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Abstract

The Boundary Element Method (BEM) is preferred to solve wave propagation problems in semi-
infinite continua numerically. One crucial condition to establish a BE formulation is the knowledge of
a fundamental solution. For poroelastic constitutive equations, up to now, such a solution has only been
available for the case of compressible constituents in Laplace/Fourier domain.

Here, the Laplace domain fundamental solutions for incompressible constituents are derived using
Hormanders method for two different sets of unknowns, for the solid displacements and fluid pressure
and for the solid and fluid displacements. The solutions are used in a time-dependent BE formulation
based on the Convolution Quadrature Method, which only requires the Laplace domain fundamental
solutions.

There are three wave types in poroelastic continua, the fast compressional wave with solid and fluid
moving in-phase, the shear wave, and the second (slow) compressional wave, which has no equivalentin
elastic materials, with solid and fluid moving in opposite directions. With incompressible constituents,
the propagation speed of the fast compressional wave becomes infinite. Some studies concerning the
influence of this infinite wave speed are shown as well as results of BEM calculations. The numerical
examples are calculated for the unknowns solid displacements and fluid pressure.

Keywords: Poroelasticity, Biot's theory, Incompressible, Boundary Elements, Fundamental
Solutions.

INTRODUCTION

The efficiency of the Boundary Element Method (BEM) in dealing with semi-infinite do-
main problems, e.g., soil-structure interaction, have long been recognized by researchers and
engineers. For soil, a fluid saturated material, a poroelastic constitutive model should be used
in connection with a time-dependent BE formulation to model wave propagation problems cor-
rectly. Dynamic poroelastic BE formulations are published in frequency domain, €lgen
et al. 199}, in Laplace domain, e.g.,Chen and Dargush 1995and in time domainGhen
and Dargush 19955chanz 2007a In all of these formulations, Biot's theory is used assum-
ing compressible constituents. Beside the compressibility of the constituents also a structural
compressibility exists and is modelled in Biot’s theory. For some materials, e.g., soil, the
compression modulus of the constituents itself is much larger than the compressibility of the
structure. In these cases, it is sufficient to approximate both the fluid and solid constituents as
incompressible, i.e., only the structural compressibility remains.
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Here, Biot's model for this special case is discussed for two different sets of independent
variables, the solid displacements and pore pressure, and solid and fluid displacements. Sub-
sequently the novel fundamental solutions for the incompressible case are derived using the
method of Hormanderl©@63. Aiming on wave propagation problems, the time-dependent BE
formulation based on the Convolution Quadrature Method as proposed by Seéi) (is
used here. A BEM formulation is established employing the fundamental solutions using solid
displacements and pore pressure as independent variables, which are a sufficient set according
to Bonnet (987. As the unknowns are the same as in the compressible model and, further,
the principal structure of the set of governing equations is similar, the same procedure as in the
above mentioned BE formulations can be followed.

To demonstrate the limits of the incompressible approximation for a poroelastic medium,
two different cases of materials, a rock and a soil, are used. The results of the incompressible
modelling are compared with the compressible modelling at the example of a half space.

Throughout this paper, the summation convention is applied over repeated indices and Latin
indices receive the values 1,2, and 1,2,3 in two-dimensions (2-d) and three-dimensions (3-d),
respectively. Commalg ; denote spatial derivatives and d¢jsienote the time derivative. As
usual, the Kronecker delta is denoteddy:

BIOT'S THEORY — GOVERNING EQUATIONS
Following Biot’s approach to model the behaviour of porous media, an elastic skeleton
with a statistical distribution of interconnected pores is consideBéat (955. This porosity
is denoted by
v
- 1
0= 3 (1)

whereV'/ is the volume of the interconnected pores contained in a sample of bulk véfume
Contrary to these pores the sealed pores will be considered as part of the solid. Full saturation
is assumed leading 16 = V¥ 4+ Vv with V5 the volume of the solid, i.e., a two-phase material

is given.

Constitutive assumptions

If the constitutive equations are formulated for the elastic solid and the viscous interstitial
fluid, a partial stress formulation is obtaindsidt 1955

2 2
i = 2Gej; + (K —3G+ %) eindij + Qel)0i (2a)
ol = —¢p=Qe}y + Rel, (2b)

with ()* and ()’ indicating either solid or fluid, respectively. The respective stress tensor is
denoted by;; ando/ and the corresponding strain tensorg@yandeﬁk. The elastic skeleton
is assumed to be isotropic and homogeneous where the two elastic material constants com-
pression modulug’ and shear modulu§ refer to the bulk material. The coupling between
the solid and the fluid is characterised by the two paraméeasd R. In the above, the sign
conventions for stress and strain follow that of elasticity, namely, tensile stress and strain is
denoted positive. Therefore, in equatidib) the pore pressurg is the negative hydrostatic
stress in the fluid/.

An alternative representation of the constitutive equati)ns(used in Biot's earlier work
(194)). There, the total stress; = o;; + o/6;; is introduced and with Biot's effective stress



coefficienta = ¢ (1 + Q/R) the constitutive equation with the solid straif) and the pore
pressure

2
Oij = 2G8?j + <K — gG) 5Zk5ij — Oé(gijp (3&)

is obtained. Additionally to the total stress; as a second constitutive equation the variation
of fluid volume per unit reference volunges introduced

2

C=acti+ p. (3b)

This variation of fluid¢ is defined by the mass balance over a reference volume, i.e., by the
continuity equation

é +qgii=a (4)

with the specific fluxg; = ¢ (u{ — ;) and a source terma (¢). Equation §) identify  as a
kind of strain describing the displacements of the fhafdrelative to the solid displacements

u; Which takes a source in the fluid into account. This source term is not motivated by any
physical reasohbut it is later needed for the derivation of the fundamental solutions.

In a two-phase material not only each constituent, the solid and the fluid, may be compress-
ible on a microscopic level but also the skeleton itself possesses a structural compressibility. If
the compression modulus of one constituent is much larger on the microscale than the compres-
sion modulus of the bulk material, this constituent is assumed to be materially incompressible.
A common example for a materially incompressible solid constituent is soil. In this case, the
individual grains are much stiffer than the skeleton itself. The respective conditions for such
incompressibilities aredetournay and Cheng 1993

% < 1 incompressible solid, % < 1 incompressible fluid (5)
whereK*® denotes the compression modulus of the solid grainsk&hthe compression mod-
ulus of the fluid.

