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We study the occurrence of negative differential conductance induced by resonance effects in a model for a
multilayer heterostructure. In particular, we consider a system consisting of several correlated and noncorrelated
monatomic layers sandwiched between two metallic leads. The geometry confines electrons in wells within the
heterostructures, which are connected to each other and to the leads by tunneling processes. The nonequilibrium
situation is produced by applying a bias voltage to the leads. Our results show that, for specific values of
the parameters, resonance tunneling takes place. We investigate in detail its influence on the current-voltage
characteristics. Our results are obtained via nonequilibrium real-space dynamical mean-field theory. As an
impurity solver we use the so-called auxiliary master equation approach, which addresses the impurity problem
within an auxiliary system consisting of a correlated impurity, a small number of uncorrelated bath sites, and two
Markovian environments described by a generalized master equation.
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I. INTRODUCTION

Quantum-mechanical resonance effects play an important
role in physics and technology. A well-known example
is resonant tunneling through potential barriers. Tunneling
through two barriers, which becomes resonant at a specific
external bias voltage, underlies the functioning of resonant
tunneling diodes. Their applications range from high-speed
microwave systems to novel digital logic circuits. Resonant
tunneling through potential barriers is interesting from the
theoretical point of view as well. To investigate this effect,
one usually considers double- or multiwell structures made of
semiconductor [1–4] or hybrid superconductor-semiconductor
[5] materials, graphene [6–9] and graphene-boron [10–16]
heterostructures. Different approaches are used to theoretically
investigate their properties. One can mention, for example, the
modified optical Bloch equations [3], self-consistent nonequi-
librium Green’s functions [4,17], the envelope wave-function
formalism [17], adiabatic approximations [18], combinations
of quantum transport random matrix theory with Bogoliubov-
de Gennes equations [5], first-principle density functional
theory [12], Bardeen transfer Hamiltonian approach [9],
Wentzel–Kramers–Brillouin [6], and Lorentzian approxima-
tion for the quasiparticle spectral function [10]. However, to
our knowledge, effects of electron correlations on resonant
tunneling have so far been either neglected or included in a
perturbative or mean-field way only. Here, we present a first
study which examines the effect of correlations on resonant
tunneling in an accurate and nonperturbative manner.

Recent experimental progress makes it possible to fabricate
correlated heterostructures [19–24] with atomic resolution
and, in particular, growing atomically abrupt layers with
different electronic structures [20–22]. Here, we study a
system which is composed of alternating strongly correlated
and noncorrelated metallic layers, as well as band-insulator
layers (see Fig. 1). The geometry of the system is such that
electrons are confined in three wells connected by tunneling.
The nonequilibrium situation is driven by applying a bias
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voltage to the leads, which introduces a homogeneous electric
field in the central region. Resonant tunneling is mainly
induced by the particular geometry, rather than the specific
values of the system parameters. Since our goal is to investigate
the qualitative behavior of this effect, we mainly perform
calculations for one representative set of model parameters.
In addition, in order to address the effect of correlations on
resonance tunneling, we also investigate the behavior of the
resonance current as a function of the interaction U .

In contrast to the previous works mentioned above, we use
dynamical mean-field theory (DMFT) [25–27], which can treat
electron-electron correlations accurately and is one of the most
powerful methods to investigate high-dimensional correlated
systems. Originally, DMFT was developed to treat equilibrium
situations, and later extended [28–38] to the nonequilibrium
case. This is formulated within the nonequilibrium Green’s
function approach originating from the works of Kubo [39],
Schwinger [40], Kadanoff, Baym [41,42], and Keldysh [43].

DMFT is a comprehensive, thermodynamically consistent
and nonperturbative scheme which becomes exact in infinite
dimensions but usually quite well describes two- and three-
dimensional systems. The only approximation in DMFT is
locality of the self-energy. The latter can be calculated by
mapping the original problem onto a single impurity Anderson
model (SIAM) [44], whose parameters are determined self-
consistently. For homogeneous systems the self-energies are
the same for each lattice site due to translational symmetry,
and, therefore, one needs to solve only one SIAM problem. For
systems with broken translational invariance, as in the present
case, the self-energies depend on the layer index z. Therefore, it
is necessary to generalize the formalism and take into account
the spatial inhomogeneity of the system [34,35,45–78] and,
accordingly, to solve several SIAM problems.

