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Abstract
The Boundary Element Method (BEM) is preferred to solve wave propagation problems in semi-

infinite continua numerically. One crucial condition to establish a BE formulation is the knowledge of
a fundamental solution. For poroelastic constitutive equations, up to now, such a solution has only been
available for the case of compressible constituents in Laplace/Fourier domain.

Here, the Laplace domain fundamental solutions for incompressible constituents are derived using
Hörmanders method for two different sets of unknowns, for the solid displacements and fluid pressure
and for the solid and fluid displacements. The solutions are used in a time-dependent BE formulation
based on the Convolution Quadrature Method, which only requires the Laplace domain fundamental
solutions.

There are three wave types in poroelastic continua, the fast compressional wave with solid and fluid
moving in-phase, the shear wave, and the second (slow) compressional wave, which has no equivalent in
elastic materials, with solid and fluid moving in opposite directions. With incompressible constituents,
the propagation speed of the fast compressional wave becomes infinite. Some studies concerning the
influence of this infinite wave speed are shown as well as results of BEM calculations. The numerical
examples are calculated for the unknowns solid displacements and fluid pressure.

Keywords: Poroelasticity, Biot’s theory, Incompressible, Boundary Elements, Fundamental
Solutions.

INTRODUCTION
The efficiency of the Boundary Element Method (BEM) in dealing with semi-infinite do-

main problems, e.g., soil-structure interaction, have long been recognized by researchers and
engineers. For soil, a fluid saturated material, a poroelastic constitutive model should be used
in connection with a time-dependent BE formulation to model wave propagation problems cor-
rectly. Dynamic poroelastic BE formulations are published in frequency domain, e.g., (Cheng
et al. 1991), in Laplace domain, e.g., (Chen and Dargush 1995), and in time domain (Chen
and Dargush 1995; Schanz 2001a). In all of these formulations, Biot’s theory is used assum-
ing compressible constituents. Beside the compressibility of the constituents also a structural
compressibility exists and is modelled in Biot’s theory. For some materials, e.g., soil, the
compression modulus of the constituents itself is much larger than the compressibility of the
structure. In these cases, it is sufficient to approximate both the fluid and solid constituents as
incompressible, i.e., only the structural compressibility remains.
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Here, Biot’s model for this special case is discussed for two different sets of independent
variables, the solid displacements and pore pressure, and solid and fluid displacements. Sub-
sequently the novel fundamental solutions for the incompressible case are derived using the
method of Hörmander (1963). Aiming on wave propagation problems, the time-dependent BE
formulation based on the Convolution Quadrature Method as proposed by Schanz (2001b) is
used here. A BEM formulation is established employing the fundamental solutions using solid
displacements and pore pressure as independent variables, which are a sufficient set according
to Bonnet (1987). As the unknowns are the same as in the compressible model and, further,
the principal structure of the set of governing equations is similar, the same procedure as in the
above mentioned BE formulations can be followed.

To demonstrate the limits of the incompressible approximation for a poroelastic medium,
two different cases of materials, a rock and a soil, are used. The results of the incompressible
modelling are compared with the compressible modelling at the example of a half space.

Throughout this paper, the summation convention is applied over repeated indices and Latin
indices receive the values 1,2, and 1,2,3 in two-dimensions (2-d) and three-dimensions (3-d),
respectively. Commas(),i denote spatial derivatives and dots(̇) denote the time derivative. As
usual, the Kronecker delta is denoted byδij .

BIOT’S THEORY – GOVERNING EQUATIONS
Following Biot’s approach to model the behaviour of porous media, an elastic skeleton

with a statistical distribution of interconnected pores is considered (Biot 1955). This porosity
is denoted by

φ =
V f

V
, (1)

whereV f is the volume of the interconnected pores contained in a sample of bulk volumeV .
Contrary to these pores the sealed pores will be considered as part of the solid. Full saturation
is assumed leading toV = V f +V s with V s the volume of the solid, i.e., a two-phase material
is given.

