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Abstract

Many important algorithms for public-key cryptography
rely on computation-intensive arithmetic operations like
modular exponentiation on very long integers, typically in
the range of 512 and 2048 bits. Modular exponentiation is
generally realized through a sequence of modular multipli-
cations and spends the majority of execution time in simple
inner loops. Speeding up these performance-critical inner
loop operations with custom instructions has, therefore, a
significant impact on the total execution time of public-key
cryptosystems. In this paper we analyze the performance
of instruction set extensions for long integer arithmetic on a
SPARC V8 processor. We discuss various implementation
options and optimization opportunities for both modular
multiplication and exponentiation. In particular, we intro-
duce a partial loop unrolling (PLU) technique for modular
multiplication which allows to achieve large performance
gains at the cost of a moderate increase in code size, while
maintaining the full flexibility of a “rolled-loop” implemen-
tation. In addition, we study window methods for modular
exponentiation and analyze their impact on performance
and memory requirements. Our experimental results, ob-
tained with an FPGA prototype of the LEON-2 SPARC V8
core, show that a full 1024-bit modular exponentiation can
be performed in about 12.5-10° clock cycles, which is a
reasonable value for embedded devices like smart cards
or sensor nodes.

1. Introduction

The concept of public-key cryptography, introduced by
Diffie and Hellman [5] almost 30 years ago, revolutionized
communication security and is generally considered as an
enabler of today’s e-business world. Public-key cryptosys-
tems use two different but related keys: one for encryption
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(the so-called public key) and the other for decryption (the
private key). In general, public-key cryptography includes
encryption algorithms (such as RSA [28])), digital signature
schemes (e.g. DSA) and key exchange mechanisms (like
Diffie-Hellman [3]]). Many important security protocols, in
particular SSL and IPSec/IKE, employ public-key cryptog-
raphy for such tasks as authentication or the establishment
of a shared secret key between network entities. The bulk
encryption of data, however, is generally performed with
a secret-key cryptosystem (e.g. AES) using the shared key
that was established at the beginning of a transaction.

From a mathematical point of view, the afore-mentioned
public-key cryptosystems operate in a multiplicative group
of integers modulo a large prime or a product of two large
primes. To meet today’s security requirements, the order
of the group, and hence the length of the modulus, should
be at least 1024 bits [19]. The main operation of virtually
all “traditional” public-key cryptosystems is exponentiation
in a multiplicative group Zj;, i.e. a calculation of the form
C = MF mod N, where M, E, and N are integers, typically
between 1024 and 2048 bits long. Modular exponentiation
in such large groups is extremely computation-intensive and
poses therefore a heavy burden on embedded devices with
modest processing capabilities and energy supply, such as
mobile phones, smart cards, or sensor nodes.

A modular exponentiation involving 1024-bit operands
can not be directly processed on a CPU with a word-size
of 32 or 64 bits. Therefore, the long integers are generally
represented by arrays of single-precision words (unsigned
32 or 64-bit integers). Software implementations of public-
key cryptosystems accomplish long integer arithmetic by
manipulating the individual words of these arrays using the
instructions provided by the processor. Unfortunately, the
computational cost of a modular exponentiation scales with
the cube of the operand length, i.e. modular exponentiation
has a complexity of O(s?) where s is the number of words
required to store a long integer [[19]. When implemented in
software, modular exponentiation spends the vast majority
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of execution time in a few performance-critical code sec-
tions, typically in the inner loop of “low-level” arithmetic
operations like modular multiplication. Accelerating these
inner loops, e.g. through hand-optimized assembly routines
or custom instructions, can have a dramatic impact on the
overall performance of public-key cryptosystems [4].

All software algorithms for long integer modular multi-
plication have a nested loop structure with a rather simple
inner loop that does the bulk of computation. Depending
on the concrete algorithm, the operation carried out in the
inner loop is either a multiply-add operation of the form
axb+c+d with a, b, ¢, d representing single-precision
(e.g. 32-bit) words, or a “classical” multiply-accumulate
operation where two single-precision words are multiplied
and the product is added to a running sum (6} [17]. Due to
the ever-increasing importance of cryptographic workloads,
a number of processor vendors and IP providers decided
to extend their architectures by special features and custom
instructions to better support long integer arithmetic. Two
examples of high-end processors that have been designed
taking cryptographic workloads into consideration are the
Itanium [15]] and the UltraSPARC T2 [7]. Moreover, there
exist a number of cryptography-enhanced processor cores
for embedded systems—in particular smart cards—such as
ARM’s SecurCore [[1]] or the SmartMIPS [20].

1.1. Problem Description

The definition and implementation of suitable custom
instructions and other architectural features is only the first
step towards the goal of enabling high-speed cryptography
on a general-purpose processor. The second and even more
important step is the design and implementation of algo-
rithms for long integer arithmetic which use the available
architectural resources in an optimal way. Consequently, the
design of application-specific instruction set extensions is a
typical instance of a hardware/software co-design problem
[12,[18]]. The hardware side seems to be well researched; a
number of cryptography-oriented ISA extensions for both
high-performance and embedded processors have been pro-
posed in recent years [7, 9, 22, 27]. In addition, the design
and implementation of functional units (FUs) on which the
custom instructions are executed has been discussed in the
literature. Micro-architectural aspects like the integration
of FUs into processor cores have also been studied and the
impact on silicon area and cycle time has been analyzed.