In the present work the nonequilibrium SIAM problem is
treated by using a recently developed auxiliary master equation
approach [36,37,79], which treats the impurity problem within
an auxiliary system consisting of a correlated impurity, a
small number of uncorrelated bath sites, and two Markovian
environments described by a generalized master equation.

The paper is organized as follows: Section II introduces
the Hamiltonian of the system. In Sec. III we illustrate the
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FIG. 1. Schematic representation of the triple-well system stud-
ied in this paper, consisting of a central region of 12 layers
sandwiched between two semi-infinite metallic leads (blue), with
chemical potentials μl/r and onsite energies εl/r = μl/r , respectively.
A Hubbard interaction is only present in the boundary layers (red,
z = 1,12) with interaction strength U1 = U12 = U = 8 and onsite
energies ε

(0)
1 = ε

(0)
12 = −U/2. They form the outer walls of the

quantum wells. The inner walls are the layers 5 and 8 (brown)
and are caused by discontinuous onsite energies ε

(0)
5 = −ε

(0)
8 = −4,

while all other layers have ε(0)
z = 0. Energies are measured in units

of the nearest-neighbor hopping tc within the central region. For
the nearest-neighbor hopping within the leads we use tl = tr = 2,
and the hybridization between the left (right) lead and the central
region is vl = vr = 1. A bias voltage � := μl − μr is applied to
the leads, which linearly shifts the onsite energies of each layer:
εz = ε(0)

z + μl − z(μl − μr )/(L + 1).

application of real-space dynamical mean-field theory within
the nonequilibrium steady-state Green’s function formalism
for a system consisting of many layers. Afterwards, in Sec. IV,
we present our results. Our conclusions are presented in Sec. V.

II. MODEL

The model, consisting of a central region (c) with L = 12
infinite and translationally invariant layers sandwiched be-
tween two semi-infinite metallic leads (α = l,r), is described
by the Hamiltonian (see Fig. 1):

H = −
∑

z,〈r⊥,r′
⊥〉z,σ

tzc
†
z,r⊥,σ c

z,r′
⊥,σ

−
∑

〈z,z′〉,r⊥,σ

tzz′c†z,r⊥,σ cz′,r⊥,σ

+
∑
z,r⊥

Uznz,r⊥,↑nz,r⊥,↓ +
∑

z,r⊥,σ

εznz,r⊥,σ , (1)

with nearest-neighbor interlayer (intralayer) hopping tzz′ (tz),
local onsite Hubbard interaction Uz and local energy εz. 〈z,z′〉
stands for neighboring z and z′ layers and 〈r⊥,r′

⊥〉z stands for
neighboring r⊥ and r′

⊥ sites of the zth layer. c
†
z,r⊥,σ creates

an electron at site r⊥ of layer z with spin σ and nz,r⊥,σ =
c
†
z,r⊥,σ cz,r⊥,σ denotes the corresponding occupation-number

operator. z = 1, . . . ,12 describes the central layers, while
z < 1 and z > 12 corresponds to the left and the right lead
layers, respectively.

We assume isotropic nearest-neighbor hopping parameters
within the central region (tzz′ = tz = tc) and within the leads
(tzz′ = tz = tα=l,r ). The hybridization between the leads and
central region is the same on both sides; t0,1 = vl = t12,13 = vr .

Finally, the local energy and the chemical potential in the
leads is determined by an applied voltage �, i.e., εz<1 = μl =
�/2 and εz>12 = μr = −�/2.

The leads are initially prepared in equilibrium and T = 0
at the distant past (time → −∞) when the hoppings between

leads and layer are switched off. Then the hoppings are
switched on and the system is allowed to evolve in time until
steady state is reached. Notice that, despite the appearance of
equilibrium Green’s functions (7) in the expressions, there
is no approximation of fixing the leads in equilibrium. In
our approach, it is not necessary to solve explicitly for
the transient time evolution, and we can directly address
the steady state. Since the leads are infinite, they have
equilibrium properties far away from the device, but near
the device (within the healing length) there will be charge
depletion or enhancement, i.e., charge reconstruction near the
interfaces. In combination with the long-range part of the
Coulomb interaction (LRCI) this could induce modifications
in the single-particle potential. LRCI could be included by
a simultaneous solution of the Poisson and DMFT equation
(see, e.g., Ref. [49]), but this is beyond the scope of the
present paper. Notice that this approximation is common in
the framework of real-space DMFT calculations (see e.g.,
Refs. [34,35,45–48,75–78,80–85]). Here, we approximate the
effects of the LRCI by introducing a linear behavior of the
onsite energies (homogeneous electric field) in the central
region as εz = ε(0)

z + μl − z�/(L + 1).

