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ABSTRACT

In this paper, a robust speaker verification system using
improved voice activity detection has been designed for
increasing safety of air traffic control. In addition to the
usage of the aircraft identification tag to assign speaker
turns on the shared communication channel to aircrafts,
speaker verification is investigated as an add-on attribute
to improve security level effectively for the air traffic con-
trol. The front-end processing unit is optimized to deal
with small bandwidth restrictions and very short speaker
turns. Two adaptive voice activity detection methods based
on energy and wavelet parameters are developed and used
as pre-processing in front-end unit. The verification task is
accomplished by training background models and speaker
dependent models. To enhance the robustness of the veri-
fication system, a cross verification unit is further applied.
The designed system is tested with SPEECHDAT-AT and
WSJO0 database to demonstrate its superior performance.
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1. Introduction

Speaker verification (SV) is an approach to identify a
speaker from captured speech signal. This technique shows
potential possibilities of different voice-controlled applica-
tions such as dialog system, information services and secu-
rity control. In our research, SV is applied to increase se-
curity level of Air Traffic Control (ATC). There is a steady
demand for increasing the security level in ATC voice com-
munication between controller and pilots. In 2003 the Eu-
rocontrol Experimental Centre (EEC) [1] proposed the Air-
craft Identification Tag (AIT) which is based on a water-
marking technique to identify the originating aircraft of the
transmitting voice source [2]. A further improvement of
the security level was proposed in [3] by using a SV sys-
tem based on the AIT information. Here the pilot's voice
is automatically enrolled when the pilot registers the first
time to a control sector. At any later occurrence of the same
AIT the new received voice message is verified against the
existing speaker model. The main challenge for the ATC-
oriented SV system is degradation of the transmitted noisy
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signal caused by the fading channel [4]. The bandwidth
limitation of the transceiver equipment is also a critical
point. ATC uses a bandwidth of only 2200 Hz in the range
of 300 — 2500 Hz [3] for speech transmission. The short
duration of pilots' speaker turn speech is another challenge.
Hering et al. [2] have shown that one speaker turn is only
five seconds on average in length during pilots and con-
troller communication.

To solve the above demands the text-independent
Gaussian mixture model - universal background model
(GMM-UBM) approach is used for speaker verification
with a front-end processing unit specially adapted to the
needs of ATC. An improved voice activity detection (VAD)
is embedded as pre-processing in front-end unit to extract
exact speech segments. VAD has a main impact on SV
performance under noisy conditions which helps to raise
the security level as studied in [3]. Voice activity de-
tection (VAD) is a most crucial topic in speech process-
ing and its application. Many VAD techniques have been
proposed using single-domain features such as short-term
energy levels, zero crossing rate, autocorrelation coefi-
cients, glottal closure indices [5]. Other methods are based
on multi-domain features extracted from the short-time
Fourier transform (STFT) of the input speech frames such
as mel frequency cepstral coefficients [6]. Recently, the
Wavelet transform (WT) which provides a flexible rectan-
gular tiling of the time-frequency plane is applied for pho-
netic classification in noisy environments [7].

In this paper, an improved VAD is developed from a
wavelet-based phonetic classification [7] with a novel adap-
tive quantile filtering method. The wavelet coefficients ob-
tained by the WT on every windowed overlapping speech
frame are used to extract a frame-based delta feature. To
estimate noise threshold, a quantile filtering method which
is proposed in [7] is further improved by an adaptive esti-
mation of the quantile factor. For smoothing of fluctuations
resulting from strong non-stationary noise in the VAD out-
puts, a hangover scheme [3] has been applied. The speech
segments derived at the VAD outputs are used to extract
linear-frequency cepstral coefficients (LFCCs). After that,
gender-dependent universal background models (UBMs)
are trained. Speaker dependent models (SDMs) are adapted
from the UBM for each speaker before the verification task
is performed.

The paper is structured as follows: An improved VAD
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based on the WT and adaptive quantile filtering is presented
in section 2. Then the design of the SV system is explained
in section 3. Experiments and discussion can be found in
section 4. The final section presents a conclusion and future
research.