On the other hand, software-related issues like the design
of algorithms which use the available architectural features
and custom instructions in an ideal way received relatively
little attention. Of course, there exists an extensive literature
dealing with the efficient software implementation of long
integer arithmetic [3l [15} [17} [29], but the bulk of previous
work has been conducted on desktop computers and work-
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stations with high-performance CPUs and plenty of memory
and storage. Therefore, the findings reported in these papers
are not directly applicable to embedded systems like smart
cards where both RAM and ROM are scarce resources. For
example, Comba proposed in [3]] an efficient algorithm for
long integer multiplication and recommended to fully unroll
the loops in order to reach peak performance. However, the
drawback of full loop unrolling is a large increase in code
size, making this approach unpractical for use in embedded
systems. Moreover, an implementation with fully unrolled
loops is not scalable, i.e. supports only operands of a fixed
length. A technical report from Intel [15] describes a highly
optimized software implementation of long integer modular
multiplication on the Itanium. This implementation exploits
the large register set of the IA-64, which allows the long
integers to be held in general-purpose registers rather than
in memoryﬂ thereby eliminating all load/store operations
that otherwise would have to be carried out. Again, such an
approach is not feasible for embedded applications since a
typical embedded processor has at most 32 general-purpose
registers [2]]. In general, software implementations of long
integer arithmetic for embedded applications should be able
to cope with a limited number of registers and moderate
memory and storage resources.

1.2. Contributions of this Work

In this paper we discuss how software routines for long
integer modular arithmetic can be implemented to unleash
the full performance of custom instructions for public-key
cryptography. We present optimization techniques for both
modular multiplication and exponentiation, paying special
attention to the code-size and memory constraints given in
embedded systems. In particular, we introduce a partial loop
unrolling (PLU) technique for FIPS Montgomery modular
multiplication [17]] which allows to achieve significant per-
formance gains. However, unlike to full loop unrolling, the
PLU technique entails just a slight increase in code-size and
maintains the full flexibility of a standard implementation
with “rolled” loops. We also discuss window methods for
exponentiation and analyze the impact on performance and
memory requirements. The proposed optimizations allow
an implementer to fine-tune the long integer arithmetic with
respect to the desired trade-off between performance, code-
size, and memory footprint.

We assess the effectiveness of the PLU technique and
window methods using an FPGA prototype of the LEON-2
SPARC V8 core [8] with integrated Cryptography Instruc-
tion Set (CIS) extensions [11]. The CIS extensions define
a small yet powerful set of custom instructions specifically

I The IA-64 architecture provides a total of 128 integer registers, each 64
bits wide, and the same number of floating-point registers. For example, a
1024-bit integer occupies only 16 registers on an Itanium processor.



designed to accelerate the processing cryptographic work-
loads on SPARC V8 processors. Our experimental results
show that the proposed algorithmic optimizations allow a
SPARC V8 core with CIS extensions to execute a 1024-bit
modular exponentiation in about 12.5M clock cycles, which
is over 25% faster than comparable hardware/software co-
design approaches for long integer arithmetic on embedded
RISC processors. This result also demonstrates that only a
proper combination of both architectural and algorithmic
optimizations leads to peak performance.

2. Long Integer Arithmetic

In the following we briefly summarize the fundamental
algorithms for long integer arithmetic needed to implement
public-key cryptography. All algorithms discussed in this
section are well known and documented in textbooks on
cryptography (e.g. in [[19] and [16]), and therefore we do
not go into detail. However, we refer the interested reader
to [19] and the references therein for an in-depth treatment
of long integer arithmetic.

Notation: Throughout this paper we use uppercase italic
letters to denote long integers whose precision exceeds the
word-size w of the processor. We store the long integers in
arrays of w-bit (i.e. single-precision) words, whereby w is
32 in our case since SPARC V8 is a 32-bit architecture
[32]. In general, an n-bit integer consists of s = [n/w]
words when working on a w-bit processor. We denote the
individual words of a long integer A by indexed lowercase
italic letters a; with a;_; and ag representing the most and
least significant word of A, respectively. To give a concrete
example, a 320-bit integer can be stored in an array of ten
32-bit words, written as (aog, as, ..., dg).

Long Integer Multiplication: The standard algorithm for
calculating the 2n-bit product P = A - B of two n-bit integers
A and B is the so-called pencil-and-paper method, which
is given as Algorithm 14.12 in [19]. This algorithm has a
nested loop structure with a very simple inner loop that is
iterated exactly s> times when the operands A and B consist
of s words. Each iteration of the inner loop executes an
operation of the form a x b+ ¢ +d, whereby a, b, c, and
d represent single-precision (w-bit) words. Therefore, the
pencil-and-paper method needs exactly s> single-precision
multiplications to get the product of two s-word integers.
An alternative algorithm for long integer multiplication
was introduced by Comba in [3]]. Comba’s method executes
exactly the same number of single-precision multiplications
as the pencil-and-paper method, namely s> for two s-word
integers, but has a different loop structure with a different
inner loop operation. The operation carried out in the inner
loop of Comba’s method is a multiply-accumulate (MAC)
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operation of the form S «— S+ a x b, i.e. two w-bit words
are multiplied and the 2w-bit product is added to a running
sum S. Another difference between Comba’s method an the
paper-and-pencil method is the overall number of memory
accesses; the former requires fewer store instructions and
is therefore generally faster, especially when implemented
in Assembly language. However the downside of Comba’s
method is its relatively complex loop structure and that the
inner loop operation is difficult to implement in high-level
programming languages like C.