Constitutive assumptions
If the constitutive equations are formulated for the elastic solid and the viscous interstitial

fluid, a partial stress formulation is obtained (Biot 1955)

σsij = 2Gεsij +
(
K − 2

3
G+

Q2

R

)
εskkδij +Qεfkkδij (2a)

σf = −φp = Qεskk +Rεfkk , (2b)

with ()s and()f indicating either solid or fluid, respectively. The respective stress tensor is
denoted byσsij andσf and the corresponding strain tensor byεsij andεfkk. The elastic skeleton
is assumed to be isotropic and homogeneous where the two elastic material constants com-
pression modulusK and shear modulusG refer to the bulk material. The coupling between
the solid and the fluid is characterised by the two parametersQ andR. In the above, the sign
conventions for stress and strain follow that of elasticity, namely, tensile stress and strain is
denoted positive. Therefore, in equation (2b) the pore pressurep is the negative hydrostatic
stress in the fluidσf .

An alternative representation of the constitutive equation (2) is used in Biot’s earlier work
(1941). There, the total stressσij = σsij + σfδij is introduced and with Biot’s effective stress
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coefficientα = φ (1 +Q/R) the constitutive equation with the solid strainεsij and the pore
pressurep

σij = 2Gεsij +
(
K − 2

3
G

)
εskkδij − αδijp (3a)

is obtained. Additionally to the total stressσij as a second constitutive equation the variation
of fluid volume per unit reference volumeζ is introduced

ζ = αεskk +
φ2

R
p . (3b)

This variation of fluidζ is defined by the mass balance over a reference volume, i.e., by the
continuity equation

ζ̇ + qi,i = a (4)

with the specific fluxqi = φ (u̇fi − u̇i) and a source terma (t). Equation (4) identify ζ as a
kind of strain describing the displacements of the fluidufi relative to the solid displacements
ui which takes a source in the fluid into account. This source term is not motivated by any
physical reason1 but it is later needed for the derivation of the fundamental solutions.

In a two-phase material not only each constituent, the solid and the fluid, may be compress-
ible on a microscopic level but also the skeleton itself possesses a structural compressibility. If
the compression modulus of one constituent is much larger on the microscale than the compres-
sion modulus of the bulk material, this constituent is assumed to be materially incompressible.
A common example for a materially incompressible solid constituent is soil. In this case, the
individual grains are much stiffer than the skeleton itself. The respective conditions for such
incompressibilities are (Detournay and Cheng 1993)

K

Ks
� 1 incompressible solid,

K

Kf
� 1 incompressible fluid, (5)

whereKs denotes the compression modulus of the solid grains andKf the compression mod-
ulus of the fluid.

To find the respective constitutive equations for incompressible constituents the material
parametersα andR have to be rewritten in a different way. Considerations of constitutive
relations at micro mechanical level as given inDetournay and Cheng (1993) lead to a more
rational model for this purpose

α = 1− K

Ks
≈ 1 and (6a)

R =
φ2KfKs2

Kf (Ks −K) + φKs (Ks −Kf )
→∞ . (6b)

The relationR → ∞ expresses that the value ofR becomes large, however, due to physical
reasons it is in any case limited. But, the condition thatR becomes large is used to neglect in
(3b) the influence of the pore pressure. This condition and (6a) results in the incompressible
constitutive assumptions

σij = 2Gεsij +
(
K − 2

3
G

)
εskkδij − δijp (7a)

ζ = εskk (7b)

1e.g., chemical reactions
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for the total stress formulation.
For the partial stress formulation (2), a different point of view may be considered. Biot (1955)

gives as condition for incompressible constituents

(1− φ) εskk + φεfkk = 0 , (8)

i.e., it is assumed that the dilatation of the bulk material vanishes. Realising the relation

Q

R
=

1− φ
φ

⇒ Q

R
εskk + εfkk = 0 (9)

also in the partial stress formulation the case of incompressible constituents can be included
resulting in the constitutive assumptions

σsij = 2Gεsij +
(
K − 2

3
G

)
εskkδij (10a)

σf = −φp = R

(
Q

R
εskk + εfkk

)
!= 0 . (10b)

To achieve the zero value in equation (10b), the condition that the valueR becomes large but
is limited must be used.

