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Abstract

We show that an open fermionic system coupled to a continuous environment with unitary system-
environment evolution can be exactly mapped onto an auxiliary system consisting of the physical
fermion system and a set of discrete fermionic modes subject to non-unitary Lindblad-type system-
modes evolution in such a way that reduced dynamics of the fermionic system in the two cases are the
same. Conditions for equivalence of reduced dynamics in the two systems are identified and a proofis
presented. Our study extends recent work on Bose systems (Tamascelli et al 2018 Phys. Rev. Lett. 120
030402) to the case of open quantum Fermi systems and to multi-time correlation functions.
Numerical simulations within a generic junction model are presented for illustration.

1. Introduction

Open nonequilibirum systems are at the forefront of experimental and theoretical research due to the rich and
complex physics they provide access to as well as due to applicational prospects of building nanoscale devices for
quantum based technologies and computations [ 1-3]. Especially intriguing in term of both fundamental science
and potential applications are effects of strong correlations. A number of impurity solvers capable of treating
strongly correlated systems coupled to continuum of baths degrees of freedom were developed. Among them are
numerical renormalization group in the basis of scattering states [4, 5], flow equations [6, 7], time-dependent
density matrix renormalization group [8, 9], multilayer multiconfiguration time-dependent Hartree (ML-
MCTDH) [10, 11], and continuous time quantum Monte Carlo [12—14] approaches. These numerically exact
techniques are very demanding and so far are mostly applicable to simple models only.

At the same time, accurate numerically inexpensive impurity solvers are in great demand both as standalone
techniques to be applied in simulation of, e.g. nanoscale junctions and as a part of divide-and-conquer schemes
such as, e.g. dynamical mean-field theory (DMFT) [15, 16]. In this respect ability to map complicated non-
Markovian dynamics of a system onto much simpler Markov consideration is an important step towards
creating new computational techniques applicable in realistic simulations. In particular, such mapping was used
in auxiliary master equation approach (AMEA) [17, 18] introducing numerically inexpensive and pretty
accurate solver for the nonequilibrium DMFT. Within AMEA the original unitary evolution is substituted with a
Lindblad-type quantum master equation consideration of an expanded system (system plus set of auxiliary
modes). Another example is the recent formulation of the auxiliary dual-fermion (aux-DF) method [19]. Aux-
DF technique complements the mapping with a procedure correcting for deviation of original hybridization
functions from those in the auxiliary system. We note that similar mapping ideas are employed also in the
reaction coordinate formalism [20-22]. While the mappings appear to be very useful and accurate, in most cases
only semi-quantitative arguments to justify the mapping were presented with main supporting evidence being
benchmarking versus numerically exact computational techniques. In particular, a justification for the mapping
was put forward in [23-25] based upon the singular coupling derivation of the Lindblad equation.

©2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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(b)

Figure 1. Sketch of an open fermionic system S. Shown are (a) physical system coupled to N baths and (b) illustration for an auxiliary
system with coupling to full (left) and empty (right) baths.

Recently, a rigorous proof of non-Markov to Markov mapping for open Bose quantum systems was
presented in the literature [26]. It was shown that the evolution of reduced density matrix in non-Markov system
with unitary system-environment evolution can be equivalently obtained by a Markov evolution of an extended
system (system plus modes of environment) under non-unitary (Lindblad-type) evolution. Here, we extend the
consideration of [26] to fermionic open quantum systems and to multi-time correlation functions. The
structure of the paper is the following. After introducing physical and auxiliary models of an open quantum
Fermi system in section 2 we discuss non-Markov to Markov mapping procedure in section 3. Exact
mathematical proofs are given in Appendices. Section 4 presents numerical illustration of the mapping for a
simple generic model of a junction. We conclude in section 5.