2. Improved Voice Activity Detection
2.1 Multi-resolution Analysis and Feature Extraction
Based on the multi-resolution capabilities of the WT, any

discrete-time signal z[k] can be decomposed into the sum
of an approximation plus L details at L'" scale as:
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where X (1)[2n] and X (™)[2n + 1] are the approximation
coefl cients (low-frequency part) and the detail coefficients
(high-frequency part), respectively. They are defined as:

xBp2n] = (n§P 1250 ~ 1,201,
(2)
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where g(()m)[k:] is an equivalent filter obtained through m

stages of lowpass synthesis filters go[k], each preceded by
an upsampler by 2. hém) [k] is an equavalent lowpass anal-
ysis filter. We call W, ;(n) the sequence of all wavelet
coefficients (i.e, X(“)[2n] and X (™) [2n + 1]) which are
derived by the WT at the m!" scale of the i‘" frame, n is
the coefficient index, IV is the number of wavelet coeffi-
cients in each subband, m, n, k,i € Z.

As observed by Pham et. al [7], there are different
wavelet power distributions for different phonetic classes
of speech signals. A relatively uniform power distribution
occurs for the non-speech frames. However, the power of
the voiced frames is mostly contained in the approximation
subbands and much less in the detail subbands, and vice
versa for the unvoiced frames. These significant power dif-
ferences between approximations and details are used to
detect the speech frames. From the statistical properties of
speech sounds, we see that the spectrogram power in the
range [0 — 1]kHz is very high for voiced frames in com-
parison with unvoiced frames. Dealing with the air traffic
voice signal having a bandwidth restricted to the range of
[0.3 — 2.5] kHz, we choose a decomposition scale m = 2
to consider the relation between a low-frequency band of
[0.3 — 1.1]kHz and the remaining higher-frequency band.
A delta parameter D(i) which is the power difference be-
tween approximation and detail subbands is calculated for
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each speech frame as follows:
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where N, = om and N — N, are the length of the approxi-

mation subband and detail subbands, respectively. IV is the
number of samples in one speech frame.

2.2 Robust Feature

Due to the fading channel of air traffic communication, the
transmitted voice signal is degraded significantly. Thus, the
hyperbolic tangent sigmoidal function is applied on D (%) in
order to amplify small values of the delta feature D(i) re-
sulting from weak speech frames. This operation also com-
presses very high values of the D(i) resulting from high
quality speech frames to balance the impact of the large
range of values of D (i) during processing.

In addition to voice signal distortion, we observe that
there are high fluctuations of the feature values D(i) dur-
ing non-speech segments. This results from strong non-
stationary noise of the transmitting channel. To make the
VAD robust against noise, the processed delta features are
further smoothed by median filtering of length five frames:

. 1— 672D(i)
Ds(l) = medfilt <m) .

Q)

2.3 Adaptive Noise Threshold

In order to achieve accurate speech/non-speech detection,
the extracted feature values will be compared with an esti-
mated threshold. A statistical quantile filtering method pro-
posed in [7] is further improved to have a better estimate of
the threshold relating to the noise level. We observe that
the smoothed feature values D;(i) stay at the noise level
over a significant part of buffers ten seconds in length. The
estimation is implemented in two steps:

e Sorts D,(7) in ascending order over a buffer b of Ny
frames to get D,(¢'), ¢/ = [1... Ny].

e Determines an adaptive threshold T}, () by taking the
q'" quantile:

Ty (b) = Ds(i")]ir= |, ) )

With this method, the threshold is updated for every
captured speech buffer and is adaptive to non-stationary
noise which is common in ATC. As studied in [7], the quan-
tile factor ¢ = 0.3, which had been selected experimentally
from the range of possible values ¢ = [0.0...1.0], pro-
vides a good estimate of the noise threshold. However, this
constant quantile factor for every buffer introduces a limi-
tation of the method. From the temporal characteristics of
the input utterances, we observe that the ratio between the
number of speech frames and the number of non-speech



frames varies for different buffers. An adaptive quantile
factor ¢(b) is proposed to achieve a better estimate of the
noise threshold. The method is based on a comparison of
feature difference between every five consecutively sorted
frames and a pre-determined level ¢ = 1073, The proce-
dure is done from the beginning of the buffer and is stopped
when the difference is larger than the level. Then the quan-
tile factor ¢(b) is selected as:

- - - buffer 1 [ I
buffer 2 ;f )

g=0.3 / J/

Enhanced features Ds(i)

400 600 800 1000 1200
Sorted frame indices i

0 200

Figure 1: Adaptive quantile factors for different buffers.