Contrary to the incompressible model formulated for the total stress formulation (7), in the
partial stress formulation the assumption of incompressibility (8) results in an uncoupling of the
solid and the fluid in the constitutive assumptions. Therefore, the two incompressible models
(7) and (10) are different whereas the underlying compressible models (3) and (2), respectively,
are identical. This is not really a contradiction. Keeping in mind that an incompressible model
is always an approximation for the more realistic compressible case, it is clear that different
approximations can exist. However, the question which approximation is best can only be
answered by the respective application.

Aiming at the equation of motion to model wave propagation phenomena, it is sufficient to
formulate a linear kinematic equation. Hence, in the following, the relation of the solid/fluid
strain to the solid/fluid displacement is chosen linear, respectively

εsij =
1
2

(ui,j + uj,i) εfkk = ufk,k (11)

assuming small deformation gradients.

Governing equations: Compressible model
In the preceding section, the constitutive equations and the kinematics have been given.

The next step is to state the balances of momentum. In any two-phase material there are three
possibilities to formulate the balances of momentum. First, the balance of momentum for the
solid, second, for the fluid or, third, for the bulk material, have to be fulfilled.

The first two balances are used by Biot (1956) with the solid displacements and the fluid
displacements as unknowns

σsij,j + (1− φ) fsi = (1− φ) %süi + %a

(
üi − üfi

)
+
φ2

κ

(
u̇i − u̇fi

)
(12a)

σf,i + φffi = φ%f ü
f
i − %a

(
üi − üfi

)
− φ2

κ

(
u̇i − u̇fi

)
. (12b)
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The first balance equation (12a) is that for the solid skeleton and the second (12b) is that for the
interstitial fluid. In equation (12), the body forces in the solid skeletonfsi and in the fluidffi are
introduced. Further, the respective densities are denoted by%s and%f . To describe the dynamic
interaction between fluid and skeleton an additional density, the apparent mass density%a, has
been introduced by Biot (1956). It can be written as%a = Cφ%f whereC is a factor depending
on the geometry of the pores and the frequency of excitation.

The third above mentioned balance of momentum for the mixture is formulated in Biot’s
earlier work (1941) for quasistatics and inBiot (1956) for dynamics. This dynamic equilibrium
is given by

σij,j + Fi = %s (1− φ) üi + φ%f ü
f
i , (13)

with the bulk body force per unit volumeFi = (1− φ) fsi + φffi . It is obvious that adding the
two partial balances (12a) and (12b) results in the balance of the mixture (13).

In most papers using the total stress formulation, now, the constitutive assumption for the
fluid transport in the interstitial space is given by Darcy’s law. Here, it is also used, however,
with the balance of momentum in the fluid (12b) Darcy’s law is already given. Rearranging

(12b) and taking the definition of the fluxqi = φ
(
u̇fi − u̇i

)
as well asσf = −φp into account

the dynamic version of Darcy’s law

qi = −κ
(
p,i +

%a
φ

(
üfi − üi

)
+ %f ü

f
i − f

f
i

)
(14)

is achieved.
Aiming at the equation of motion, the constitutive equations have to be combined with

the corresponding balances of momentum and the kinematic conditions. To do this, first, the
degrees of freedom must be determined. There are several possibilities: i) to use the solid
displacementsui and the fluid displacementufi (two vectors, i.e., six unknowns in 3-d) or ii) a
combination of the pore pressurep and the solid displacementsui (one vector and one scalar,
i.e., four unknowns in 3-d). As shown inBonnet (1987), it is sufficient to use the latter choice.
Here, for completeness, both choices will be presented.