2. Models

We consider an open fermionic system S coupled to an arbitrary number N of external baths, initially each at its
own thermodynamic equilibrium, i.e. characterized by its own electrochemical potential and temperature (see
figure 1(a)). The Hamiltonian of the model is

N
~ phys A A A
H™(t) = Hg(t) + > (Hp + Vip). (D
B=1
Here Hs(t) and Hg (B € {1, ..., N}) are Hamiltonians of the system and baths. Vep introduces coupling of the
system to bath B. While the Hamiltonian of the system is general and may be time-dependent, we follow the
usual paradigm by assuming bi-linear coupling in constructing fermionic junction models

HB = Z EBk Egkak, (2)
keB
N at
Vsg = > >  (Vipk d; Gg + h.c), 3)
keBieS

where (ji' (ﬁ,-) and E};k () create (annihilate) electron in level i of the system S and level k of bath B. In the
model, dynamics of the system-plus-baths evolution is unitary. Below we call this model phys (physical). We
note in passing that extension of the consideration to other types of system—baths couplings is straightforward,
aslongas baths are quadratic in the Fermi operators.

The other configuration we will consider is a model we shall call aux (auxiliary; see figure 1(b)). Here, the
same system S is coupled to a number of auxiliary modes A, which in their turn are coupled to two baths. There
are two Fermi baths in the configuration: one (L) is completely full (11; — +00), the other (R) is completely
empty (i — —00). The Hamiltonian of the total system is

™ () = Hs(t) + Voa + Ha + > (He + Vao), )
C=L,R

where Hj is the same as in (1), Hy represents set of modes

N A At o
Hy = Z Hml,nzcz,;ﬁlrzm2 (5)
my,myEA
and Viy their interaction with the system
~ A 5T A
Vsa = S (Vitd; a, + hc.). (6
€S meA

Here 4, (d,,) creates (annihilates) electron in the auxiliary mode m in A.
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H¢ represents continuum of states in contact C

He =" eablybor 7
keC
with constant density of states
Nc(E) = ) 6(E — ecx) = const 8)
keC

and V¢ couples auxiliary modes A to bath C(L or R)
VAC = Z Z (tg&,j;éck + h.c.). 9)

keC meA
Dynamics of the whole configuration is unitary.

In the next section we show that the reduced time evolution of S in models phys and aux is the same (subject
to certain conditions) and that the reduced dynamics of S + A in model aux satisfies an appropriate Lindblad
Markov evolution. This establishes procedure for Markov non-unitary Lindblad-type treatment of S + A in aux
exactly representing overall (i.e. system plus baths) unitary non-Markov dynamics of S in phys by tracing out A
degrees of freedom.

3. Non-Markov to Markov mapping

Consideration of the mapping consists of three levels of description: (1) overall (S plus baths) unitary dynamics
of the physical system (phys); (2) overall (S + A plus baths) unitary dynamics of the auxiliary system (aux);

(3) non-unitary Lindblad-type dynamics of S + A in the auxiliary system (aux). Below we first discuss
equivalence of the unitary dynamics of S in phys and aux systems, then we prove equivalence of unitary and
Lindblad-type evolutions in the aux system.

First, we are going to prove that with an appropriate choice of parameters of aux the dynamics of S can be
equivalently represented in the original model phys and auxiliary model aux, under assumption that the
dynamics of the whole system is unitary. Because non-interacting baths are fully characterized by their two-time
correlation functions, equivalence of system-bath(s) hybridizations (i.e. correlation functions of the bath(s)
dressed with system-bath(s) interactions) for the two models indicates equivalence of the reduced system
dynamics in the two cases. For example, hybridization function is the only information about baths in
numerically exact simulations of strongly correlated systems [13]. Nonequilibrium character of the system
requires fitting two projections of the hybridization function (also called self-energy in the literature). In
particular, these may be retarded and Keldysh projections. Let X% (E) and ¥X (E) be matrices introducing the
corresponding hybridization functions for bath B of the physical problem (figure 1(a)). Retarded projection
carries information on bath’s spectral function and strength of system-bath coupling yielding dissipation rates
for the system due to coupling to the bath. Keldysh projection yields information on bath’s population which by
Pauli principle defines possibility of electron exchange between system and bath