To find the respective constitutive equations for incompressible constituents the material
parametersy and R have to be rewritten in a different way. Considerations of constitutive
relations at micro mechanical level as givenDetournay and Cheng (19p&ad to a more
rational model for this purpose

a=1—-—~1 and (6a)

¢2KfK32
Kf (K — K)+ ¢K*® (Ks — KV)
The relationkR — oo expresses that the value Bfbecomes large, however, due to physical
reasons it is in any case limited. But, the condition tRdtecomes large is used to neglect in

(3b) the influence of the pore pressure. This condition &)l (esults in the incompressible
constitutive assumptions

R=

. (6b)

2
Oij = QGE,‘fj + (K — §G> gzkdij — (51']']) (7a)

¢ = ek (7b)

1e.g., chemical reactions



for the total stress formulation.
For the partial stress formulatioB)( a different point of view may be considered. Biv965
gives as condition for incompressible constituents

(1— @) ey + defy, =0, (8)
i.e., it is assumed that the dilatation of the bulk material vanishes. Realising the relation

also in the partial stress formulation the case of incompressible constituents can be included
resulting in the constitutive assumptions

s s 2 s
of = —ép=R <%5;k + g£k> =0. (10D)

To achieve the zero value in equatidrdf), the condition that the valug becomes large but
is limited must be used.

Contrary to the incompressible model formulated for the total stress formulajion ¢he
partial stress formulation the assumption of incompressibiitygsults in an uncoupling of the
solid and the fluid in the constitutive assumptions. Therefore, the two incompressible models
(7) and (LO) are different whereas the underlying compressible mo@gkd @), respectively,
are identical. This is not really a contradiction. Keeping in mind that an incompressible model
is always an approximation for the more realistic compressible case, it is clear that different
approximations can exist. However, the question which approximation is best can only be
answered by the respective application.

Aiming at the equation of motion to model wave propagation phenomena, it is sufficient to
formulate a linear kinematic equation. Hence, in the following, the relation of the solid/fluid
strain to the solid/fluid displacement is chosen linear, respectively

1
€ij = B (uij + ujii) ely = “gk (11)

assuming small deformation gradients.

Governing equations: Compressible model

In the preceding section, the constitutive equations and the kinematics have been given.
The next step is to state the balances of momentum. In any two-phase material there are three
possibilities to formulate the balances of momentum. First, the balance of momentum for the
solid, second, for the fluid or, third, for the bulk material, have to be fulfilled.

The first two balances are used by Bi&@®66 with the solid displacements and the fluid
displacements as unknowns

05, T (L =0) 7 =(1— ) osiis + 0a (u — uf) + %2 (u - u{) (12a)
ohvor! = oosiil oo (i —if) - %2 (i — af (12b)



The first balance equatiofiZg) is that for the solid skeleton and the secohalj) is that for the
interstitial fluid. In equationX2), the body forces in the solid skeletgfiand in the quidfif are
introduced. Further, the respective densities are denotegdnydo ;. To describe the dynamic
interaction between fluid and skeleton an additional density, the apparent mass ggnsiy
been introduced by Biotl@56. It can be written ag, = C'poy whereC'is a factor depending
on the geometry of the pores and the frequency of excitation.

The third above mentioned balance of momentum for the mixture is formulated in Biot's
earlier work (1941 for quasistatics and iBiot (1956 for dynamics. This dynamic equilibrium
is given by

vijj + Fi = 0s (1 — ) ii; + poyii | (13)

with the bulk body force per unit volumg; = (1 — ¢) f7 + quZ.f. It is obvious that adding the
two partial balancesl@d and (L2h) results in the balance of the mixtur&3j.

In most papers using the total stress formulation, now, the constitutive assumption for the
fluid transport in the interstitial space is given by Darcy’s law. Here, it is also used, however,
with the balance of momentum in the fluidiZb) Darcy’s law is already given. Rearranging

(12b) and taking the definition of the flux = ¢ (u{ — ui) as well asr/ = —¢p into account
the dynamic version of Darcy’s law

¢ = —kK (p,z' + % (ug - ul) + opit] — fg) (14)
is achieved.

Aiming at the equation of motion, the constitutive equations have to be combined with
the corresponding balances of momentum and the kinematic conditions. To do this, first, the
degrees of freedom must be determined. There are several possibilities: i) to use the solid
displacements; and the fluid displacemem;f (two vectors, i.e., six unknowns in 3-d) orii) a
combination of the pore pressuseand the solid displacements (one vector and one scalar,

i.e., four unknowns in 3-d). As shown Bonnet (1987, it is sufficient to use the latter choice.
Here, for completeness, both choices will be presented.

First, the equations of motion for a poroelastic body are presented for the unknowns solid
displacement;; and fluid displacemermlf. Inserting in (2) the constitutive equation®)
written for the partial stress tensors and the linear strain displacement reldtipgee{ds a set
of equations of motion in time domain

1
Gu; j; + (K + §G> ujij + Q (%uj,ji + u;’ji> +(1—-9)f5= (15a)
2

(l—gzb)gsilH-Qa(ili—uzf)+%<u"—a{)

Q . L * /. .
R <§uj,ji + U;,]z + ¢fzf = ¢qulf — Qa <uz - Ufc) - (uZ - u{) . (15b)
Second, the respective equations of motion are presented for the pore pgeasdrihe solid
displacements; as unknowns. To achieve this formulation the fluid displacemémas to
be eliminated from equation& ), (14), (3), and @). In order to do this, Darcy’s lawld) is
rearranged to obtaimzf —u;. Since this relative displacement is given as second time derivative

in (14) and the flux is related to its first oder time derivativedpy= ¢ (u{ — uz) this is only



possible in Laplace domain. After transformation to Laplace domain, the relative fluid to solid
displacement is