III. REAL-SPACE DYNAMICAL MEAN-FIELD THEORY

To investigate steady-state properties we use real-space
dynamical mean-field theory (R-DMFT), which is also known
as inhomogeneous DMFT. Due to the finite number of layers,
translational invariance along the z axes (perpendicular to the
layers) is broken, but the system is still translationally invariant
in the xy plane. Therefore we can introduce a corresponding
momentum k = (kx,ky) [86].

The Green’s function for the central region can be expressed
via Dyson’s equation

[G−1]γ (ω,k) = [
g−1

0 (ω,k)
]γ − �γ (ω) − �γ (ω,k). (2)

Here, we use boldface symbols to indicate matrices in
the indices z = 1, . . . ,12. Moreover, γ ∈ {R,A,K} stands for
retarded, advanced, and Keldysh components, respectively,
and GA(ω,k) = [GR(ω,k)]†.

The inverse of the noninteracting Green’s function for the
isolated central region reads

[
g−1

0

]R

zz′ (ω,k) = [
ω + i0+ − Ez(k)

]
δzz′ + tzz′ , (3)

[
g−1

0

]K

zz′ (ω,k) � 0, (4)

with Ez(k) = εz − 2tz(cos kx + cos ky). �γ (ω,k) describes
the hybridization with the leads and can be expressed as

�
γ

zz′ (ω,k) = δz,z′
[
δz,1v

2
l g

γ

l (ω,k) + δz,Lv2
r g

γ
r (ω,k)

]
, (5)

where g
γ

l (ω,k) and g
γ
r (ω,k) describe the Green’s functions

for the edge layers of the leads disconnected from the
central region. Their retarded component can be expressed
as [45,46,87]

gR
α (ω,k) = ω − Eα(k)

2t2
α

− i

√
4t2

α − [ω − Eα(k)]2

2t2
α

, (6)
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with Eα(k) = εα − 2tα(cos kx + cos ky). The sign of the
square-root for negative argument must be chosen such that the
Green’s function has the correct 1/ω behavior for |ω| → ∞.
Since the disconnected leads are separately in equilibrium, we
can obtain their Keldysh components from the retarded ones
via the fluctuation dissipation theorem [88],

gK
α (ω,k) = 2i[1 − 2fα(ω)]Im gR

α (ω,k). (7)

Here, fα(ω) is the Fermi distribution for chemical potential μα

and temperature Tα .
Finally the self-energy �

γ

zz′ (ω) = δzz′	
γ
z (ω) is a diagonal

and k-independent matrix due to the DMFT approximation.
To determine the self-energy for each correlated layer z

we solve a (nonequilibrium) quantum impurity model with
Hubbard interaction Uz and onsite energy εz, coupled to a
self-consistently determined bath. The latter is specified by its
hybridization function obtained as (see, e.g., Ref. [26])


R
bath,z(ω) = ω + i0+ − εz − 	R

z (ω) − 1

GR
loc,z(ω)

, (8)


K
bath,z(ω) = −	K

z (ω) + GK
loc,z(ω)

|GR
loc,z(ω)|2 , (9)

where the local Green’s function is defined as

G
γ

loc,z(ω) =
∫

BZ

d2k

(2π )2 Gγ
zz(ω,k). (10)

To calculate the diagonal elements of the matrices Gγ (ω,k) one
could invert the matrices in Eqs. (2). However, it is numerically
more efficient to use the recursive Green’s function method
[76,89,90], which we here generalize to Keldysh Green’s
functions. For a given z we decompose the system into three
decoupled clusters by setting tz−1,z = tz,z+1 = 0 (for the first
and the last layer into two decoupled clusters). The result is
an isolated layer of the central region at position z and the
two remaining parts of the central region to the left and to
the right of layer z. By L

γ

z−1(ω,k) [Rγ

z+1(ω,k)] we denote the
local Green’s function at layer z − 1 (z + 1) of the isolated
cluster to the left (right) of layer z. In addition, we define
g

γ
z (ω,k) as the full cluster Green’s function of layer z [91].