(E5E)i = Y Visk & (B) Vikjo (10)
keB
CEED; = > Visk g (E) Viijs (11)
keB
where ggiK )(E) are the Fourier transforms of retarded (Keldysh) projections of the decoupled (Vg5 = 0) electron
Green’(s) function gy, (7, 7') = —i(T; Cgr(T) Egk (7")) in contact B. The parameters of the auxiliary model should
then be chosen such that the total hybridization functions for the system
N
SI(E) = ) Yy(E), (12)
B=1
N
SKE) =21) (1 — 2fz(E)Im Zj(E) (13)
B=1

are as close as possible to the corresponding hybridization functions, ¥"(E) and $X(E), of Sin the auxiliary
model (figure 1(b)) [17, 18, 24]. The latter have contribution from full (L) and empty (R) baths, and from
auxiliary modes (A)

S'(B) = S1(E) + SR(B), (14)
SKE) = 21 Im(SR(E) — S1(B)), (15)

where we assume modes A initially in equilibrium with its contact (or in stationary state if coupled to L and R).
Requirement of equivalence can be expressed as
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2iImX7(E) + ZK(E)

Im ¥} (E) = i (16)
m $5.(5) = 2i ImE’(i)i— ZK(E). (17)

Thus, the problem reduces to fitting known functions in the right side of the expression with multiple
contributions from auxiliary modes to the hybridization functions in the left side. We note that the knowledge of
total (sum of contributions from all baths) hybridization function (retarded and Keldysh components) allows to
fully determine interacting correlation functions in the S subspace of phys. That is, no information on
contribution from each separate bath is required. Thus, any number of baths B in physical system can be
represented by only two baths (one full and one empty) in the auxiliary system. The exact mapping we prove
below allows to evaluate correlation functions (and in particular, single particle Green’s functions) in the S
subspace of the physical system by considering Lindblad-type evolution in the aux system. After the
correlation functions has been evaluated fluxes between the system S and baths B can be evaluated utilizing
the well-known exact Jauho—Meir—Wingreen and similar expressions.

In principle fitting (16), (17) can be done in many different ways [24]. For example, possibility of exact fitting
of an arbitrary function with set of Lorentzians was discussed in [27]. In auxiliary systems such fitting
corresponds to a construction where each auxiliary mode is coupled to its own bath. Note that in practical
simulations accuracy of the results can be improved either by increasing number of auxiliary modes or by
considering more general (nondiagonal) level-bath geometries in the auxiliary system, as is implemented in, e.g.
AMEA [28], or by employing diagrammatic expansion related to the difference between true and fitted
hybridization functions, as is realized in, e.g. dual fermion approach [29], or both.

After having established the equivalence of reduced system (S) dynamics in phys and aux, we now turn to
consideration of evolution of the aux model. We will show thatreduced S + A dynamics derived from unitary
evolution of the aux model can be exactly represented by a suitable non-unitary Lindblad-type evolution.

Following [26] we consider the reduced density operator of S + A in aux, pg,, which is defined by
integrating out the baths degrees of freedom from the total density operator p2**(t)

Psa(t) = Trrp[p*™™(1)] (18)
p*™* follows an unitary evolution with initial condition given by S + A decoupled from the baths
i)aux(o) = ﬁL ® ,aSA(O) & ﬁRy (19)

where p;, = |full) (full|, p, = |empty) (empty|, and pg, (0) arbitrary.
In appendix A we prove that pg, (f) satisfies the following Markov Lindblad-type equation of motion

%mmzwmmwwm

A A o | . At A
+ Z [Fﬁlmz(amszA(t)aml_z{psA(t)) arLlamz})

my,my €A
At oa N L. A A
+ Thon (84,20, = 300, ) ) |
= Lsa()|pss (1)), (20)
where

Hsa (1) = As() + Vsa + Ha, e2))

L, is the Liouvillian superoperator defined on the S + A subspace of the aux model and
LS ., = 27t (65)*Ne (C =L, R) (22)

is the dissipation matrix due to the coupling to contact C.