Modular Reduction: A modular reduction is an arithmetic
operation that gives the remainder of an integer division as
result. More formally, if X is an integer, then the reduction
of X with respect to a modulus N (i.e. X mod N) yields the
integer remainder in the range [0, N — 1] after X is divided
by N. In public-key cryptography, the modular reduction
operation is generally performed on a prime or a product
of primes. A modular multiplication combines long integer
multiplication and the modular reduction of the product into
a single operation of the form Z =A-B mod N.

An efficient algorithm for modular multiplication was
proposed by Montgomery in [23]]. Montgomery’s algorithm
is based on the observation that the so-called Montgomery
product A-B-27" mod N is much easier to compute than
the actual residue A - B mod N. The factor 27" origins from
an n-bit right-shift operation which is part of the algorithm
(n is the bitlength of N). To get rid of this factor, Mont-
gomery arithmetic needs some pre- and post-processing, in
particular a conversion of the operands and a re-conversion
of the result as described in [16, [19]]. In most cases these
conversions are only carried out before and after a lengthy
computation like exponentiation and, therefore, do not fall
into account.

Long Integer Squaring: Squaring is simply a special case
of multiplication where the two integers being multiplied
are equal. Optimized algorithms for long integer squaring
need only s%/2 4+ s single-precision multiplications for the
calculation of A2 when A is an s-word integer. However, a
modular reduction takes always the same effort, regardless
of whether a product or a square is reduced. Optimized
modular squaring is, in practice, only 10-15% faster than
a conventional modular multiplication [10]]. Therefore, we
did not use optimized squaring algorithms in our work.

Exponentiation: The straightforward way to calculate a
modular exponentiation MZ mod N is through a sequence
of modular multiplications and squarings according to Al-
gorithm 14.79 in [19]. This so-called left-to-right binary
exponentiation method (“square and multiply” algorithm)
requires to carry out exactly n modular squarings and, on
average, n/2 modular multiplications when n denotes the
bitlength of E. However, the exact number of modular



multiplications depends on the Hamming weight (i.e. the
number of non-zero bits) of E, and thus up to n modular
multiplications may be necessary in the worst case.

3. Instruction Set Extensions for Cryptography

The steadily growing importance of cryptographic work-
loads has motivated a number of microprocessor vendors
to extend their architectures by special features and custom
instructions to better support long integer arithmetic. For
example, the IA-64 architecture includes two multiply-add
instructions, XMA.LU and XMA .HU, which were specifically
designed to accelerate the inner loop of algorithms for long
integer multiplication [15]. The XMA instructions perform a
multiply-add operation of the form a x b+ ¢ and write either
the lower or upper half of the result to a destination register
[[14]]. Ttanium processors execute the XMA instructions in the
floating point (FP) unit with the FP registers interpreted as
64-bit unsigned integers [30]. Recently, Sun Microsystems
announced the tape-out completion of the UltraSPARC T2,
a high-performance CPU housing up to eight cores, each
able to handle eight threads concurrently [34]. The T2 has
a number of dedicated instructions to assist the processing
of cryptographic workloads, which are outlined in [7]. One
of these instructions, MULACC, combines the multiplication
of two integers and the addition of a third integer into a
single operation. In other words, MULACC allows to execute
multiply-add operations of the form a x b+ ¢ on 64-bit
integers, similar to XMA in TA-64.

Besides high-performance 64-bit processors like Itanium
or T2, cryptography-oriented ISA extensions have also been
integrated into 32-bit RISC cores targeted at the embedded
systems market. A typical example are the latest ARMI11
cores that are based on version 6 of the ARM architecture
[2]. The ARMv6 ISA includes the UMAAL instruction for
multiply-add operations of the form a x b+ ¢+ d, whereby
all four operands are interpreted as 32-bit unsigned integers
[2]. In addition, ARM Limited has developed the SecurCore
family of 32-bit RISC cores for smart card and secure IC
applications [[1]. Another example for a cryptographically
enhanced general-purpose architecture aimed at the smart
card market is the SmartMIPS [20]], jointly defined by MIPS
Technologies and Gemplus. The SmartMIPS has custom
instructions to speed both secret-key encryption algorithms
(e.g. DES, AES) and public-key cryptosystems like RSA
or elliptic curve cryptography. However, unlike the archi-
tectures mentioned before, the SmartMIPS accelerates long
integer arithmetic through a dedicated multiply-accumulate
instruction, MADDU, which multiplies two 32-bit words and
adds the 64-bit product to a running sum stored in the three
result-accumulation registers ACX, HI, LO [22]. Also NEC
Electronics GmbH [24] and STMicroelectronics [33]] have
developed smart card cores with crypto extensions.
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4. SPARC V8 and CIS Extensions

SPARC V8 [32] is a general-purpose RISC architecture
with a 32-bit datapath and a “windowed” register file con-
taining an implementation-dependent number of general-
purpose registers (GPRs), of which 32 are visible to the
programmer at a time. Besides the GPRs, the SPARC V8§
architecture also includes several special-purpose registers
like the Multiply-Divide Register (%y) and a total of 31
Ancillary State Registers (%asr1 to %asr31).