As shown in Fig. 1, three different quantile fac-
tors q(b) are estimated more accurately than the constant
quantile factor for three different buffers. To make the
speech/non-speech decisions, the smoothed delta param-
eter D4(i) of each input speech frame is calculated and
compared with the estimated threshold. They are labeled
as speech frames if the absolute values of D;(7) are larger
than the threshold 7, (b), and as non-speech frames other-

wise:

if [Ds(4)] > Ty(b)
otherwise

Speech,

NonSpeech, -

VAD(i) = {

Finally, the output sequence VAD(%) is smoothed by apply-
ing a 100ms/ 200ms hangover scheme in [3] to bridge short
voice activity regions, preserving only candidates with a
minimal duration of 100 ms, and being not more apart than
200 ms from each other. This excludes talk-spurts shorter
than 100 ms and relabels pauses smaller than 200 ms. The
impact of the bridging rule is considered during experi-
ments. A block scheme of the proposed voice activity de-
tector is presented in the following figure:

3. Speaker Verification Design

Based on the detected VAD segments, features are ex-
tracted and normalized. The design of the SV system con-
sists of four phases as shown in Figure 3. In phase 1, gen-
der dependent UBMs are trained. These models are used in

|WT Featw: Extraction Detection |—| Smoothing
Capturedl & Enhancement _>VAD
Speech . ; Output
Frames Wn,i(k) D (i) TTq(b)
Adaptive
Threshold
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Figure 2: Block scheme of the improved VAD.

phase 2 for speaker dependent modeling using gender in-
formation from gender recognition. Retraining of a speaker
model is performed in phase 3 and finally in phase 4 the
verification task is carried out.

Speech Segment

Feature
Extraction

Feature

Normalization

Gender UBM
Training

4
Speaker
Verification

A 4
Speaker Ay
Retraining

UBM,, Speaker Asnk
Modeling

Figure 3: Illustration of designing a SV system in 4 phases.

3.1 Front-end Processing

A robust VAD is crucial in the SV system in order to extract
suitable speaker dependent data. Non-speech data which
is contaminated by noise of the transmission channel may
drive model training into incorrect convergence. This leads
to an unreliable SV system.

Feature Extraction: For each speech segment detected
by the VAD method features are extracted separately as
shown in Fig. 3. This is necessary to avoid artificial dis-
continuities when concatenating feature values of speech
frames. 14 cepstral coefficients are extracted using a lin-
ear frequency, triangular shaped filter bank with 23 chan-
nels between 300 Hz and 2500 Hz for each frame. As pro-
posed in [3] a frame length of 25 ms and a frame rate of
5 ms achieves good results. Finally the whole feature set
comprises these LFCCs calculated in dB and the polyno-
mial approximation of its first and second derivatives [8].
Altogether 42 features per frame are used.

Feature Normalization: In order to reduce the impact
of channel dependent distortions histogram equalization
(HEQ) [9] has been used as feature normalization method



as shown in Fig. 3. HEQ is known to normalize not only
the first and the second moment but also higher-order ones.
The HEQ method maps an input cumulative histogram dis-
tribution onto a Gaussian target distribution. This distribu-
tion is calculated by sorting the input feature distribution
into 50 bins. This number has been selected to be small to
get sufficient statistical reliability.

3.2 SV Classification

Here we use the GMM-UBM approach first introduced
by [10]. In contrast to other GMM-UBM SV systems [8]
we decided to train gender dependent UBMs which are
finally not merged to one global UBM. For training the
UBM, the basic model has been initialized randomly and
then trained in a consecutive manner by the speech data us-
ing maximum a posteriori (MAP) adaptation. For retrain-
ing of the model to obtain the final gender dependent UBM,
we used three EM - steps and a weighting factor directly
proportional to the ratio of the total speech length used so
far for training and the new utterance length, the model is
going to be retrained too. This is done in phase 1 as shown
in Fig. 3. To form a SDM, first the gender is determined
according to the log-likelihood of the gender-models as:

®)

where L(X, \) is the log-likelihood of the model A given
the data X, f and m depict the female and male UBMs,
respectively. The corresponding gender dependent UBM
is used to adapt a SDM in phase 2. For speaker adap-
tation three EM - steps and a weighting factor of 0.6 for
the adapted model and correspondingly 0.4 for the UBM
is used to merge these models to the final SDM. In phase
3 further adaptation of the SDM with new data is done by
retraining the model as described for the UBM retraining.