Next we turn to multi-time correlation functions of operators in the S + A subspace of the aux model.
Following [26] we start consideration from two-time correlation function on real time axis. For arbitrary
operators 0O,and O,in S + A we define two-time (; > t, > 0) correlation function as

<él(t1)éz(t2)> = Tr[él Uaux(th tz)éz Oaux(tz, 0) p**(0) Uauﬂ(tb 0)]. (23)

Here U™ is the evolution operator in the aux system

A t A
U™, t") = Texp[fi f ds H“"(s)] (24)
t/
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- (forward branch)

+ (backward branch)

Figure 2. The Keldysh contour.

and T'is the time-ordering operator. In appendix B we show that (23) can be equivalently obtained from reduced
Lindblad-type evolution in the S + A subspace

(O1(1) Os(1)) = ((I|O] Usa(ti, 12) O3 Usa(ta, 0)]pg, (0))). (25)

Here ((I|is Liouville space bra representation of the Hilbert space identity operator, | pg, (0))) is Liouville space
ket representation of the Hilbert space operator ps, (0), O; is the Liouville space superoperator corresponding to

the Hilbert space operator O; (see figure 2)

Olp)) = O;7lp)) O;p forward branch 06
W Oflp)) = p O; backward branch

and Usy is the Liouville space evolution superoperator

Usa(t, ') = T exp [ f "ds ESA(S)]. 27)

Finally, we extend consideration to multi-time correlation functions of arbitrary operators 0;Ge{L,...,N})
defined on the Keldysh contour (see figure 2) as

(T, Oy(1) Oy(7y) ... On(1n)) = TI[T; Oy O, ... Oy U. p™(0)], (28)

where 7; are the contour variables, T is the contour ordering operator, and
O=T exp[—i f dr Ha”"(T)] (29)
c

is the contour evolution operator. Note subscripts of operators O; in the right side of (28) indicate operators on
either side of the contour. In appendix C we prove that multi-time correlation functions (28) can be evaluated
solely from Markov Lindblad-type evolutionin S + A subspace of the aux model

(T, O1(1)0x(7) ... On(Tn))
= (=DP{{I1Og, Usa(tg,, ts,) Op, Usa(to, tg,) -.. OgUsaltoy, 0)]pgs(0))). (30)

Here Pis number of Fermi interchanges in the permutation of operators 0; by T, 0; are indices of operators 0;
rearranged is such a way thatty, > t5,> ... >1y,, (ty, is real time corresponding to contour variable 7,), Oy, are the
superoperators defined in (26), and Usy, is the Liouville space evolution superoperator defined in (27).

Equivalence of S dynamics derived from unitary evolution of models phys and aux together with (20) and
(30) completes the proof of the possibility of Markov treatment for non-Markovian dynamics in open quantum
Fermi systems.

4. Numerical illustration

Application of the mapping in realistic simulations relies on ability to fit hybridization function of the phys
system with a set of auxiliary modes in the aux system, equations (16), (17). In general, to fit arbitrary function
one needs infinite number of auxiliary modes, while in realistic calculations one can account for only final
number of modes. Thus, when applying the mapping one is looking for a trade-off between accuracy and
efficiency: the more auxiliary modes are considered the better is the fit and the more involved is procedure to
solve the auxiliary quantum master equations (QME). For example, in [28] high accuracy of fitting with 16
auxiliary modes was demonstrated for the Anderson impurity model. However, for aux system of this size
application of the matrix product states was necessary to solve the QME.

Alternative (or complementary) strategy is utilization of small number of auxiliary modes (thus, relying on
relatively poor fitting) with implementation of a procedure accounting for the difference between hybridization
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]

Figure 3. Original Anderson impurity (a) and corresponding auxiliary (b) models.

functions of the phys and aux systems. Such approach was implemented in [19] within the dual fermion
technique. The technique employs an auxiliary fermionic degree of freedom—dual fermion—which provides a
way to account for the difference in the form of diagrammatic expansion. This allows to get accurate results
employing smaller number of auxiliary modes. However, additional procedure (superperturbation theory) is
required on top of the QME solution (see [19] and references therein for technical details). We note in passing
that the dual fermion approach relies on ability to evaluate multi-time correlation function in the aux system
representing phys dynamics. Thus, proof of equivalence of multi-time correlation functions in phys and aux
systems presented above is important for building theoretical foundation for the aux-DF method of [19].