The SPARC architecture contains delayed control trans-
fer instructions (DCTIs). In particular, branches and calls
have an architectural delay slot of one instruction, which
means that the instruction immediately following a DCTI
is executed (unless the DCTI annuls it) before the control
transfer to the target address is completed [32].

Arithmetic and logical instructions have a conventional
three-operand format with two source registers and one
destination register. Multiply instructions, such as smul or
umul, write the 32 least significant bits of the product to a
destination register and the 32 most significant bits to the
Multiply-Divide register (%y). The rdy instruction allows
to transfer the content of register %y to a GPR.

4.1. The LEON-2 SPARC V8 Processor

The LEON-2 processor [8]] is a highly configurable and
synthesizeable VHDL implementation of the SPARC V8
architecture. Originally developed by the European Space
Agency (ESA), the LEON-2 softcore is now maintained
by Gaisler Research AB and has found widespread use in
system-on-chip (SOC) designs in recent years. The LEON
VHDL model is extensively configurable; various options
like the number of register windows, size and organization
of caches, and performance/area trade-offs for the integer
multiplier can be defined through a configuration file. In
addition, the LEON-2 core is extensible as the full source
code is available under the GNU LGPL license.

The LEON-2 pipeline can be configured to have either
one or two load delay cycles. We used a LEON-2 processor
with one load delay cycle since this configuration allows to
achieve better performance in FPGAs. The LEON-2 core
also contains a hardware multiplier that can be configured
to perform a (32 x 32)-bit integer multiplication in either
35,4, 2, or 1 clock cycles.

4.2. The Cryptography Instruction Set (CIS)

The Cryptography Instruction Set (CIS) [L1] defines a
small but powerful set of RISC-like instructions extending
the SPARC V8 architecture. These instructions have been
devised to increase the performance of both secret-key and
public-key cryptographic algorithms. The CIS extensions



Format Description

Operation

umac rsl, rs2

Unsigned Multiply and Accumulate

accu «—— accu~+rsl X rs2

shacr rd

Shift Accu Registers Right

rd — accu[31:0]; accu «— accu > 32

Table 1. Format and description of the CIS instructions umac and shacr [11]

are easy to implement in hardware and entail only a small
increase in silicon are We have integrated the CIS into
the LEON-2 core and prototyped the extended processor
in an FPGA. This prototype has been used to evaluate the
performance of the algorithms for long integer arithmetic
described in Section [5] In the sequel, we briefly overview
the Cryptography Instruction Set, whereby we concentrate
on those instructions needed to implement the algorithms
discussed in this paper. A detailed description of the CIS
extensions can be found in [11].

The CIS extensions include a total of six instructions
to accelerate public-key cryptography, in addition to other
instructions for secret-key algorithms like the Advanced
Encryption Standard (AES). However, the algorithms for
long integer arithmetic we deal with in the present paper
use only two CIS instructions, umac and shacr, which are
shown in Table [I| These two instructions allow to speed
up the multiply-accumulate (MAC) operations carried out
in the inner loop of both Comba multiplication and FIPS
Montgomery modular multiplication (see Section [3). The
remaining four CIS instructions which are not covered in
the present paper can be used to implement elliptic curve
cryptography [11].

rsl rs2

Register File

rd

hi part lo part

Figure 1. Integer unit and MAC for CIS extensions

The umac instruction performs a MAC operation on un-
signed 32-bit integers. More precisely, umac multiplies the
content of two GPRs, treating both operands as unsigned
integers, and adds the 64-bit product to a cumulative sum
stored in the three registers %asr20, %y, and %asr18, sub-
sequently called accu registers. The cumulative sum is, in
general, exceeding 64 bits in precision when several 64-bit
products are summed up. Therefore, three 32-bit registers
are needed to accommodate the cumulative sum, whereby
the 32 least significant bits are stored in %asr18, the bits
32 through 63 in register %y, and the most significant bits

2The increase in area depends on the configuration of the original
LEON-2 core. For instance, when taking a LEON-2 with a (32 x 16)-bit
multiplier as starting point, the hardware cost of the CIS extensions for
public-key cryptography amounts to roughly 5,500 gates [L1].
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in %asr20, respectively. After adding the 64-bit product to
the cumulative sum, the result is written back to the accu
registers (see Figure [T). The CIS instruction shacr allows
to shift the cumulative sum held in the three accu registers
32 bits to the right (with zeroes shifted in), whereby the
least significant 32-bit word of the cumulative sum (i.e. the
content of },asr18) is written to a destination register rd.

We have implemented a CIS-capable MAC unit for the
LEON-2 consisting of a (32 x 16)-bit tree multiplier and
a 72-bit accumulator. The 72-bit accumulator guarantees
that up to 256 double-precision (i.e. 64-bit) products can be
summed up without overflow or loss of precision, which is
sufficient for cryptographic applications. Besides the CIS
instructions, the MAC unit is also capable to execute the
“native” SPARC V8 multiply instructions like umul and
smul [[11}32]]. Therefore, the CIS extensions can be easily
integrated into the LEON-2 core by simply replacing the
integer multiplier with a MAC unit that provides the extra
functionality. In addition to modifications of the LEON-2
core, we have also adapted the tool-chain, in particular the
GNU assembler gas, to support the CIS extensions.