2.2
. KQFP~s 1 <A 2 - Af)
u; — Uy = — i+ s‘ort; — ) . 16
L T T s 2k (00 + doy) S2goy \DF T AT Ji (16)
B

In equation {6), the abbreviatior is defined for further usage aié { f (t)} = f (s) denotes

the Laplace transform with the complex variableMoreover, vanishing initial conditions for

U; anduf are assumed here and in the following. Now, the final set of differential equations
for the displacement; and the pore pressugeis obtained by inserting the constitutive equa-
tions 3) into the Laplace transformed dynamic equilibriufrB and continuity equation4j

with uf — 4; from equation 16). This leads to the final set of differential equations for the
displacement;; and the pore pressupe

) 1\ . A A L
G, 55 + <K + §G> g5 — (= B)py — 5% (0 — Boy) @i = Bf) — F; (17a)

2
D o= T2 (0= B sig = —a+ . @)
50f R sofp""
In the above equatiori{), the bulk density = o, (1 — ¢)+ ¢oy is used. This set of equations
describes the behaviour of a poroelastic continuum completely as well as the formul&jion (
Contrary to the formulation using the solid and fluid displacem&sjt#én analytical represen-
tation in time domain is only possible far — oco. This case would represent a negligible
friction between the solid and the interstitial fluid.

Governing equations: Incompressible model
As mentioned above, often the approximation of incompressible constituents can be used.
Inserting in (L5) the incompressibility conditiorfj, the governing equations are given by

Gui jj + <K+ %G) ujij+ (1= 9) i =1 — &) osiii + 0a (uz - uf) + %2 <u - Uf)
(18a)

off = vogi! — oa (iis — ] ) - d (i —af)
: (18b)

using the solid displacements and fluid displacements as unknowns. In this incompressible
version of the equations of motion, the uncoupling of the fluid and solid in the constitutive
assumptions is clearly observed as commented in the last section. So, in equiatjandy(
the coupling by the acceleration and damping terms remains. Further, the second equation
(18b) is no longer independent. It can not be used to eliminate the fluid displaceztﬁe’zrmt
(189. As additional equation the incompressibility conditi@) ljas to be used.

On the contrary, if the solid displacement and the pore pressure are used as unknowns, a
sufficient set of differential equations is obtained. Simply inserting the condit&rin (17),
i.e., settingy = 1 and taking the limitR — oo, the equations of motion under the assumption



of incompressible constituents are achieved resulting in

Gl j; + <K + %G> 45— (1— B8)p; — s* (0 — Boy) 1 = Bf] — F; (19a)

iﬁ,ii — (1= p)st;; = —a+ ifzfz : (19b)

SOf Sof ’

The equation for the pore pressurlf) shows that this variable is no longer a degree of
freedom. Integrating oflOb) would yield the gradient of the pore pressure which could then
be eliminated in199. Physically interpreted, in this case the pore pressure is only determined
by the deformation of the solid skeleton and no longer by any deformation of the fluid.

FUNDAMENTAL SOLUTIONS

Fundamental solutions for the above given systems of differential equations are known in
closed form only in Fourier or Laplace domain. But, even in the transformed domain only
the general case of compressible constituents is published. The fundamental solutions for the
Laplace transformed system dff] is given inManolis and Beskos (198@and for the Laplace
transformed system of.{) in Chen (1994pandChen (1994n

Here, the fundamental solutions for the incompressible case are presented. Not only for
completeness, the fundamental solutions for the compressible case are recalled, also to show
how the physical approximation of incompressibility is represented in the mathematic formu-
las. In order to deduce these solutions, an operator notation is useful. So, for the representation
with solid displacements and pore pressure as unknowns the governing equations of the com-
pressible casel{) as well as the incompressible cagé)(are reformulated as

a4 4 [7] -0 e

with the differential operators

-(GVQ — 2 (Q—ﬁgf)) 5z'j+ (K—l—%G) 81'8]‘ —(a—ﬂ) O;

Ba®m = 4 By #%s (21a)
i —S (a - B) aj ngv R
- [(GV? — 52 (0 — Bog)) 6ij + (K +3G) 9,0, —(1—p)9;
pa = (-5, B g (21b)
L ng

In equations Z0) and @1), the operator is denoted ¥4 independently whether it is in 2-d
(4,7 = 1,2,i.e.,3unknowns) or 3-d{j = 1,2, 3, i.e., 4 unknowns). The corresponding repre-
sentation of a poroelastic continuum using the solid displacements and the fluid displacements

as unknowns is R
1— s
( . ﬁ) f@] o 22)

2

B6 [u}} +




with the differential operators

B6“™ —
<GV2 — s ((1—¢) 05 + 0a) — 5%2> dij + (K +%G+%) 9;0; Q005 + <529a + 8%2) Oij
Q0:0; + (%04 + 52 ) 8 RO,0; — (5% (dos + 0a) — 52 ) 6
(23a)
Beincompy _
(GV2 = (1= 0) 0o+ 0a) = 5L ) 65+ (K + 3G) 005 (Pou+5%) 3y
(32ga + 5%2) 8ij (—52 (pof + 0a) — 3%2) 52-]
(23b)

As before in 1), the operator namB6 is the same whether it is in 2-d (4 unknowns) or 3-d
(6 unknowns). In the following, the same material parameter in both representares @
(21) will be used, s@ is replaced by) = R (a/¢ — 1) to have comparable representations.

In equations 1) and @3), the partial derivative) , is denoted by andV? = 9;; is the
Laplacian operator. Note, all the operato2g)(and @3) are elliptic but the operatoB6 in
(23) are self adjoint whereas the operat@®4 in (21) are not self adjoint. Therefore, in the
latter case for the deduction of fundamental solutions the adjoint operdBat ks to be used
which in the following will not be indicated separately.