Here we present a numerical simulation illustrating the equivalence of original unitary and Lindblad-type
Markov treatment for the open quantum Fermi system. We note that the example is a simple illustration only
and that realistic simulations will require more than two auxiliary modes and/or procedure to correct for
approximate hybridization function to reproduce dynamics in the physical system. Such considerations have
been done by us previously [19, 24].

We consider the Anderson impurity model (figure 3(a))

N AT oA o e A A
H = Z cody d, + Uifi + Z Z (skc,j(,ck(, + Vid, éro + V,zkc,jodg), (31)
oe{l,l} keL,R oe{1,]}

where 7, = ﬁ; d,. We calculate the system evolution after connecting initially empty site to baths at time t = 0.

Parameters of the simulations are (numbers are in arbitrary units of energy Ey): £ = 0and U = 1. We assume
i

(E— )’ + (/2

where I'(E) = 2m)° | Vil?6 (E — &) is the electron escape rate into contact K (K = L, R),ep = eg = 0,

YL = YR = 0.2, and I =tg = 1.

For simplicity, we consider infinite bias, so that auxiliary model with only two sites (figure 3(b)) is sufficient
to reproduce dynamics in the physical system. After mapping, €; and e become on-site energies of the auxiliary
sites and y; and g are taken as dissipation rates due to coupling to the L and R baths, respectively. In the
auxiliary model we compare unitary evolution calculated within numerically exact td-DMRG [8, 9, 30, 31] with
Lindblad QME results. Time is shown in units of t, = 7 /E,, currents in units of I, = E,//,and 7 is assumed
to be 1. Figure 4 shows level population, ny = (#,), as well as left, I;, and right, I, currents in the system after
quench. Close correspondence between the two numerical results is an illustration for exact analytical
derivations presented in section 3.

Tk (E) = vk (32)

5. Conclusions

We consider an open quantum Fermi system S coupled to a number of external Fermi baths each at its own
equilibrium (each bath has its own electrochemical potential ;1; and temperature T;). The evolution of the model
(system plus baths) is unitary. We show that reduced dynamics of the system S in the original unitary non-
Markov model can be exactly reproduced by Markov non-unitary Lindblad-type evolution of an auxiliary
system, which consists of the system S coupled to a number of auxiliary modes A which in turn are coupled to
two Fermi baths L and R: one full (1; — +00)and one empty (u — —0o0). The proofis performed in two
steps: first we show that reduced S dynamics in the physical model is equivalent to reduced dynamics of Sin the
auxiliary model, when A degrees of freedom and the two baths are traced out; second, we show that reduced
dynamics of S 4 A in the auxiliary model with unitary evolution of the model can be exactly reproduced by the
Lindblad-type Markov evolution of S + A. The correspondence is shown to hold for reduced density matrix and
for multi-time correlation functions defined on the Keldysh contour. Our study extends a recent work about
Bose systems [26] to open Fermi systems and beyond only reduced density matrix consideration. Establishing
the possibility of exact mapping of reduced unitary non-Markov dynamics to much simpler non-unitary
Markov Lindbald-type treatment sets firm basis for auxiliary QME methods employed in, e.g. AMEA [17] or

6
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(b)

06 r

I /1,

03 r

(©)

04 r

I /1,

02 r

0 05 1
t/t,

Figure 4. Unitary (filled circles, red) and Lindblad-type (solid line, blue) evolution in auxiliary model of figure 3(b) after connecting
initially empty central site to filled L and empty R baths. Shown are population of the level (a) and left (b) and right (c) currents. See text
for parameters.

aux-DF [19] approaches. We note that in practical implementations improving the quality of mapping can be
based on increasing number of A modes, as is done in advanced AMEA implementations [28], or by utilization
of expansion in discrepancy between physical and auxiliary hybridization functions, as is done in the dual
fermion formulation [29], or both. Scaling performance of the two approaches to mapping quality enhancement
is a goal for future research.
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Appendix A. Derivation of equation (20)

Here we prove that reduced density matrix of S + A in the aux model satisfies Markov Lindblad-type equation-
of-motion (EOM), equation (20).