A LEON core equipped with a (32x 16 4 72)-bit MAC
unit executes the “native” SPARC V8 multiply instructions
smul/umul in two clock cycles, whereby higher part of the
product is written to the %y register, while the lower part is
directed to a GPR in the register file. The CIS instruction
umac also has a latency of two cycles, but places its result
in the accu registers (and not in a GPR), and therefore an
independent instruction can be executed in the integer unit
during the second cycle of a umac instruction. This parallel
execution is possible since the buses connecting the register
file and the functional units are not occupied during the
second cycle of a umac instruction, similar to the execution
of the madd instruction in MIPS32 processors.

5. Implementation Details and Optimizations

As mentioned in Section [2| a modular exponentiation is
generally performed through a sequence of modular multi-
plications and squarings. Consequently, there are two basic
options to speed up a modular exponentiation: improve the
execution time of a modular multiplication or reduce the
number of modular multiplications needed to accomplish a
modular exponentiation. In the following we discuss im-
plementation details and propose optimizations techniques
for both modular multiplication and exponentiation.



5.1. Optimization of Montgomery Multiplication

Montgomery presented in [23] an efficient algorithm for
modular multiplication that avoids the trial division in the
reduction operation. Given two integers A and B, and an
odd modulus N, Montgomery’s algorithm gives as result
the so-called Montgomery product, which is defined as

Z = MonPro(A,B) = A-B-27" mod N (1

whereby 0 < A,B < N and n is the bitlength of the modulus
N (see Section [2] for further details). Kog et al. discuss in
[[17] a number of implementation options and optimization
techniques for calculating the Montgomery product on a
general-purpose processor. One of these implementation
methods is the so-called Finely Integrated Product Scanning
method (or FIPS method for short), which can be phrased
as shown in Algorithm I}

Algorithm 1. FIPS Montgomery multiplication

Input: An s-word modulus N = (ns_1,...,n1,n0), two operands
A,B < N, pre-computed constant n(, = —nal mod 2".
Output: Montgomery product Z=A-B-27" mod N.
1: (t,u,v) <0
2: for i fromOby 1tos—1do
for j from O by 1toi—1do
(t,u,v) — (t,u,v)+a; x b;_;
(t,u,v) — (t,u,v) +zj X nj_j
end for
(t,u,v) — (t,u,v) +a; X by
zj < v x g mod 2%
(t,u,v) — (t,u,v) +z; X ngy
ve—u,u«—t, t<—0
end for

3
4
5
6:
7
8
9:
10:
11:

12: for i from s by 1to 2s—1 do

13:  for jfromi—s+1byltos—1do
14: (t,u,v) — (t,u,v)+aj x b;_;

15: (t,u,v) — (t,u,v) +z; X ni_;

16:  end for

17: Zj—g <V

188 ve—u,u—t,t—0

19: end for

20: zg vV

21: if Z> N then Z <+ Z — N end if

The FIPS method may be viewed as Comba multiplica-
tion [3]] with a “fine” integration of Montgomery reduction
such that both multiplication steps and reduction steps are
performed in the same inner loop. In any iteration of the
inner loop, two single-precision multiplications are carried
out, and both products are added to the same cumulative
sum [6]. Thus, the FIPS method executes multiply-accu-
mulate (MAC) operations similar to Comba’s method (see
Section [2). The cumulative sum normally exceeds 2w bits
in length when several 2w-bit products are summed up, and
hence we need three w-bit words for its storage. Algorithm
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denotes the cumulative sum by the triple (¢,u,v), which
represents the integer value 722 +u-2" +v. The opera-
tion carried out at line 10 and 18 of Algorithm [I]is simply
a w-bit right-shift of the cumulative sum (#,u,v). A detailed
description of the FIPS method can be found in [6} [17]].

k =1;

for (j = i-1; j >=0; j --)

{
accu += a[jl*b[k]l; accu += z[jl*n[k];
k ++;

}

Figure 2. FIPS inner loop in a C-like language

Figure [2| depicts a concrete implementation of the first
inner loop (i.e. line 3-6) of Algorithm [I] in a high-level
C-like programming language. This implementation differs
slightly from the pseudo-code in Algorithm [I] to facilitate
performance optimization on the SPARC architecture. In
particular, the variable j, used for loading the words a; and
zj, is initialized with i —1 and decremented by 1 in each
iteration of the loop. Thus, the loop terminates when the
variable j becomes negative. The advantage of this “loop
reversal” is that the condition for loop termination can be
tested by comparing j with O (instead of i—1), which is, in
general, more efficient on a SPARC processo Further-
more, the index i—j, used in Algorithm E] to address the
current word of A and N, is replaced by the index k in the
code shown in Figure 2] This index is initialized with 1 and
incremented by 1 upon each iteration of the inner loop. The
cumulative sum is stored in a variable named accﬂ which
corresponds to the triple (7,u,v) in Algorithm I}

loop2: 1d [%i1 + %111, %13 ! load aljl in %13
1d [%i2 + %121, %14 ! load b[k] in %14

1d [%i0 + %111, %15 ! load z[j] in %15

umac %13, %14 ! accu += a[jl*blk]

load n[k] in %14

subcc %11, 4, %11 ! decrement j by 4
umac %14, %15 ! accu += z[jl*n[k]
bge loop2 ! branch if j >= 0

1
1
1
1
1d [%i3 + %121, %14 !
1
1
1
add %12, 4, %12 ! increment k by 4

Figure 3. FIPS inner loop in Assembly language

Figure [3] shows an optimized Assembly implementation
of the FIPS inner loop (Algorithm [I)) for execution on a
SPARC V8 processor with CIS extensions. The inner loop
starts with two 1d instructions that load the words a; and

3Determining whether j is equal to, greater, or less than zero is essen-
tially free on SPARC processors when the instruction subcc is used to dec-
rement j. On the other hand, a comparison between j and a non-zero value
like i — 1 would necessitate an additional instruction in the inner loop.