First, the equations of motion for a poroelastic body are presented for the unknowns solid
displacementui and fluid displacementufi . Inserting in (12) the constitutive equations (2)
written for the partial stress tensors and the linear strain displacement relations (11) yields a set
of equations of motion in time domain

Gui,jj +
(
K +

1
3
G

)
uj,ij +Q

(
Q

R
uj,ji + ufj,ji

)
+ (1− φ) fsi = (15a)

(1− φ) %süi + %a

(
üi − üfi

)
+
φ2

κ

(
u̇i − u̇fi

)
R

(
Q

R
uj,ji + ufj,ji

)
+ φffi = φ%f ü

f
i − %a

(
üi − üfi

)
− φ2

κ

(
u̇i − u̇fi

)
. (15b)

Second, the respective equations of motion are presented for the pore pressurep and the solid
displacementsui as unknowns. To achieve this formulation the fluid displacementufi has to
be eliminated from equations (13), (14), (3), and (4). In order to do this, Darcy’s law (14) is
rearranged to obtainufi −ui. Since this relative displacement is given as second time derivative

in (14) and the flux is related to its first oder time derivative byqi = φ
(
u̇fi − u̇i

)
, this is only
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possible in Laplace domain. After transformation to Laplace domain, the relative fluid to solid
displacement is

ûfi − ûi = −
κ%fφ

2s2

φ2s+ s2κ (%a + φ%f )︸ ︷︷ ︸
β

1
s2φ%f

(
p̂,i + s2%f ûi − f̂fi

)
. (16)

In equation (16), the abbreviationβ is defined for further usage andL {f (t)} = f̂ (s) denotes
the Laplace transform with the complex variables. Moreover, vanishing initial conditions for
ui andufi are assumed here and in the following. Now, the final set of differential equations
for the displacement̂ui and the pore pressurêp is obtained by inserting the constitutive equa-
tions (3) into the Laplace transformed dynamic equilibrium (13) and continuity equation (4)
with ûfi − ûi from equation (16). This leads to the final set of differential equations for the
displacement̂ui and the pore pressurêp

Gûi,jj +
(
K +

1
3
G

)
ûj,ij − (α− β) p̂,i − s2 (%− β%f ) ûi = βf̂fi − F̂i (17a)

β

s%f
p̂,ii −

φ2s

R
p̂− (α− β) sûi,i = −â+

β

s%f
f̂fi,i . (17b)

In the above equation (17), the bulk density% = %s (1− φ)+φ%f is used. This set of equations
describes the behaviour of a poroelastic continuum completely as well as the formulation (15).
Contrary to the formulation using the solid and fluid displacement (15) an analytical represen-
tation in time domain is only possible forκ → ∞. This case would represent a negligible
friction between the solid and the interstitial fluid.

Governing equations: Incompressible model
As mentioned above, often the approximation of incompressible constituents can be used.

Inserting in (15) the incompressibility condition (9), the governing equations are given by

Gui,jj +
(
K +

1
3
G

)
uj,ij + (1− φ) fsi = (1− φ) %süi + %a

(
üi − üfi

)
+
φ2

κ

(
u̇i − u̇fi

)
(18a)

φffi = φ%f ü
f
i − %a

(
üi − üfi

)
− φ2

κ

(
u̇i − u̇fi

)
(18b)

using the solid displacements and fluid displacements as unknowns. In this incompressible
version of the equations of motion, the uncoupling of the fluid and solid in the constitutive
assumptions is clearly observed as commented in the last section. So, in equations (18) only
the coupling by the acceleration and damping terms remains. Further, the second equation
(18b) is no longer independent. It can not be used to eliminate the fluid displacementufi in
(18a). As additional equation the incompressibility condition (8) has to be used.