The score S(X) which is used for verification in
phase 4 is calculated by comparing the hypothesized
speaker namely the speaker model Agp. with its anti-
hypothesis the UBM AyBasg,:

Ge = argmax [L(X, )\UBMm),L(X, )\UB]Mf)] 5

S(X) = log L(X|Aspr) — log L(X|[A\uBMe. ) (9)

3.3 Cross Verification

To meet the high security expectations in ATC voice com-
munication a cross verification unit can be applied as add-
on. If an utterance is shorter than a predefined mini-
mum length (i.e., 8 seconds) and the score is not confident
enough (positive or negative) the system waits for another
utterance and conducts a cross verification as proposed
in [3]. Therefore, let X; and X be the sequence of feature
vectors of the first and second utterance to be investigated
and \; and A5 their adapted speaker models, respectively.
If Sy, (X1) N Sy, (X2) > t, ie., both scores are above a
threshold ¢ and are verified to be from the same gender as
defined in Eqn. 8, then it is assumed that both utterances are
from the same person and thus are concatenated and used
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for verification. Figure 4 shows the region of insufficient
confidence in the score distribution histogram. Intruders
and true speakers are illustrated separately. The region of
low confidence which is shown as dashed box in the figure
has been set to —1.8 4= 0.2 using the energy-based VAD.

Figure 4: Histogram and fitted Gauss curves for the score
distributions of imposters (left) and true speakers (right).
The dashed rectangle illustrates the score region of low
confidence.

4. Experiments and Discussion

The fixed telephone SPEECHDAT-AT database [11] and
the WSJO database [12] are used in our experiments. Di-
alect regions and speaker ages were assumed to be selected
randomly. In order to simulate the conditions of ATC, all
files were band-pass filtered to a bandwidth from 300 Hz
to 2500 Hz and down-sampled to a sampling frequency of
6 kHz. To match ATC conditions the databases were cut
artificially in utterances of 5 seconds which corresponds to
a typical talk spurt length in ATC. For training/retraining a
SDM, 3 such segments are used in a row. For the experi-
ment a total of 200 speakers comprising 100 females and
100 males were randomly chosen from the SPEECHDAT-
AT database. Gender-dependent UBMs were trained with
38 Gaussian components using two minutes of speech ma-
terial for each of 50 female/male speakers. Out of the re-
maining 100 speakers 20 were marked as reference speak-
ers. Both, for the remaining 99 speakers, known as im-
posters as well as for the reference speakers, 6 utterances
were used for verification. So each reference speaker was
compared to 600 utterances, yielding a total of 12000 test
utterances for 20 reference speaker models all together.
For the tests conducted on the WSJO database the
CD 112_1 comprising 23 female and 28 male speakers
was used to train the gender dependent UBMs. Since in
this database each speaker produces the same utterances,
100 seconds of speech were randomly selected from each
speaker and used for training. For testing CD 11_1_1 with
45 speakers divided into 26 female and 19 male ones were
taken. Here again the speech files for the reference speaker
as well as for the claimants were selected randomly but
have been the same for all different VAD experiments.



Speech material used for training/retraining the reference
speaker was labeled and hence excluded from verification
- 24 were labeled as reference speakers, 12 female and 12
male each. Both, for the remaining 44 speakers as well
as for the reference speaker, 12 utterances were used for
verification. So each reference speaker was compared to
540 utterances which yields a total number of 12960 test
utterances for 24 reference speakers.