We start by considering unitary evolution of the aux model. Heisenberg EOM for bath annihilation operator
ECk is
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d A . 5 aux A . A . A~
ECCk(t) = 1i[H"™ (1), ex (D] = —iealor(®) — 1 > t5* Am(D). (A.1)
meA
Its formal solution is
Cor(t) = e ¥k E (0) — i Z (t,i)*f ds elext=9g  (s). (A.2)
meA 0

Thus, Heisenberg EOM for an arbitrary operator O on S + A can be written as

{th,ﬁ[é(t), a,,t]c(eiweRk(O) —1 3 () f " ds eist(ts)aAm/(s)]
0

keR m'eA

%O(t) = i[Asu (1), O] — i3

meA

+ <;<t5>*(eifkkfe;k(0) iy ds eika“-%;/(s)][é(t), amm]
0

m'eA

- Zl(t,ﬁ)*[OA(t), &m(t)]g[eigl"thk(O) +i f ds eika<fS>a;,(s))
0

kel m'eA

+ Ct,ﬁ(ei“flktELk(O) —i > @t j; "ds eifﬂk(t5>&m/(s)][(5(t), a,;(t)k]},

m'eA
(A.3)
where ¢ = £1if O contains even/odd number of fermion operators, and [,]¢is (anti)commutator
for( = (—)1.
For future reference we introduce
civy = L 3 et (0) (A4)
27TNC keC
which satisfies anti-commutation relations
{e8(), e8V7(9)} = ey, 6(t — 3), (A.5)
{68y, e )} = €8V @), e (9)) = 0. (A.6)
The delta in time is due to the fact that the contact density of states N is constant, and, thus
> et = [de Ne(@ye ™ = 27Ncé (1) (A7)
keC
is satisfied. Note also that
4 1
Jasee 950 =fw (A9)
holds for arbitrary function f ().
Using (A.4), (A.7),and (A.8) in (A.3) leads to
d A N A
Eo(t) = i[Hsa (), O(#)]
— i 2 [0, au Ml & @) + () & OI0®), dn(t)
meA
— ) 10, anOIE™ (1) — et D10, a1}
1 A At " W PN N
— = 2 TR0, ag, (D Ay (D) = (T3, A, (O TOW), A, ()]
2 my,myEA
— T OIO@), af (Dl + Th, [0, A (D] 4, (1)), (A.9)
where we employed definition of the dissipation matrix, equation (22).
Next we are going to write EOM for expectation value of O
(O1)) = Tr[Ot) p™(0)] (A.10)

by averaging (A.9) with initial density operator of the aux model, equation (19). Because initially S 4+ A is from
the baths and because bath L is full and R is empty (see figure 1(b))

GO p = Py V() = VNP = pr VT =0 (A-1D)
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holds. Thus, second and third lines in (A.9) do not contribute, and EOM for the expectation value of 6] (t)is

<%é(t)> — Te[p™(0)i[Hsa (1), O(H)] — —

xS Tr[p*™ (O (TR, [0, a), (D¢ dm,(t) — CTR . a5 (O[O, dmy ()]

my,my €A

+ IF [0, y(D)e 4, (1) — Tk A, (DIO®), 4,5 (D1} (A.12)

Because O is arbitraryin § + A, after transforming to Schrédinger picture (A.12) can be rewritten as EOM for
)

iﬁaux(t) — *i[I:ISA(t% ﬁaux(t)]
dt

N 1 At
+ Z [ mlmz(amzpau (t)artn - E{pau (t)) aml amz})

my,my €A

+ FfLmMz( i D), — _{ﬁaux(t)’ Am,d,, i })] (A.13)

Finally, because only operatorsin S + A subspace appear in the right side of (A.13), tracing out baths degrees of
freedom leads to equation (20).