On the contrary, if the solid displacement and the pore pressure are used as unknowns, a
sufficient set of differential equations is obtained. Simply inserting the conditions (6) in (17),
i.e., settingα = 1 and taking the limitR→∞, the equations of motion under the assumption
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of incompressible constituents are achieved resulting in

Gûi,jj +
(
K +

1
3
G

)
ûj,ij − (1− β) p̂,i − s2 (%− β%f ) ûi = βf̂fi − F̂i (19a)

β

s%f
p̂,ii − (1− β) sûi,i = −â+

β

s%f
f̂fi,i . (19b)

The equation for the pore pressure (19b) shows that this variable is no longer a degree of
freedom. Integrating of (19b) would yield the gradient of the pore pressure which could then
be eliminated in (19a). Physically interpreted, in this case the pore pressure is only determined
by the deformation of the solid skeleton and no longer by any deformation of the fluid.

FUNDAMENTAL SOLUTIONS
Fundamental solutions for the above given systems of differential equations are known in

closed form only in Fourier or Laplace domain. But, even in the transformed domain only
the general case of compressible constituents is published. The fundamental solutions for the
Laplace transformed system of (15) is given inManolis and Beskos (1989) and for the Laplace
transformed system of (17) in Chen (1994b) andChen (1994a).

Here, the fundamental solutions for the incompressible case are presented. Not only for
completeness, the fundamental solutions for the compressible case are recalled, also to show
how the physical approximation of incompressibility is represented in the mathematic formu-
las. In order to deduce these solutions, an operator notation is useful. So, for the representation
with solid displacements and pore pressure as unknowns the governing equations of the com-
pressible case (17) as well as the incompressible case (19) are reformulated as

B4
[
ûi
p̂

]
+
[
F̂i
â

]
= 0 (20)

with the differential operators

B4comp =

(G∇2 − s2 (%− β%f )
)
δij +

(
K + 1

3G
)
∂i∂j − (α− β) ∂i

−s (α− β) ∂j
β

s%f
∇2 − φ2s

R

 (21a)

B4incomp =

(G∇2 − s2 (%− β%f )
)
δij +

(
K + 1

3G
)
∂i∂j − (1− β) ∂i

−s (1− β) ∂j
β

s%f
∇2

 . (21b)

In equations (20) and (21), the operator is denoted byB4 independently whether it is in 2-d
(i, j = 1, 2, i.e., 3 unknowns) or 3-d (i, j = 1, 2, 3, i.e., 4 unknowns). The corresponding repre-
sentation of a poroelastic continuum using the solid displacements and the fluid displacements
as unknowns is

B6
[
ûi
ûfi

]
+

[
(1− φ) f̂si
φf̂fi

]
= 0 (22)
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with the differential operators

B6comp =(G∇2 − s2 ((1− φ) %s + %a)− sφ
2

κ

)
δij +

(
K + 1

3G+Q2

R

)
∂i∂j Q∂i∂j +

(
s2%a + sφ

2

κ

)
δij

Q∂i∂j +
(
s2%a + sφ

2

κ

)
δij R∂i∂j −

(
s2 (φ%f + %a)− sφ

2

κ

)
δij


(23a)

B6incomp =(G∇2 − s2 ((1− φ) %s + %a)− sφ
2

κ

)
δij +

(
K + 1

3G
)
∂i∂j

(
s2%a + sφ

2

κ

)
δij(

s2%a + sφ
2

κ

)
δij

(
−s2 (φ%f + %a)− sφ

2

κ

)
δij

 .

(23b)

As before in (21), the operator nameB6 is the same whether it is in 2-d (4 unknowns) or 3-d
(6 unknowns). In the following, the same material parameter in both representations (23) and
(21) will be used, soQ is replaced byQ = R (α/φ− 1) to have comparable representations.

In equations (21) and (23), the partial derivative(),i is denoted by∂i and∇2 = ∂ii is the
Laplacian operator. Note, all the operators (21) and (23) are elliptic but the operatorsB6 in
(23) are self adjoint whereas the operatorsB4 in (21) are not self adjoint. Therefore, in the
latter case for the deduction of fundamental solutions the adjoint operator toB4 has to be used
which in the following will not be indicated separately.