For z = 2, . . . ,L − 1 it describes isolated layers, while for
z = 1 (z = L) it also contains the hybridization effects of the
left (right) lead, which are covered by 
γ (ω,k). For the sake
of better readability, we will suppress the argument (ω,k)
in the following equations. From Eq. (2) and the ensuing
definitions we readily see that the inverse cluster Green’s
function [g−1

z ]γ is equal to diagonal elements of the inverse
[G−1]γzz of the full Green’s function of the central region.
The omitted hopping processes tz−1,z and tz,z+1 can now be
reintroduced by the Dyson equation, which is applicable due
to the DMFT approximation of local self-energies. We obtain

GR
zz = 1[

g−1
z

]R − t2
z−1,zL

R
z−1 − t2

z,z+1R
R
z+1

, (11)

GK
zz = −

[
g−1

z

]K − t2
z−1,zL

K
z−1 − t2

z,z+1R
K
z+1∣∣[g−1

z ]R − t2
z−1,zL

R
z−1 − t2

z,z+1R
R
z+1

∣∣2 . (12)

The Green’s functions L
γ
z and R

γ
z in turn are evaluated

recursively as follows:

LR
z = 1[

g−1
z

]R − t2
z−1,zL

R
z−1

, (13)

LK
z = −

[
g−1

z

]K − t2
z−1,zL

K
z−1∣∣[g−1

z

]R − t2
z−1,zL

R
z−1

∣∣2 , (14)

for z = 2,3, . . . ,L with initial values

LR
1 = 1[

g−1
1

]R
, LK

1 = −
[
g−1

1

]K

∣∣[g−1
1

]R∣∣2 , (15)

and

RR
z = 1[

g−1
z

]R − t2
z,z+1R

R
z+1

, (16)

RK
z = −

[
g−1

z

]K − t2
z,z+1R

K
z+1∣∣[g−1

z

]R − t2
z,z+1R

R
z+1

∣∣2 , (17)

for z = L − 1,L − 2, . . . ,1 with initial values

RR
L = 1[

g−1
L

]R
, RK

L = −
[
g−1

L

]K

∣∣[g−1
L

]R∣∣2 . (18)

In addition, the self-consistent DMFT loop works as
follows: we start with an initial guess for the self-energies
	

γ
z (ω), which typically was taken equal to zero, and based

on Eqs. (2)–(10) we calculate the bath hybridization functions

R

bath,z(ω) and 
K
bath,z(ω) for each correlated site. From them

we solve the (nonequilibrium) quantum impurity models and
calculate new self-energies as described below. We repeat this
procedure until convergence is reached [92].

To address the impurity problem and evaluate self-energies,
we adopt a recently developed auxiliary master equation
approach (AMEA) [36,37,79]. This method can be seen
as a generalization of the equilibrium exact-diagonalization
impurity solver to treat nonequilibrium steady-state situations.
In AMEA dissipation, which is crucial in order to achieve a
steady state, is included by additionally coupling the cluster
to Markovian environments, which can be seen as particle
sinks and reservoirs (for details see Refs. [36,37,79,93]). The
accuracy of the impurity solver increases with increase of Nb

and becomes exponentially exact in the limit Nb → ∞.

IV. RESULTS

Here, we presents results for the steady-state properties
of the system, displayed in Fig. 1, consisting of twelve
layers (central region) sandwiched between two semi-infinite
metallic leads. Among these twelve central region layers only
the first and the last layers are correlated, with Hubbard
interactions U1 = U12 = U = 8 and onsite energies ε

(0)
1 =

ε
(0)
12 = −U/2 = −4. The onsite energies of the fifth and

the eight layers are ε
(0)
8 = −ε

(0)
5 = 4 and ε(0)

z = 0 for all
z �= 1,5,8,12. The hopping between nearest-neighbor central
region sites tc = 1 is taken as unit of energy [94], while
hopping between nearest-neighbor sites of the leads are tl =
tr = 2. Finally, the hybridizations between leads and central
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FIG. 2. Current J vs bias voltage �. Solid, dashed, and dotted
lines are obtained by solving the impurity problem with Nb = 6,
Nb = 4, and Nb = 2, respectively (see text). Parameters are the same
as in Fig. 1.

region are vl = vr = 1. All calculations are performed for zero
temperature in the leads (Tl = Tr = 0).