Appendix B. Derivation of equation (25)

Here we prove that two-time correlation function of two arbitrary operatorsin S + A, ((51 #) 0, (t)
(t; =2 t, > 0),equation (23), can be equivalently obtained from reduced Lindblad-type evolution in the S + A
subspace of the aux model.

Letintroduce t = f;—t, > 0,then O; (1) O,(t,) = O1(t + 1) O,(t,) and using equation (A.9) we get

%Ol(t + 1) O0y(ty) = {i[Hsa(t + 1), O1(t + 1,)]

— 157 (ROt + 1), 4t + )] (¢t + 1)

meA
+ GUEXF Tt + ) [0i(t + 1), At + 0],

— (Ot + 1), At + )1, e (t + 1)
- Ct &V + B)[04(t + 1), 45t + B)]c)

— = > @R L0t + 1), )+ 1)) A, (t + 1)

my,my €A
— QIR a5 (t+ 0)[0i(t + 1), A (t + 0],
+ TL 01t + 1), Gy (t + 0,4, (1 + 1)
— GLE A, (t 4+ )[04t + 1), 4 (£ + 1)1} Oa(1). (B.1)

Note thatfort > 0

[V (t + 1), Ox(t)]e, = [E8V(t + 1), O2(D)], (B.2)

Indeed, because from equation (A.9) it is clear that O, (t,) depends on O, (s) and Eg“)”) (s) only at earlier times
(s < t,) and because equation (A.5) shows that c(‘")”) (s) taken at different times anti-commute with each other,
equation (B.2) holds.

Thus, while taking the expectation value of (B.1) with respect to p**(0), equation (19), ¢} ciWT(r + 1)) and
A(m) (t + t,) can be moved over O, (t,) for anyt > 0.Soas in appendix A, terms with c(“‘)(ﬂ (t)in (B.1) again
don t contribute (see equation (A.11)), and we getfor t > 0
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%@l(t + 1)05(8) = Trl({[Hsa(t + 1), Ou(t + 1]

1 A R A
— = > (@ ,L0i(t + 1), 4, (t + )], Ay (t + 1)

my,myEA
— (IR Lak (t+ Ot + 1), Ay (t + )],
+ DL (01t + 1), duy(t + )] ), (F+ 1)
— Tk A, (t+ D01t + 1), 4], (¢ + 1)1e)} X Oa(t) P (0)]. (B.3)

Rearranging evolution operators, equation (24), and separating traces over S + Aand L + Ryields

(O1(t + 1) 05(12)) = Trsa{ Oy Tripl U™ (¢ + 12, 0)O02(1) p™*(0) U™ (¢t + 1)1}, (B.4)

d A A A d A-aux A A Araux T
E<Ol(t + ) 0,(ty)) = Trsa { O, ETrLR[U (t + t2, 0)O2(t) P*™(OYU™ (¢ + t)] } (B.5)

So that (B.3) can be rewritten as
~ d + A
Trsa § Or ETFLRL--] = Trsa{ (L5, () O Trg[...1}

= Troa{O) Lsa(®) Trigl...1}, (B.6)

where ,C; 4 (¢) is adjoint [32] of the Liouvillian Lg4 (t) defined in (20), and where Trg[...]is used as a shorthand
notation for the full expression in (B.4), (B.5).
Taking into account that O is an arbitrary operator, we get

%TrLR[...] = Lga Trigl...] (B.7)
which has solution
Trigl...1(t) = Usa(t, 0)Trr[...1(0) = Usa(t, 0)0, Psa(t2). (B.8)
Substituting (B.8) into (B.4) leads to
(O1(t + 12)O2(t2)) = TriR[Or Usa(t, £2)(0; Py (). (B.9)

This relation expresses two-time correlation function defined from unitary evolution of the aux model in terms
of Lindblad-type evolution of S + A subspace of the aux model. Finally, we note that while we had restriction
t > 0inderivation of (B.3), the result is correct also for t = 0, as one can see by direct comparison of the two
sides in (B.9). Equation (B.9) together with (20) leads to (25).

