
∣ ( ) ( ) ( )∣ ( ) ( )

q
r

á ¼ ¼ ñ
= áá ¼ ññ

q

q q q q q q q q

++

+ + -     
B s B s B s O C t C t C t

I t t t t t, , , 0 0 C.10

m m k n n

SA SA SA SA

1 1 2 2 1 2 2 1 1k

k k k k k k

1

1 1 1 1 1

which is quantum regression theorem for (k+1)-time correlation function. Thus, by inductionwe prove
equation (30).
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