The system is particle-hole symmetric. More specifically, it
is invariant under a simultaneous particle-hole transformation,
a change of sign in the phase of one sublattice (as in
the Hubbard model) together with a reflection of the z

axis. Therefore, properties of layers z and L + 1 − z are
connected by particle-hole transformation. Consequently, we
need to evaluate the self-energy for the z = 1 layer only and
determine its value for z = L layer based on the symmetry
[	R

12(ω) = −[	R
1 (−ω)]∗ + U and 	K

12(ω) = [	K
1 (−ω)]∗]. All

other layers are noninteracting.
In Fig. 2 we plot the current-voltage characteristics of the

system. Results are obtained with Nb = 2,4,6 bath sites of the
DMFT auxiliary impurity problem. We find that the difference
between results obtained with Nb = 4 and Nb = 6 is small for
all bias voltages. It indicates fast convergence of the current
with respect to the bath sites Nb.

The current increases with increasing bias voltage and
reaches a first maximum at � � 2.5. Further increasing �

reduces the current until a minimum at � � 4 is reached. A
second maximum occurs at � � 5.25. For larger bias voltages,
the current again decreases due to the decreased overlap of the
density of states.
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0.3
0
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A
z(ω

,ε
k)

0

3
0

0.3
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-2
2 0

(a)
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A
z(ω

,ε
k)
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0
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(b)
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0
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A
z(ω

,ε
k)

0
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0
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(c)
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z(ω
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(d)

FIG. 3. Steady-state spectral function Az(ω,εk) for different values of bias voltage � and ε(k). To illustrate the resonance effect, we present
results for bias voltages for which the current displays a maximum (� � 2.5 and � � 5.25), a minimum (� � 4), and for a value in between
(� = 1). The shaded area emphasizes the fact that, for � � 5.25, the peak maxima of layers z = 3 and z = 10 overlap. Results are obtained
with Nb = 6. Here, εk = −2 (green), εk = 0 (red), and εk = 2 (blue). Other parameters are the same as in Fig. 1.
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For low bias, where there is a large overlap of the density
of states of the left and the right leads, the conductivity is
large and the system is in a high-conductivity regime. That is
why results in this region are similar to the one of a single
layer (see, e.g., Refs. [36,37]). In contrast, for larger bias
� � 3 we are in the tunneling regime and the behavior of
the current-voltage characteristics is significantly different.
As we discuss below, the results we are showing are due to
the occurrence of resonant tunneling. To clarify this effect,
we investigate the nonequilibrium spectral functions, which
can be calculated from the corresponding Green’s functions
via Az(ω,εk) = − 1

π
ImGz(ω,εk). Due to the geometry of the

system (see Fig. 1) three wells are formed in the intervals
2 � z � 4, 6 � z � 7, and 9 � z � 11, to which electrons
are partially confined and form quasibound levels. This can be
seen by the fact that all spectral functions Az(ω,εk) within a
given well display peaks for the same (ω,εk), corresponding
to quantized quasistationary levels in this well. Electrons can
leak from the one to the next well only by quantum tunneling.

In Fig. 3 we plot the steady-state spectral functions
Az(ω,εk) as a function of ω − εk for different εk and bias
voltages �. In particular, we show results for bias voltages
that correspond to maxima (� � 2.5 and � � 5.25), to a
minimum and for a value (� = 1) at half maximum of the
first peak in Fig. 3.