A fundamental solution is mathematically spoken a solution of the equation
BG + 16 (x — y) = 0 where the matrix of fundamental solutions is denotedythe iden-
tity matrix by I, and the Dirac distribution by (x — y). Physically interpreted the solution
at pointx due to a single force at poist is looked for. Concerning the interpretation of the
'single force’ the difference in the fundamental solutions for both representations of poroelastic
governing equations2() and @2) becomes obvious. In the syste?), the right hand side
consists of forces acting in the solid pait— ¢) ff and in the fluid part;ﬁfif of the porous
media, respectively. Contrary, in the systex)( the right hand side consists of a bulk body
force [}, = (1—9) ff and a source terréy, i.e., no forces in the quiqif are present. Due to
this, it can not be expected that the fundamental solutions of both systems coincide. Only the
displacement solution due to a single force in the solid has the same physical meaning.

To find these solutions, the same method can be chosen for both representations. In all
cases, for compressible as well as incompressible constituents and for both representations,
respectively, the method of Hormandd©g63 is used. The idea of this method is to reduce
the highly complicated operator&1) and @3) to simple well known operators. For this pur-
pose the definition of the inverse matrix opera®r! = B/ det (B) with the matrix of
cofactorsB* is used. The ansatz = B“ for the matrix of fundamental solutions with an
unknown scalar functiog inserted in the operator equati®G + 1§ (x —y) = 0 yields a
more convenient representation of equatidi® and 2)

BB“p+ 1§ (x —y) =det (B)Ip+Id (x —y) =0
~ det(B)o+0(x—y)=0. (24)
With this reformulation, the search for a fundamental solution is reduced to solve the simpler
scalar equation2d). An overview of this method is found in the original work by Hérman-

der (1963 and more exemplary iBchanz (2001bandRashed (2002
First, this method is applied to the compressible operatoraln (
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Compressible model Following Hormander’s idea, first, the determinants of the operators
B4“™ andB6°°"? are calculated, preferably with the aid of computer algebra. In the fol-
lowing only 3-d will be considered, 2-d being handled in the same Baldénz and Pryl 2004
This yields the results

compiG_zﬂ % 2 2v2\2 (o2 232 2 232
det (B4“"P) = ” K+ 3G (V2= s°X3)7 (V2 = s7A)) (V7 = s7)3) (25)
f
20742 2
det (B6°™P) = (%) (K + %G) R(V2 - 222)% (V2 — s222) (V2 — 2A2)

(26)

with the roots);, i =1,2,3

5 _1[¢2Qf+@—ﬂ9f N of (a = B)°
Y72 BR T K+ 16 B(K+10)
L | (%, o~ Bos of (@ = B)? 2_4¢29f(£)*5@f) (27)
SR K+iG  B(K+1G) BR (K + 3G)
¥ _e—Pes

G

Expressing the determinant using this roots the scalar equation correspondiditogiven

by
(V2= s2A3) (V2 = *AD) (VP = s*A) v+ (x—y) =0 (28)

using an appropriate abbreviatigrfor every operator, i.e.,

Baeomr . = G2 (K + %G> (V2 =s*X) ¢
ng 3

2 (29)
32¢2Qf 4
B6™ ¢ = G? (T) (K + §G> R(V?=5°A3) ¢.
The solution of the modified higher order Helmholtz equati®®) (s
1 e—)\lsr 6—>\237‘ 6—)\357“
ST [P NP Y] R PE R ) I I Y R PRV N P Yy
(30)

with the distance between the two poistandy is denoted by = |x — y/|.

Having in mind that the Laplace transformation of the function describing a travelling wave
front with constant speedis e ~"%/¢ = .Z {H (t — r/c)} (in 3-d), it is obvious that the above
solution @B0) represents three waves. However, as the rbgase functions o, here, the wave
speeds are time dependent representing the attenuation in a poroelastic continuum. This is in
accordance with the well known three wave types of a poroelastic continBiainl©56. The
roots\i, Ao, and\s correspond to the wave velocities of the slow and fast compressional wave
and to the shear wave, respectively. It should be remarked that the.yoepresenting the
shear wave is in 3-d a double root whereas it is in 2-d only a single root, which, as in elasticity,
corresponds to the number of polarisation plam&syer and Dieulesaint 2000

9



From a pure mathematical point of view, the determinant of the opeB&&t"” can have
six roots in 3-d. However, in26) only four roots are found. As above discussed, each root rep-
resents a different wave type whereas the shear wave is in 3-d a double root. So, from physics it
is obvious that the operat®6°°"? can not have more roots as givends). As a consequence,
it can be concluded that the representation of a poroelastic continuum with solid displacements
and fluid displacements is overdetermined, i.e., the representation with pore pressure and solid
displacements is sufficient. This confirms the considerations of Boh887),

The next steps are to insert the solutiwrback in the definitionG = B taking into
account the proper relatio?9) betweeny andq). After calculating the respective matrix of
cofactorsB“ the fundamental solutions are found for the solid displacement/pore pressure
representation

U Uf
G4 = | W | = (31)
ps Pl
sof (FV2 + AD) 5ij — Fo;; —A (Ot — ﬂ) s0; ”
GB (K + 3G) ~A(a—B)0; A((K+3G)Vi+ A)

with the abbreviationsdA = GV? — s (o — Bos), D = B/(sof)V? — ¢*s/R, F =
(K +4/3G) D — (a — () s, and for the solid/fluid displacement representation

s sl
Geemr — | 1) A v — (32)
5oy
—3

M30ij + (Ms — M3V?) 6;; Mi0ij + (Mg — MiV?) 6y ’
My 0;5 + (M4 — M1V2) 0ij M20;; + (Mﬁ — MQVQ) 0ij

2 (¢ 2 1
o (S-1) v (s o)

Gs?¢?o5 (K + %G)

with the abbreviations

K+%G+ a 2
R ¢

cafe-e(z-0)

MQ_QBC(%—1>—BZ—BV2 <K+%G>—CQ

M, =CFE

My = EV? <K+%G>+2EC<%—1>—62—E2

2 2G r C
M4:%(v2—s%§) v? <%—1>+E}

2 2 -
My = SUC Qf; G (23— [Vt %]

20¢°G L (K+1iG \ B
Me;z%(s%g—v?) v2< = +<%—1) + 2

2
B=GV?—-5s*(1—-¢)os—C C:S%+S2Qa E=—s%¢o;—C.
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The difference of the 2-d solution and the 3-d solution lies only in different functionBhe

explicit expressions for the fundamental solutions for the unknowns solid displacemeants
pore pressure can be found in the appendiband their 2-d counterparts Bchanz and Pryl
(2009.