A fundamental solution is mathematically spoken a solution of the equation
BG + Iδ (x− y) = 0 where the matrix of fundamental solutions is denoted byG, the iden-
tity matrix by I, and the Dirac distribution byδ (x− y). Physically interpreted the solution
at pointx due to a single force at pointy is looked for. Concerning the interpretation of the
’single force’ the difference in the fundamental solutions for both representations of poroelastic
governing equations (20) and (22) becomes obvious. In the system (22), the right hand side
consists of forces acting in the solid part(1− φ) f̂si and in the fluid partφf̂fi of the porous
media, respectively. Contrary, in the system (20), the right hand side consists of a bulk body
force F̂i = (1− φ) f̂si and a source term̂a, i.e., no forces in the fluid̂ffi are present. Due to
this, it can not be expected that the fundamental solutions of both systems coincide. Only the
displacement solution due to a single force in the solid has the same physical meaning.

To find these solutions, the same method can be chosen for both representations. In all
cases, for compressible as well as incompressible constituents and for both representations,
respectively, the method of Hörmander (1963) is used. The idea of this method is to reduce
the highly complicated operators (21) and (23) to simple well known operators. For this pur-
pose the definition of the inverse matrix operatorB−1 = Bco/det (B) with the matrix of
cofactorsBco is used. The ansatzG = Bcoϕ for the matrix of fundamental solutions with an
unknown scalar functionϕ inserted in the operator equationBG + Iδ (x− y) = 0 yields a
more convenient representation of equations (20) and (22)

BBcoϕ+ Iδ (x− y) = det (B) Iϕ+Iδ (x− y) = 0

 det (B)ϕ+ δ (x− y) = 0 . (24)

With this reformulation, the search for a fundamental solution is reduced to solve the simpler
scalar equation (24). An overview of this method is found in the original work by Hörman-
der (1963) and more exemplary inSchanz (2001b) andRashed (2002).

First, this method is applied to the compressible operators in (21).
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Compressible model Following Hörmander’s idea, first, the determinants of the operators
B4comp andB6comp are calculated, preferably with the aid of computer algebra. In the fol-
lowing only 3-d will be considered, 2-d being handled in the same way (Schanz and Pryl 2004).
This yields the results

det (B4comp) =
G2β

s%f

(
K +

4
3
G

)(
∇2 − s2λ2

3

)2 (∇2 − s2λ2
1

) (
∇2 − s2λ2

2

)
(25)

det (B6comp) =
(
s2Gφ2%f

β

)2(
K +

4
3
G

)
R
(
∇2 − s2λ2

3

)2 (∇2 − s2λ2
1

) (
∇2 − s2λ2

2

)
(26)

with the rootsλi, i = 1, 2, 3

λ2
1,2 =

1
2

[
φ2%f
βR

+
%− β%f
K + 4

3G
+
%f (α− β)2

β
(
K + 4

3G
)

±

√√√√(φ2%f
βR

+
%− β%f
K + 4

3G
+
%f (α− β)2

β
(
K + 4

3G
))2

− 4
φ2%f (%− β%f )
βR
(
K + 4

3G
) ]

λ2
3 =

%− β%f
G

.

(27)

Expressing the determinant using this roots the scalar equation corresponding to (24) is given
by (

∇2 − s2λ2
3

) (
∇2 − s2λ2

1

) (
∇2 − s2λ2

2

)
ψ + δ (x− y) = 0 (28)

using an appropriate abbreviationψ for every operator, i.e.,

B4comp : ψ = G2 β

s%f

(
K +

4
3
G

)(
∇2 − s2λ2

3

)
ϕ

B6comp : ψ = G2

(
s2φ2%f
β

)2(
K +

4
3
G

)
R
(
∇2 − s2λ2

3

)
ϕ .