The results have the correct property AL+1−z(ω,εk) =
Az(−ω, − εk), which is a consequence of the particle-hole
symmetry of the Hamiltonian. Our calculations show that,
for each noncorrelated layer (1 < z < 12), the position of the
peaks of the spectral function Az(ω,εk) depends only on the
value of ω − εk and not on ω and εk separately. This indicates
that, for the noncorrelated layers, one-dimensional physics
dominates and εk only shifts the energy levels. Furthermore,
peaks of the spectral functions Az(ω,εk) for the noncorrelated
layers in the first (z = 2,3,4) and the last (z = 9,10,11) wells
generate dips in the spectral functions Az(ω,εk) of the first (z =
1) and the last (z = 12) correlated layers correspondingly. This
can be qualitatively understood from Eq. (11), if one assumes
that [G−1]Rzz is a smooth function, while −LR

z−1 or −RR
z+1

(neighboring layer Green’s functions) have narrow peaks.
Because central regions (layers 1 < z < 12) are noninter-

acting, resonant tunneling occurs when quasistationary states,
i.e., the peaks in the spectral function, of the first and the last
well coincide for any εk [4,10]. This is the case for � � 5.25,
as can be seen by the gray regions in Fig. 3(d). If these peaks
are within the energetic transport window the current gets
enhanced at the corresponding bias voltage. For all other bias
voltages shown [see Figs. 3(a)–3(c)], peaks of Az(ω,εk) for
different wells do not coincide, so no resonant tunneling takes
place. The second maximum in the current-voltage characteris-
tics (see Fig. 2) can, therefore, be understood in terms of such a
resonant tunneling effect. On the other hand, the first maximum
is due to the finite bandwidth of the leads, similar to the one for
a single-layer case (see, e.g., Refs. [36,37]). In contrast with
the single-layer case, in the current situation electrons tunnel
through four layers (z = 1,5,8,12) and therefore the current
drops faster after the maximum.

To address the effect of electron correlation on the reso-
nance, we investigate the behavior of the resonance current J as
a function of the interaction U [95]. In Fig. 4 we plot the current

0 1 2 3 4 5 6 7 8
U

0.000

0.005

0.010

0.015

0.020

J

FIG. 4. Current J as a function of the Hubbard interaction U at
the resonance. On-site energies in the first and the last layers are
fixed to ε

(0)
1 = ε

(0)
12 = −4. Results are obtained with Nb = 4. Other

parameters are the same as in Fig. 1.

J as a function of the interaction U at the corresponding res-
onance bias voltage. The figure clearly shows that correlation
effects substantially enhance the resonance effect. However,
the current maximum is obtained at not too large values of
U ∼ 5. This enhancement behavior can be understood in
terms of two competing effects occurring as a function of
U : since the resonance takes place at relatively high bias, the
one-dimensional density of states (DOS) of the two leads have
a reduced overlap. This suppresses tunneling at small U for
which scattering (approximately) conserves the momentum
parallel to the layers. Upon increasing U , scattering channels
to different values of the in-plane k open, so that the three-
dimensional DOS is available for scattering, thus enhancing
the current. On the other hand, by increasing U backscattering
is also increased, which, in turns suppresses the current.

V. CONCLUSIONS

By using nonequilibrium DMFT calculations we inves-
tigate steady-state properties of a multilayer heterostructure
consisting of correlated and noncorrelated layers. Due to the
fact that the system is inhomogeneous, no matter how many
impurity problems have to be solved, “standard” DMFT is not
applicable and one has to use the real-space generalization
of it. As an impurity solver we used the recently introduced
auxiliary master equation approach, which addresses the
impurity problem within an auxiliary system consisting of a
correlated impurity, a small number of uncorrelated bath sites,
and two Markovian environments described by a generalized
master equation [36,37,79].

In particular, our main goal was to investigate resonance ef-
fects in this system. For this purpose we chose an arrangement
of layers such that electrons were confined in three different
wells and transport through the central region was only
possible by quantum tunneling. For a particular bias voltage
(� � 5.25) we observed that quasistationary energy levels in
the first and the last wells coincided and resonance tunneling
between them takes place. At that bias voltage the current
displays a maximum. According to our calculations the current
has another maximum at � � 2.5. The latter is due to the
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finite bandwidth of the leads. We checked that these qualitative
findings are robust up to some extent as a function of the model
parameters.

Furthermore, we also investigate effect of the interaction
strength on the current at the resonance. We obtain that cor-
relation effects for weak up to strong interaction substantially
enhance the resonance current.
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