Results: To measure SV performance we use the Detec-
tion Error Tradeoff (DET) curve and as special point in this
curve the equal error rate (EER). The score distribution of
all speaker utterances are illustrated in Fig. 5. The refer-
ence speaker utterances used to test the reference model
are highlighted in black for all reference models along the
x-axis. Imposters are depicted in grey for certain score val-
ues on the y-axis. The z-axes shows the score for different
utterances of imposters and claimants respectively.
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Figure 5: Score distribution for an experiment on

SPEECHDAT-AT for all 20 reference speakers (black) and
all 100 claimants (grey) separately using the WT based
VAD.

EER [%] NoVad EVad WaVad
wo/w wo/w

SPEECHDAT-AT | 25.12 11.7/6.52 9/4.75
WSIJO 10.15 -/10.37 -/10

Table 1: EER results derived from both databases for dif-
ferent VADs without (wo) and with (w) applying hangover
scheme.

The energy-based VAD in [3] is used to compare with
the proposed WT-based VAD in term of SV performance.
As reported in Table 1, for the SPEECHDAT-AT database
which consists of noisy fixed line telephone recordings, the
usage of both VAD methods improves SV performance sig-
nificantly compared to the case without using VAD. How-
ever, for the almost noise-free WSJ0 database, the obtained
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results are almost similar. This shows a positive effect of
VAD in removing noise-dominated non-speech segments
which may lead to an unreliable trained SV system. With
the more accurate WT-based VAD than the energy-based
VAD, the EER is reduced from 11.7% to 9 % without
smoothing, and from 6.52% to 4.75% with smoothing as il-
lustrated in Fig. 6. Thus, by using the proposed WT-based
VAD, we gain 23% and 27% relative improvement com-
pared to the energy-based VAD in both cases. In addition,
from the observed results, we discovered that not only an
accurate detection of speech frames but also a smoothing to
bridge short pauses between speech frames help to improve
the SV performance.

4011
' DET,

NoVad
357 FA==FR

l O EER=25.12%
30r ‘f - DETEVad

=6.52%

# EERpy

258
i DETWaVad
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\
I
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|
i
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i
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Figure 6: DET-curve, as plot of false acceptance (FA) rate
versus false rejection (FR) rate and EER point for the SV
system without VAD (NoVad), energy-based (EVad) and
WT-based VADs (WaVad).

The impact of the proposed cross verification unit has
been studied on SPEECHDAT-AT database for the energy-
based VAD only. As shown in Fig. 7 we can report a reduc-
tion of the EER from 6.52 % to 6.12 %.

To assess the impact of environmental mismatch be-
tween training and test conditions, a cross testing has been
performed using SPEECHDAT-AT database for training
UBMs but WSJO database for testing and vice versa. The
WT-based VAD is employed for these experiments. In the
former condition, the EER is 11.8 % which is worse than
above results because the models were trained by noisy
speech and tested with clean speech. In the later condition,
the slight improvement of EER to 11 % may result from the
effect of VAD in reducing of noisy non-speech segments in
testing phase. In both conditions, using VAD can not solve
the mismatch between training and testing phases.

5. Conclusion

In this paper, a voice activity detection is built in front-end
processing stage to improve speaker verification perfor-
mance. Our system was specially designed for the needs of
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Figure 7: DET curves with EER point (plus sign and cir-
cle) for both the normal system and the system with cross-
veril cation. Subscript cr denotes the usage of the cross-
veril cation system.

air traffic control with respect to bandwidth restriction and
talk spurt length. Systematic tests have been performed us-
ing this system without VAD, with the energy-based VAD
and the WT-based VAD . The last method which is based
on enhanced wavelet feature and adaptive noise threshold
provides best performance. The hangover scheme which
smooths the VAD output contributes to the EER reduction.
Significant EER reduction is achieved under harsh envi-
ronments when applying the WT-based VAD, and hence it
proves indispensable for further security enhancements in
air traffic control voice communication.

For future work, parameters of the WT-based VAD
will be fine tuned to maximize EER performance. Rela-
tionship between VAD performance and speaker verifica-
tion performance should be considered. An adaptive esti-
mate of the low confidence region for the cross-verification
unit will be investigated. Moreover, we want to examine re-
sults on the whole SPEECHDAT-AT database and try UBM
environment adaptation for compensating mismatch condi-
tions in training and testing. As another approach to reduce
the impact of environmental mismatch, noise reduction can
be applied as pre-processing step as studied for robust au-
tomatic speech recognition in [13].
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