Incompressible model In the incompressible approximation the procedure is the same as
before. First, the determinants with their respective roots are calculated. However, here, both
representation have different roots indicating that two different incompressible models are con-
sidered as discussed before. For each representation the determinants and roots are either

G?3 (
sof

det (B4 = K+ éG) (V2 = s222)% (V2 — 52A2) V2 (33)

3

with the roots

1
/\220+@f(3—2) 32 0= Pes (34)
! K +1G G
and
4 9G240 03 4 2
det (B6"") = Tf (K + gG) (V2 = s*A3)" (s*A\1 — V?) (35)
with the roots
o — Boy 90— Poy
M= === 36
The solutions of the equatio@®) corresponding to the determinaft is
1 €—>\187‘ 1 e—)\gsr
= + + 37
Y e [(A% R I T e A%)] =0
whereas the the solutions corresponding to the determiBahis(
1 1 s N
_ sro_ sl 38
4rrs? A3 — A3 [e ¢ } (38)

The incompressible fundamental solutions are the limit values of the compressible results for
X2 — 0. In both representations, the third rogt corresponding to the shear wave velocity is

not changed because incompressibility can only affect volumetric changes. Contrary, the com-
pressional waves have to change as observed by the vanishing raad the different rook;.

Here, also the difference between both formulations is obvious. In the pore pressure/solid dis-
placement representation the smaller valyecorresponding to the faster compression wave,
goes to zero. The larger valug, corresponding to the slower compressional wave, survive.
Reflecting the physics behind these two compressional waves this behaviour is explainable. In
case of the fast compressional wave, the solid and the fluid moves in phase. If the solid is as-
sumed to be incompressible it have no longer any deformation and, subsequent, the wave speed
tends to infinity respective the correspondikgto zero. In case of the slow compressional

11



wave, the solid and fluid moves in opposite phase. This relative movement is still possible if
the solid and fluid are incompressible.

These physical considerations are well represented in the pore pressure/solid displacement
formulation. Contrary, in the solid/fluid displacement formulation, no vgoexists, i.e., the
determinant$5) is only of third order inV2. This represents the fact that this incompressible
model is not achieved by a limit as in the pore pressure/solid displacement formulation. Only
from physics it can be concluded that the fast compressional wave vanishes, however, the
surviving wave have a different wave velocity compared to the other formulation.

The incompressible fundamental solutions are found for the solid displacement/pore pres-
sure representation

75 Ut
qaineomw — |V U | (39)
P pr
SOf (FV2+AD) 6ZJ—F81 —A(l—ﬁ) 887; ’gb
GB (K + 3G) —A(1-8)0; A((K+3G)Vi+ A)

with the abbreviationsl = GV? — s% (o — Boys), D = 3/ (sef) V2, F = (K +4/3G) D —
(1 —3) s, whereD andF differ from the compressible case, ands defined in 87). For the
solid/fluid displacement representation the matrix of fundamental solutions is

rss st
agincomw — Y Ui | _ (40)
C|ols Ul
ij ij
ﬂ2 (M()E + M1V2)5i' — Mlﬁl-j (—M()C + MQVQ)(Sij — Mgaij

(G

G84¢4Q§ (K + %G) (—M()C + M2V2)5ij — MQ@Z‘J‘ A(M() + V2M3)5ij — M58¢j
with the abbreviationdfy = EA — C?, M, = BE?, My = —-BCE, M3 = BE, Ms =
2 2

BC?, A= GV2 = (1= ¢)ps — dps + ps%), B=K + 3G, C=s*pp(% —¢), E =
—SQPf% . In equation 40), the functiory has to be taken fronB8g).

As for the compressible case, the explicit expressions for the incompressible fundamental
solutions for the unknowns solid displacementsand pore pressurge can be found in the
appendix and their 2-d counterparts Bchanz and Pryl (2004

BOUNDARY ELEMENT METHOD

The boundary integral equation for dynamic poroelasticity in Laplace domain can be ob-
tained using either the corresponding reciprocal work theoi@heiig et al. 1991or the
weighted residuals formulatio®pminguez 199R Here, the approach with weighted residu-
als is used. Only the solid displacement@and pore pressuie i.e., one vector and one scalar,
are used for the set of independent variables. This set is suffiienhét 1987 and has fewer
degrees of freedom than with the solid and relative fluid to solid displacemgnt, i.e., two
vectors of independent variables.

Following the procedure as describeddohanz (200Jagives the time dependent integral

12



equation for poroelasticity on a domain with boundBry
t
(t— —Ps(t— »
// |: T?Y’ ) ‘?f( 7_7y7x):| |:t’L (T7X):| deT:
0 - 7,Y,X ) —-P (t - T?Y7X) Q(T,X)

{10 ) e arars 520 [
(41)

with the integral free terms;; and c known from elastostatics and acoustics, respectively,

and with the Cauchy principal value integr@l T35, Tf 5 and@Q/ denote the fundamental
solutlons for tractions and flux as defined$chanz (ZOOJ)a which can be computed from
Uz, U{, P, andP/.