(29)

The solution of the modified higher order Helmholtz equation (28) is

ψ =
1

4πrs4

[
e−λ1sr(

λ2
1 − λ2

2

) (
λ2

1 − λ2
3

) +
e−λ2sr(

λ2
2 − λ2

1

)(
λ2

2 − λ2
3

) +
e−λ3sr(

λ2
3 − λ2

2

) (
λ2

3 − λ2
1

)]
(30)

with the distance between the two pointsx andy is denoted byr = |x− y|.
Having in mind that the Laplace transformation of the function describing a travelling wave

front with constant speedc is e−rs/c = L {H (t− r/c)} (in 3-d), it is obvious that the above
solution (30) represents three waves. However, as the rootsλi are functions ofs, here, the wave
speeds are time dependent representing the attenuation in a poroelastic continuum. This is in
accordance with the well known three wave types of a poroelastic continuum (Biot 1956). The
rootsλ1, λ2, andλ3 correspond to the wave velocities of the slow and fast compressional wave
and to the shear wave, respectively. It should be remarked that the rootλ3 representing the
shear wave is in 3-d a double root whereas it is in 2-d only a single root, which, as in elasticity,
corresponds to the number of polarisation planes (Royer and Dieulesaint 2000).
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From a pure mathematical point of view, the determinant of the operatorB6comp can have
six roots in 3-d. However, in (26) only four roots are found. As above discussed, each root rep-
resents a different wave type whereas the shear wave is in 3-d a double root. So, from physics it
is obvious that the operatorB6comp can not have more roots as given in (26). As a consequence,
it can be concluded that the representation of a poroelastic continuum with solid displacements
and fluid displacements is overdetermined, i.e., the representation with pore pressure and solid
displacements is sufficient. This confirms the considerations of Bonnet (1987).

The next steps are to insert the solutionψ back in the definitionG = Bcoϕ taking into
account the proper relation (29) betweenϕ andψ. After calculating the respective matrix of
cofactorsBco the fundamental solutions are found for the solid displacement/pore pressure
representation

G4comp =

[
Û sij Ûfi

P̂ sj P̂ f

]
= (31)

s%f

Gβ
(
K + 4

3G
) [(F∇2 +AD

)
δij − F∂ij −A (α− β) s∂i

−A (α− β) ∂i A
((
K + 4

3G
)
∇2 +A

)]ψ
with the abbreviationsA = G∇2 − s2 (%− β%f ) , D = β/ (s%f )∇2 − φ2s/R, F =
(K + 4/3G)D − (α− β) s, and for the solid/fluid displacement representation

G6comp =

[
Û ssij Û sfij

Ûfsij Ûffij

]
= (32)

−β
Gs2φ2%f

(
K + 4

3G
) [M3∂ij +

(
M5 −M3∇2

)
δij M1∂ij +

(
M4 −M1∇2

)
δij

M1∂ij +
(
M4 −M1∇2

)
δij M2∂ij +

(
M6 −M2∇2

)
δij

]
ψ

with the abbreviations

M1 = CE

[
K + 1

3G

R
+
(
α

φ
− 1
)2
]
− C2

(
α

φ
− 1
)

+ C∇2

(
K +

1
3
G

)
+B

[
C − E

(
α

φ
− 1
)]

M2 = 2BC
(
α

φ
− 1
)
−B2 −B∇2

(
K +

1
3
G

)
− C2

[
K + 1

3G

R
+
(
α

φ
− 1
)2
]

M3 = E∇2

(
K +

1
3
G

)
+ 2EC

(
α

φ
− 1
)
− C2 − E2

[
K + 1

3G

R
+
(
α

φ
− 1
)2
]

M4 =
s2%fφ

2G

β

(
∇2 − s2λ2

3

) [
∇2

(
α

φ
− 1
)

+
C

R

]
M5 =

s2%fφ
2G

β

(
s2λ2

3 −∇2
) [
∇2 +

E

R

]
M6 =

s2%fφ
2G

β

(
s2λ2

3 −∇2
) [
∇2

(
K + 1

3G

R
+
(
α

φ
− 1
)2
)

+
B

R

]

B = G∇2 − s2 (1− φ) %s − C C = s
φ2

κ
+ s2%a E = −s2φ%f − C .
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The difference of the 2-d solution and the 3-d solution lies only in different functionsψ. The
explicit expressions for the fundamental solutions for the unknowns solid displacementsui and
pore pressurep can be found in the appendixI and their 2-d counterparts inSchanz and Pryl
(2004).