Similarly, fort, > #; > 0one can prove that

(01(1) O1(12)) = ({1105 Usa(ty, 12) OF Usa(ts, 0)]ps, (0))). (B.10)

Appendix C. Derivation of equation (30)

Here we prove that multi-time correlation functions of arbitrary operators O; in S 4 A of the aux model defined
on the Keldysh contour

(T.O1WOx(m) ... On(mv)), (C.D
can be evaluated from Markov Lindblad-type evolution in the S 4 A subspace. Here operators O; are in the
Heisenberg picture. Projections (one-the-contour time orderings) of multi-time correlation functions (C.1) will
have the following form

(Bi(s1)Ba(52) - B(sm) Cu(t0)-o. Co(12) Gi(0))
= Tr[Cy(t)-.. Ca(t2) G (1) ™ (0) By (s1) Ba(52)-.. Bin(s)], (C2)
where 1§j (sj) and C;(t;) are used for operators O; on the backward and forward branches of the contour,
respectively (see figure 2) and where
> 1> .. >0 =0
S > Spm_1> ... >51 = 0. (C.3)

Note, there is no ordering between the sets {t;} and {s;} (i € {1,2,...,n}andj € {1,2,...,m}).

10
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Let denote the time-ordering of the set {1, %5, ..., 1, 51,525 - S} Y {01, .. 0,y + 4} So that
Omsn = Opyn1>... 200> 0. (C4)

We want to prove that projections of multi-time correlation functions satisfy quantum regression theorem [32]

< <I| OGmM uSA(eerm 0m+n7 1) Oeﬂ,w,. uSA(eernf 1 9m+n72)- ..

.. Og, Usa(01, 0)|ps, (0))), (C.5)
where Oy, is superoperator, equation (26), corresponding to operator Bor C (backward or forward branch of
the contour, respectively) at real time ;.

We prove (C.5) by mathematical induction. First, we note that equations (25) and (B.10) are special cases of
equation (C.5) with m + n = 2. Suppose that for any combination (m, n) satisfying m + n = k, equation (C.5)
holds. Now let consider (k + 1)-time correlation function

(Bi(s))Ba(52) - Biu(sm) Opp,, (Or:1) Cu(t) ... Cat) Ci()), (C.6)

wheref) . 1 > t, > t, 1> ..>t =2 0andby, | > s, > s, > ... > 51 = 0.Aspreviously, we time-order
both sets

Orr1> 0k > O >... 20, > 0, (C.7)

and take the derivative with respect to the latest time

(Bi(s0)Ba(52) -+ Biu(5) Ok 1(0r 1) Co(ty) ... Cat) Ci(1))

d
dOyi

dOyiy

({100, U™ (k115 O6) Og U™ (O Ok—1) -.. U™ (01, 0)[p™(0)))

A d
= TrSA{OekHT(ULRIW“"(%H, 1) Og U (O, Ok—1) ... U™ (), O)IPa“X(0)>>LR}
k1

= Trsa{Op,.., Lsa(Ox1) ((LrlA* Oy 15 00) O, U™ Ok, Op—1) .. U (03, 0)[p™*(0)))1r }» (C.8)

where we followed the argument leading to (B.5) and (B.6) in appendix B. In (C.8) 2/*** is the Liouville space
analog of the Hilbert space evolution operator U™ defined in equation (24).
Taking into account that (591 is an arbitrary operator, we get

((ILRIU™ (Ok115 0) -.. |p™™(0)))1r
dOi i

= LsaOr1) ((LrlU ™ (O 115 0) ... [p™™(0)) )R> (C.9

where (I glU**™(0x1 1, 0) ... [p?X(0)))rr is shorthand notation for the expression introduced in (C.8).
Solving (C.9) and utilizing quantum regression theorem for its initial condition, ). | ; = 6, leads to

(Bi(s)) By (s2) .. BAm(Sm)éek+|(9k+l)én(tn) . ) G)
= ((I|0q,,, Usa(to,, > ta) Op, Usalty, to, ) ... OalUsa(te,, 0)]pss(0))) (C.10)

which is quantum regression theorem for (k 4+ 1)-time correlation function. Thus, by induction we prove
equation (30).
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