A boundary element formulation is achieved following the usual procedure. First, the
boundary surfacé’ is discretized byE elementsl’. where ' polynomial shape functions
N{ (x) are defined. Hence, the following ansatz functions are used with the time dependent

nodal valuemff(t) ,tff(t) ,pf(t), andg®? (t)

E F
Yy W )= YNN8 (1)
6? B o @2)
=SSN @) gty =Y S N (%) g (1) .
e=1 f=1 e=1 f=1

In equations 42), the shape functions of all four variables are denoted by the same function
W (x) indicating the same approximation level of all variables. This is not mandatory but
usual, non-isoparametric element types employing different ansatz functions for displacements
and pressure, as common in finite elemehtsifs and Schrefler 1998can also be usedP(yl

and Schanz 2004Inserting these ansatz functiods) in the time dependent integral equation

(41) yields

[Cij (y) 0 ] {uz (y,t)]

0 cly)][r(yt)
E F t s . N . _ N 7_
([ [oie T e [ arar
S Fl S vl o)

(43)

Next, a time discretization has to be introduced. Since no time dependent fundamental solutions
are known, the convolution quadrature method (briefly summarised in appéhdixhe most
effective method. Another possibility is an inverse Laplace transform of the Laplace domain
fundamental solutions at every collocation point in every time step using a series expansion
(Chen and Dargush 1995

13



Hence, after dividing the time periadn N intervals of equal durationt, i.e.,t = NAt,
the convolution integrals between the fundamental solutions and the nodal valde} ang
approximated by the convolution quadrature method, i.e., the quadrature foEBRuBgpplied
to the integral equatior4(). This results in the following boundary element time stepping
formulation forn =0,1,..., N

[%— (y) 0 } [u y,nAt}

0 c(y)| |p(y,nAt
(7 f (P
Z Z " { 761 k Uisj’ Y, At _wZ—k PJS’ Y At |:t§f (kAt):|
1 =1 k=0 wef "k Uif,y, At —wzf_k Pf,y,At q¢°! (kAt)

WZJ:].C T{;? Yy, At wreLJik ( Y At) |:U,€f (kAt)
)

(n—k)L-1 152”%
(Uj,y,At) = QZ/UZ <Tt)’y’x Nef (X)dF e—i(n—k)f%r )
r

(45)

Note, the calculation of the integration weights is only based on the Laplace transformed fun-
damental solutions which are available. Therefore, with the time stepping procédta (
boundary element formulation for poroelastodynamics is given without time dependent funda-
mental solutions.

To calculate the integration Weigmﬁik in (44), spatial integration over the bounddry
has to be performed. Because the essential constituents of the Laplace transformed fundamental
solutions are exponential functions in 3-d, i.e., the integrand is smooth, the regular integrals are
evaluated by standard Gaussian quadrature rule, while the weakly singular parts of the integrals
in (44) are regularized by polar coordinate transformation. The strongly singular integrals in
(44) are equal to those of elastostatics or acoustics, respectively, and, hence, the regularization
methods known from these theories can be applied, e.g., the method suggested by Guiggiani
and Gigante 1990. Moreover, to obtain for equatior4) a system of algebraic equations,
collocation is used at every node of the shape funcﬂﬁﬁ:{x).

According tot — 7 = (n — k) At, the integration weight@fjik are only dependent on the
differencen — k. This property is analogous to elastodynamic time domain BE formulations
(see, e.g.Dominguez (1998 and can be used to establish a recursion formula(n — k)

wo (C)d" =wo (D)d" + ) (wm (U) "™ —wp (T)u™™™) n=1,2,...,N (46)

with the time dependent integration weights, containing the Laplace transformed funda-
mental solutiondU and T, respectively (see, equatiods)). Similarly, wo (C) andw (D)

are the corresponding integration weights of the first time step related to the unknown and
known boundary data in time stepd”™ andd”, respectively. Finally, a direct equation solver

is applied.
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Table 1. Material data of Berea sandstone (rock) and sand (soil)

KE) o) o) ¢ K& o) &) (%)
rock 8-10° 6-10° 2458 0.19 3.610% 1000 3.310° 1.9.10710
soil 2.1-10% 9.8-107 1884 0.48 1.10% 1000 3.310° 3.55107°?

EXAMPLE: WAVE PROPAGATION IN POROELASTIC HALF SPACE

In order to demonstrate the effect of modelling the constituents incompressible, wave prop-
agation phenomenon in a poroelastic half space is considered. Results obtained by the incom-
pressible model are compared to those of the compressible model. For the comparison, a
long strip 6 m x 33 m) is discretized with 396 triangular linear elements on 242 nodes (see
Fig. 1). The time step size used &5t = 0.00008s in case of rock and\t = 0.00032 s for

tz A

Y

permeable

traction free

Figure 1. Half space under vertical load: Discretization and load history

soil. The modelled half space is loaded on ared1m?) by a vertical total stress vector
t, = —1000N/m? H (t) and the remaining surface is traction free. The pore pressure is as-
sumed to be zero all over the surface, i.e., the surface is permeable. The material properties are
those corresponding to a rock (Berea sandstone) and a soil (coarse sand) giveriinT .
interstitial fluid is water.

Before looking at the results, it may be convenient to look at the ratios of the compression
moduli. For rock there isK' /K, = 0.22, K/ Ky = 2.42 and for soilK /K, = 0.019, K/ Ky =
0.064. Hence, it can be expected that the incompressible modelling for the rock fails and give
good results for the soil. Exactly this is confirmed by the results given inZéidor the rock
and Fig.2b for the soil. There, the horizontal displacement at the marked point on the mesh,
20 m from the margin of the loaded area, for an incompressible as well as compressible model
is plotted versus time. Clearly, for the rock there are large differences whereas for the soil
both results are almost indistinguishable. Also, from the incompressible rock results it can be
observed that the arrival of the fast compressional wave, the first deviation from zero, tends to
zero. The Rayleigh wave, e.g., the large amplitudet0.015 s for Berea sandstone, is not
affected by the different modellings. This is in accordance with the theory where one wave
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timet[g]

(b) Soil

Figure 2. Vertical displacement versus time
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vanishes, i.e., one of the root&7], (34) is zero, and the third root, corresponding to the shear
wave, is not influenced.

In Fig. 3, the pore pressurg at a point 3m under the loaded area is plotted versus time
for both the incompressible and compressible model. Again, there are large differences for the
rock whereas for soil the results only show minor differences. In the incompressible results, the
instant arrival of the fast compressional wave can be observed better than in the displacement
plots. The results with increased permeabiktghow that the slow compressional wave speed
is also changed, which corresponds to the theory. Clearly, for the soil also this wave type does
not exhibit any significant differences between the two models. Finally, it should be remarked
that the usage of the incompressible fundamental solutions needs about 20 % less CPU time.