4The variable accu must provide storage for > 2w bits. However, high-
level languages like C have no “triple-precision” datatype. Therefore, the
inner loop can not be directly implemented as shown in Figure



bi_j (represented by a[j] and b[k] in the Assembly code)
from memory and place them in register %13 and %14, re-
spectively. Then, the CIS instruction umac multiplies the
words together and adds the 64-bit product a; x b;_; to the
cumulative sum in the accu registers (see Section 3). Note
that the MAC unit’s 72-bit accumulator and the extended
precision of the accu registers guarantee that up to 256
double-precision (i.e. 64-bit) products can be summed up
without overflow or loss of precision. The words z; and
n;—;j (denoted as z[j] and n[k] in Figure [3) are loaded
immediately before and after the first umac instruction. The
second umac instruction forms the product z; X n;_; and
adds it to the cumulative sum in the accu registers. A subcc
and an add instruction, which simply update the variables
j and k, are used to fill a load and branch delay slot, respec-
tively. The subcc instruction also sets the condition codes
(in particular the N and V bit) that determine whether the
branch (bge) is taken or not.

The registers %10, %11, %i2, and %i3 hold the starting
address of the arrays z, a, b, and n, which are used to store
the long integers Z, A, B, and N, respectively. Register %11
contains the variable j, which is initialized with 4(i—1) in
the Assembly implementation and decremented by 4 each
time the inner loop repeats, while k (held in register %12)
is incremented by 4. The loop terminates when j becomes
negative, which happens after exactly i iterations. An ex-
plicit comparison between j and 0 is not necessary since
the subcc instruction sets the condition codes, including
the N bit if the result of the subtraction is negative.

The instruction sequence shown in Figure [3]is carefully
ordered to avoid pipeline stalls caused by load or branch
delays. Any iteration of the inner loop takes 9 cock cycles
on a SPARC V8 core with CIS extensions, provided that the
load instructions hit the data cache. However, three cycles
in each iteration are loop overhead, “wasted” for operations
such as updating i, j and executing the bge instruction.

Classic Approach for Partial Loop Unrolling: The loop
overhead can be mitigated (or even completely eliminated)
using an optimization technique known as loop unrolling
[25]. In essence, loop unrolling is done by replicating the
loop body multiple times and adjusting (i.e. reducing) the
iteration count accordingly. The number of copies of the
loop body is referred to as unrolling factor. Loop unrolling
improves performance since the overhead for updating and
testing the loop counter and branching back to the beginning
of the loop is executed less frequently. However, this per-
formance gain comes at the expense of an increase in code
size. Varying the unrolling factor enables an implementer
to find a suitable trade-off between performance and code
size. If the number of iterations is known in advance and
not too large, it makes generally sense to fully unroll the
loop. On the other hand, partial loop unrolling (PLU) is
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typically applied when the iteration count is unknown at
compile time or not constant (which is, for example, the
case for the inner loop of Algorithm [I), or in situations
where full loop unrolling would result in undesirably large
code and, as a consequence, reduced cache efficiency.

k =1;

for (j = i-4; j >=0; j -= 4)

{
accu += a[j+3]*b[k]; accu += z[j+3]*n[k];
accu += a[j+2]*b[k+1]; accu += z[j+2]*n[k+1];
accu += a[j+1]*b[k+2]; accu += z[j+1]*n[k+2];
accu += a[jl*b[k+3]; accu += z[jl*n[k+3];
k =+ 4;

}

for (j = j+3; j >=0; j —-)

{
accu += a[jl*b[k]; accu += z[jl*n[k];
k ++;

}

Figure 4. Standard unrolling of the inner loop

Today, most optimizing C compilers support (partial)
loop unrolling. Figure [] shows a typical example of how
an optimizing compiler could transform the loop depicted
in Figure [2| to enable the generation of partially unrolled
loop code. The loop body is replicated three times (i.e. we
have an unrolling factor of 4) and the initialization, update,
and test of the loop counter j is modified accordingly. In
addition, the indices used to address the individual words
of the arrays a, b, z, and n are adjusted to match the new
loop structure. The transformed code illustrated in Figure
M| consists of the partially unrolled loop containing four
instances of the original loop body and a “rolled” loop for
the leftover iterations that have to be executed if the iteration
count does not divide evenly by the unroll count. The partial
loop unrolling (PLU) technique shown in Figure [4| entails
only a slight increase in code size, but leads to a consid-
erable speed-up if the iteration count i is large since the
loop overhead (i.e. increment of the loop counter, test of the
loop condition, and jumping back to the start of the loop) is
amortized over multiple executions of the loop body. On
the other hand, the PLU technique is not very effective
(or may even degrade performance due to the cost of the
initial setup) if the number of iterations is small. There-
fore, applying PLU to the inner loop of Algorithm [I] yields
suboptimal results since the iteration count ranges from 0
to s — 2, i.e. many leftover iterations are executed which do
not profit from the PLU technique.