CONCLUSIONS

To summarise, an overview of the differences between the compressible and incompressible
models is given. Assuming both constituents incompressible, the propagation speed of the fast
compressional wave becomes infinite, the slow compressional wave survives with changed
speed, and the shear wave remains unchanged. The incompressible modelling also changes the
steady state (consolidation) displacement.

Because there are no noticeable differences for some materials (e.g., loose grain with fluid),
the use of the incompressible model can be recommended for them to achieve better perfor-
mance. The speedup compared to the compressible computation is about 20 %.

Appendix |I. EXPLICIT EXPRESSIONS FOR THE FUNDAMENTAL SOLUTIONS

The explicit expressions of the poroelastodynamic fundamental solutions for the unknowns
solid displacements; and pore pressugeand for solid displacements and fluid displacements
U andu{ are given in the following for a 3-d continuum, for compressible as well as incom-
pressible constituents.

Solid displacementsu; and pore pressurep
Compressible The elements of the matr&4 (31) are the displacements caused by a Dirac
force in the solid:

A 1 A2 —\2 A2 — N2
UZS — 4 2 —Aisr RQ 4 16—)\231“ + 52 ')\282 . R3 6—)\337‘
7 dmr (o — Boy) 8° [ YDy A= A3 (02 ) 75

. 3rir j—0ij 3r ;1 j—0i; 2 9 2 o—pPoy
with R, = L+ Mg S—L 4+ \psrr g andAf = (K%G). The pressure caused by
the same load is

: (a—B)ogr K 1) A ( 1) - }
P’ = : A - R - 25T (47b
I 4nps (K + %G) r ()\% - )\%) 15 T ¢ 28+ r © (47b)

For a Dirac source in the fluid the respective displacement solution is

U/ = sps (47¢)
and the pressure

Af:& 2 2\ —Aisr 2 \2\ _—Agsr
P = i o (e - i e @rg

In the above given solutions the roots ¢ = 1,2, 3 from (27) are used.
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pore pressure p [N/m?]

pore pressure p [N/m’]
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---- incompressible k=1.9- 10™
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Figure 3. Pore pressure versus time
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Incompressible For the case of incompressible constituents, the displacements caused by a
Dirac force in the solid are

U = ! R g g ML (0ijA3s> — Rg) e 3| (48a)
Y dmr (p — Bpy) 82 22 A2 WS
with R, = (37",i7“,j — 5”) /7"2 + As (37",2‘7“7]' — 51]) /7" + )\%SQTJ"I“’]', )\173 from (34), and)\? =

(e=8e1) The pressure caused by the same load is

K+3G
(=B o K 1) A 1]
P’ = : A - B — . 48b

T dnspB (K+ %G) rA2 15t r) € r (48b)

For a Dirac source in the fluid the respective displacement solution is
U/ = sps (48¢)

and the pressure

» S —A18r
Pf = 4;};2 (O3 =23 e 4 3] (48d)
1

Solid and fluid displacementsu;, uf
Compressible The explicit expressions of the poroelastodynamic fundamental solutions are
given in the following. The four elements of the mat6 (32) are the displacements caused

by a Dirac force in the solid:

s = fo{ (49)
52 o )?
. p LN g (5 - R +Q%)
()\% — )\%)()\% — )\%) R F (K + 3G> <)\1R - pfﬁ) —Pf R
2 [ 42 2 R 2 ¢?
— 055 8° % (%prM + <—R(1 —@)ps — %Pﬁb - pf%(ﬁ B ¢)> A

4 2
Y <K+ §G> (A%R— pf%>)]

2 2\ 2
e P (e (on . ), (G- 9R+%)
“gmog o || 5 (0 50) (8o o
9 9 2 R 2 2
— §ij 52 % (%ppr + <—R(1 — 9)ps — %Pf¢ - Pf%(ﬁ - ¢)> A

(20 (n-0%) )

$? 1 ) $2 ((%—¢>R+Q¢Tf)2
(5 5+ 1) -0 %

e—)\gsr

A= A9 - A

T
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9 9 2 2 2
Y (%ppr " <—R<1 0o~ Lpgo— p TR ¢>) ¥

g g

2 <K+§G> ( 3R - Wﬁ))”

with the roots);, i = 1,2,3 from (27) andpys = ps(1 — ¢) + pr(¢ — 3). The relative fluid
displacements caused by the same load are identical to the solid the solid displacements caused
by a force in the fluid

ysfo_ frfs ﬁ

Ui =0 = 4W{ (50)
e—)\lsr (;52 ¢2 ) ¢2 2

Y EPHIPrEpY) Rl((<5‘¢) K+ g@I+ Q)N -y (G o) @
¢? Q* ¢ ¢?

_EQPBM—PJ’<%2_¢>(K+ G+§)E_R<F_¢>p[m>

s (%—¢)( oS R) (=0 - (1 + 360
(-5 il

T R2<(<%2—¢) (1 + 50 R+G2Q) % - oy (%fw)?cz

2 2 2 2
——QpﬁM pf(—— ) K+IG+Q—>¢——R(¢——¢> )

_l’_

3 3 R’ g
s __¢> (( ——>\2 1—¢)ps—(K+§G)>\§>

2 5 )
—<<%—¢> B2OF, & )/\20f+0f¢<%—¢>>]

—A3sr 2 9 9 9
()\2_§\2)()\2_)\2) RB(((%—¢> (K + G)R—G—G%Q) A — oy (%—qﬁ) Q
2 1 Q2 2 2
_—QPﬂM Pf(ﬁ— > K+3G+E)3_R<F_¢> )

% ——¢ (( ——AQ 1—¢)ps—(K+§G)>\§>
(R+

JEB B

_l’_
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with pgy = (%j — ¢) ps + (1 — ¢)ps. For a Dirac force in the fluid the respective relative
fluid displacement solution is

gir_ L 51
U” 47rr{ (51)

67/\157"

(A=A = A3)

¢_2_ 2
- (Pf(g ¢>)RQ+,%MR> —(K+%G)p§ <%2_¢>2>

2
4
— bij 8 (Pf%PMpﬁM —(K+ gG)GR)\?