Partial Loop Unrolling using Duff’s Device: The problem
with the leftover iterations can be resolved by applying a
different method for partial loop unrolling based on Duff’s
device [13]. Duff’s device allows to unroll a loop without
the need for a second (i.e. postprocessing) loop executing



the leftover iterations. Partial loop unrolling (PLU) using
Duff’s device can result in better performance and smaller
code than the classic PLU approach, while maintaining the
full flexibility of the original loop. In the following we
introduce an improved PLU technique that produces better
results for the inner loop of Algorithm [T}

k =1;
for (j = i-1; j >=0; j -= 4)
{
switch (j)
{
default: accu+=a[j-3]1*b[k+3]; accu+=z[j-3]1*n[k+3];
case 2 : accut=al[j-2]*b[k+2]; accut=z[j-2]*n[k+2];
case 1 : accut=a[j-1]*b[k+1]; accut=z[j-1]*n[k+1];
case 0 : accu+=al[jl*b[k]; accut=z[jl*n[k];
}
k += 4;
}

Figure 5. Partially unrolled inner loop in C

Based on a similar idea as Duff’s device [[13]], the inner
loop of FIPS Montgomery multiplication can be partially
unrolled using a switch statement without breaks. Figure 3]
shows an example where the loop body is replicated four
times and the variables j, k are decremented/incremented
by 4 in each iteration of the loop. As long as j is > 3, the
statements after the default label are executed. However,
as the default label (as well as the case 2, case 1, and
case 0 label) is not terminated by a break, all remaining
statements in the curly brackets are execute(ﬂ On the other
hand, if j is < 3, the switch statement passes control to the
corresponding case clause, from where the statements are
executed downward until the end of the switch statement
is reached. Consequently, the loop overhead (test of loop
termination condition, branch instruction, etc.) is executed
only once even if the iterations count (i.e. the variable i in
Figure [5) is less than the unroll count. The C code shows
a concrete implementation of the proposed PLU technique
with an unroll count of four. In practice, however, higher
unroll counts (e.g. 10-20) make sense, especially when the
operands to be processed exceed 1024 bits in length.

Figure [6] shows a hand-optimized Assembly implemen-
tation of a partially unrolled inner loop of Algorithm [I| for
execution on a SPARC processor with CIS extensions. The
Assembly code corresponds to the C implementation of the
inner loop from Figure [5] i.e. we have an unroll count of
four. After entering the loop, the first instruction compares
the variable j with 12, which is equivalent to a statement
of the form j>=3 in a C-like high-level languageﬁ If jis

SWithout break, the program continues to execute statements until a
break or the end of the switch is reached. The lack of break keywords
causes program execution to fall through from one case block to the next.

The statement j>=3 is an implicit part of the switch statement in the
C code of Figureﬁ} If j>=3 is true, the default clause is executed.
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> 12, the program jumps to the default block, i.e. control is
transferred to the first statement after the def1t label, from
where all following instructions down to the branch (bge)
are executed, including the add in the branch delay slot. On
the other hand, when j is less than 12 (which corresponds
to j being < 3 in the C code in Figure[5), the program con-
tinues execution at the corresponding case label, i.e. either
at case2 (j = 8), casel (j =4) or case0 (j =0). The
address of the case label matching the current value of j is
determined with help of a jump table as described in [26].

loop2: cmp %11, 12 ! compare j with 12
bge deflt ! j>=12: jmp to deflt
14 [%i1 - 12], %13 ! load al[j-3] in %13
1d [416 + %i1l, %17 ! load addr. of caseX
jmp [%17] ! jump to caseX (X<3)
1d [4i1 - %111, %13 ! load al[j-X] in %13
deflt: 1d [%i2 + 12], %14 ! load b[k+3] in %14
1d [%i0 - 12], %15 ! load z[j-3] in %15
umac %13, %14 ! accut+=a[j-3]*b[k+3]
1d [%#i3 + 121, %14 ! load n[k+3] in %14
1d [%i1 - 8], %13 ! load al[j-2] in %13
umac %14, %15 ! accu+=z[j-3]*n[k+3]
case2: 1d [%i2 + 8], %14 ! load b[k+2] in %14
1d [%i0 - 8], %15 ! load z[j-2] in %15
umac %13, %14 ! accut=al[j-2]*b[k+2]
1d [%i3 + 8], %14 ! load n[k+2] in %14
1d [%i1 - 41, %13 ! load al[j-1] in %13
umac %14, %15 ! accut+=z[j-2]*n[k+2]
casel: 1d [%i2 + 4], %14 ! load b[k+1] in %14
1d [%i0 - 4], %15 ! load z[j-11 in %15
umac %13, %14 ! accut=al[j-1]*b[k+1]
1d [%i3 + 41, %14 ! load n[k+1] in %14
1d [%i1], %13 ! load alj] in %13
umac %14, %15 ! accut+=z[j-1]*n[k+1]
case0: 1d [%4i2], %14 ! load blk] in %14
1d [%i0l, %15 ! load z[j] in %15
umac %13, %14 ! accut+=a[jl*b[k]
1d [/4i3], %14 ! load n[k] in %14
subcc %11, 16, %11 ! decrement j by 16
umac %14, %15 ! accu += z[jl*n[k]
bge loop2 ! branch if j >= 0
add %12, 16, %12 ! increment k by 16
Figure 6. Partially unrolled inner loop in Assembler