2
&, <—G(K o+ <(K + T6)Rogus +26Q; (% - ¢>) \2

2 2 2
- <P%MR+ PfPBM (2 <¢— - ¢) Q+ ¢—(K + %G - %))

B B
¢? ¢* 2
oy (2(1 ~ oot or(% - m) G>A1
7 2 2 4 2
+ <(K+ gG)ngRJr Gps <2 <% - ¢> Q+ %(K-i— §G+ %))) X{)]

ef)\gsr

(A3 = AD (A5 = AD)

¢_2 _ 2
]y )

_.I_

2
Ry <—G(K + ga)mg + ((K + gG)Rng +2GQp; <% - ¢)> b

2
4
— bij 8 (Pf%PMpﬁM — (K + gG)GR)\S

2 2 2
- <P%MR+ PfPBM (2 <¢— - ¢) Q+ ¢—(K + %G + %))

g g
+p ¢ <2(1—¢>)p +p (d)—z—ﬂ)) G>A2
fﬁ s f ﬂ 2
7 2 2 4 2
+ <(K+ gG)ngRJerf <2 <% - ¢> Q+ %(K-i— §G+ %))) XQ‘)]

ef)\gsr

(A3 = AD (A = A9)

¢_2 _ 2
AR S

+

2
R, <—G(K + ga)mg + ((K + ga)RpﬂM 1+ 2GQp; <% - ¢)> A2

2
4
—0ij ° (Pf%PMPBM — (K + gG)GRAS
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2 2 2
- <P%MR+PfPﬁM <2 (%—¢>Q+%(K+ G+%)>
2

+ ¢_ 21 — ¢_2_ 2
Pig (1 Cb)Ps‘i‘Pf(ﬁ B)) G |3

N ((K%G)ngw (2 (%2 —¢) Q+ ‘g(m 3G+%)>) A§>]}

Incompressible The explicit expressions of the poroelastodynamic fundamental solutions
are given in the following. The four elements of the mai@6 (40) are the displacements
caused by a Dirac force in the solid:

USS _ S4pi}¢_ﬁ e—)\lsr 1
(Af

Ri(K + 3G) (G = pr) (52)

3 4y (33 — )\g))\%

4 7
- by5? (U + O~ Mow (K + 56) + p%)]

e—/\gsr 1
Ry (K +:G)(GA2 -

4 7
- 5ij 82 <G(K + gG))\% - )\gpM(K + EG) + ,0?\/[>

pm [ 3rar; — by 1 2
= K+ =G) + 03 .
)\%)\g < T2 ( + 3G) + ]8 PM

with A\; and A3 from Eqg.(36). The relative fluid displacements caused by the same load are
identical to the solid the solid displacements caused by a force in the fluid

2 Sf _ > fS _ /g > 8S
Ui =U; = (1 — 5) U;; (53)
For a Dirac force in the fluid the respective relative fluid displacement solution is
4 .2 42
arf S Pr9”
U = py { (54)
6—)\1sr Rl 2 1 ¢2 2
- K4+ = o
2 2
2 ¢ 24 _ PBM Py
K
+ 0 7 (( + G) G\ ST
4 2 7 2 4 2
- E GBp +2ps(1 — ¢)B(K + gG) — B%pp(K + gG) + pro” (K + gG) Al
PM 2 7 4 2 10
+ 5 pro° (K + gG) — ¢psB(K + gG) — GB%py + ps(1 — ¢)B(K + ?G)
7A38’r‘ R3 ) 1 (Z)Z 2
- K+ = z
- G | e G = + 56y (5 o)
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2 2
oyt L ((K+ 2G) G2y — oM P

3 A2
G 4 2 7 2 4 9
3 <Gﬁp+ 2ps(1 = @)B(K + 3G) = Fps (K + 3G) + psd* (K + 3g)> A2
PM 2 7 4 2 10
T (f’f(b (K +3G) = ¢psB(K + 3G) = GBps + ps(1 = $)B(K + §G)>
_3rary =0 p

2 2 5@ 2
r2 ﬂ/\Q)\Q (K + G)pf <% - ¢> 5;28)\2 (Z pﬁMpM} .

Appendix Il. CONVOLUTION QUADRATURE METHOD
The 'Convolution Quadrature Method’ developed by Lubich numerically approximates a

convolution integral fon = 0,1,..., N
t
/f (t—7)g(r)dT — y(nAt) an K (A) g (kAL (55)
0

by a quadrature rule whose weights are determined by the Laplace transformed fyirestiba
linear multistep method. This method was originally publishelduibich (19883 and (988H).
Application to the boundary element method may be fourféidhanz and Antes (199¥.Here,
a brief overview of the method is given.

In formula G5), the timet is divided in NV equal steps\t. The weightsv,, (At) are the
coefficients of the power series

s (Z) _ = n
F(7a7) = Xenn: 56)
with the complex variable. The coefficients of a power series are usually calculated with

Cauchy’s integral formula. After a polar coordinate transformation, this integral is approxi-
mated by a trapezoidal rule with equal stepé’Lﬂ. This leads to

n@n=gz [ <7A(?>Z“dz“‘ > ( @ew ))Z (57)

|z|=% =0

whereZ is the radius of a circle in the domain of analyticityﬁ)(z).

The functiony (z) is the quotient of the characteristic polynomials of the underlying mul-
tistep method, e.g., fora BDF 2,(z) = % —2z+ %zz. The used linear multistep method must
be A («)-stable and stable at infinity.¢bich 1988. Experience shows that the BDF 2 is the
best choice$chanz 199p Therefore, it is used in all calculations in this paper.

If one assumes that the valuesﬁ)tz) in (57) are computed with an error bounded Qy
then the choicd. = N and#”" = /e yields an error inu, of size & (,/€) Lubich (19884
Several tests conducted by the author lead to the conclusion that the parameter ' is the
best choice for the kind of functions dealt with in this papgci{anz and Antes 199)aThe
assumptiorL = N leads to a order of complexitg (N?) for calculating theV coefficients
wn, (At). Due to the exponential function at the end of formu&)(this can be reduced to
0 (N log N) using the technique of the Fast Fourier Transformation (FFT).
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