The instruction sequence shown in Figure []is carefully
ordered to avoid pipeline stalls caused by delayed loads or
branches. There are, of course, instructions executed at the
very beginning and end of the code which do not directly
contribute to the calculation of the result (e.g. maintenance
of variables j and k, jump to case label, conditional branch
at the end of the loop), but the middle part only contains
load and MAC instructions, i.e. the loop overhead has been
completely eliminated from this part of the code. Further-
more, the loop overhead is executed only once per several
load/MAC instructions, depending on the unroll count. The
actual speed-up factor that can be obtained by applying the
PLU technique is also determined by the unroll count. For
example, a 1024-bit FIPS Montgomery multiplication takes



Implementation [ Base Arch. | ModMul Alg. | 1024-bit ModMul. | ModExp Alg. [ 1024-bit ModExp. | CRT |
ARM SecurCore SC200 [[1] ARM n./a. n./a. n./a. 19.60M cycles No
SmartMIPS 4Ksc 20, 21] MIPS32 n./a. n./a. n./a. 10.56M cycles No
Dhem [4] ARM Barrett n./a. Window 15.36M cycles Yes
Phillips and Burgess [27] ARM n./a. n./a. Window 21.88M cycles Yes
GroBschadl and Kamendje [9]] MIPS32 Montgomery 10,300 cycles Binary 14.02M cycles No
Grofschadl et al. [10] SPARC V8 | Montgomery 11,270 cycles Binary 16.77M cycles No
This work (PLU technique) SPARC V8 | Montgomery 9,788 cycles Window 12.47M cycles No

Table 2. Performance of 32-bit RISC cores with crypto extensions (CRT = Chinese Remainder Theorem)

11,270 cycles when implemented with “rolled” loops. Ap-
plying the PLU technique with an unroll count of 8 reduces
the execution time to about 9,788 cycles. The cost of this
performance gain is an increase in code size by just 568
bytes.

5.2. Optimization of Exponentiation

The left-to-right binary exponentiation algorithm men-
tioned in Section[2]requires n modular squarings and, on av-
erage, n/2 modular multiplications when n is the bitlength
of the exponent E. However, in the worst case, n modular
multiplications are required to calculate M mod N. Both
the average and worst-case execution time can be improved
by applying a window method for exponentiation, such as
the left-to-right k-ary exponentiation method, which is given
as Algorithm 14.82 in [19]. The k-ary exponentiation tech-
nique processes k bits of the exponent E at a time and uses
2% — 2 pre-computed powers of the base M to reduce the
number of modular multiplications. Roughly speaking, an
exponentiation according to the k-ary method is performed
in two phases: a pre-computation phase in which the powers
Mimod N for i =2,3,...,25 — 1 are calculated, and an
evaluation phase comprising n modular squarings and (at
most) [n/k| modular multiplications [[16]. The cost of the
k-ary method is an increase in memory requirements since
2K — 2 pre-computed powers of M must be stored.

We experimented with the k-ary method and found that a
window size of k = 4 yields an effective trade-off between
performance and memory usage. Given 1024-bit operands,
the k-ary method with a window size of k = 4 reduces the
number of modular multiplication{] to 256 in the worst
case and requires 1,792 bytes of additional memory for
storing the 14 pre-computed 1024-bit integers. The relative
gain in performance originating from the 4-ary method is
around 16% in the average case compared to the binary
method. However, the 4-ary method improves the worst-
case performance of modular exponentiation by 37.5%. In
addition, window methods like the k-ary method allow to
make the number of modular multiplications independent

7Using the k-ary exponentiation method reduces the number of modular
multiplications, but does not affect the number of modular squarings.
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of the Hamming weight of the exponent E, which helps
to defend against certain side-channel attacks (see [31] for
further details).

6. Summary of Results and Conclusions

When applying our PLU technique, a 1024-bit modular
multiplication can be executed in 9,788 clock cycles on a
SPARC V8 core with CIS extensions. For comparison, the
implementation with the “rolled” loops reported in [10] is
almost 1,500 cycles slower (see Table E]) Furthermore, the
window technique significantly improves the worst-case
execution time of a modular exponentiation. Putting it all
together, the PLU technique and window method make a
1024-bit modular exponentiation about 25% faster than a
conventional implementation with rolled loops and binary
exponentiation method. The cost of this performance gain
is a slight increase in code size (568 bytes) and memory
usage (1,792 bytes). Table [2] shows that our results compare
favorably with those from previous work, even with the
performance figures of commercial products.

Our work confirms that algorithmic optimizations have a
major impact on the overall performance. In addition, they
also affect code size and memory footprint, both of which
directly translate into silicon area when ROM and RAM
are integrated together with the processor core as a system
on chip. Consequently, algorithmic optimizations constitute
an additional dimension in the design space (affecting both
performance and silicon area), which has to be considered
when exploring different boundaries and trade-offs between
hardware and software.
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