Incompressible model In the incompressible approximation the procedure is the same as
before. First, the determinants with their respective roots are calculated. However, here, both
representation have different roots indicating that two different incompressible models are con-
sidered as discussed before. For each representation the determinants and roots are either

det
(
B4incomp

)
=
G2β

s%f

(
K +

4
3
G

)(
∇2 − s2λ2

3

)2 (∇2 − s2λ2
1

)
∇2 (33)

with the roots

λ2
1 =

%+ %f

(
1
β − 2

)
K + 4

3G
λ2

3 =
%− β%f
G

, (34)

and

det
(
B6incomp

)
=
s6G2φ6%3

f

β3

(
K +

4
3
G

)(
∇2 − s2λ2

3

)2 (
s2λ2

1 −∇2
)

(35)

with the roots

λ2
1 =

%− β%f
K + 4

3G
λ2

3 =
%− β%f
G

. (36)

The solutions of the equation (28) corresponding to the determinant (33) is

ψ =
1

4πrs4

[
e−λ1sr(

λ2
1 − λ2

2

) (
λ2

1 − λ2
3

) +
1

λ2
1λ

2
3

+
e−λ3sr

λ2
3

(
λ2

3 − λ2
1

)] (37)

whereas the the solutions corresponding to the determinant (35) is

ψ =
1

4πrs2

1
λ2

3 − λ2
1

[
e−λ3sr − e−λ1sr

]
. (38)

The incompressible fundamental solutions are the limit values of the compressible results for
λ2 → 0. In both representations, the third rootλ3 corresponding to the shear wave velocity is
not changed because incompressibility can only affect volumetric changes. Contrary, the com-
pressional waves have to change as observed by the vanishing rootλ2 and the different rootλ1.
Here, also the difference between both formulations is obvious. In the pore pressure/solid dis-
placement representation the smaller valueλ2, corresponding to the faster compression wave,
goes to zero. The larger valueλ1, corresponding to the slower compressional wave, survive.
Reflecting the physics behind these two compressional waves this behaviour is explainable. In
case of the fast compressional wave, the solid and the fluid moves in phase. If the solid is as-
sumed to be incompressible it have no longer any deformation and, subsequent, the wave speed
tends to infinity respective the correspondingλ2 to zero. In case of the slow compressional
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wave, the solid and fluid moves in opposite phase. This relative movement is still possible if
the solid and fluid are incompressible.

These physical considerations are well represented in the pore pressure/solid displacement
formulation. Contrary, in the solid/fluid displacement formulation, no rootλ2 exists, i.e., the
determinant (35) is only of third order in∇2. This represents the fact that this incompressible
model is not achieved by a limit as in the pore pressure/solid displacement formulation. Only
from physics it can be concluded that the fast compressional wave vanishes, however, the
surviving wave have a different wave velocity compared to the other formulation.

The incompressible fundamental solutions are found for the solid displacement/pore pres-
sure representation

G4incomp =

[
Û sij Ûfi

P̂ sj P̂ f

]
= (39)

s%f

Gβ
(
K + 4

3G
) [(F∇2 +AD

)
δij − F∂ij −A (1− β) s∂i

−A (1− β) ∂i A
((
K + 4

3G
)
∇2 +A

)]ψ
with the abbreviationsA = G∇2− s2 (%− β%f ) , D = β/ (s%f )∇2, F = (K + 4/3G)D−
(1− β) s, whereD andF differ from the compressible case, andψ is defined in (37). For the
solid/fluid displacement representation the matrix of fundamental solutions is

G6incomp =

[
Û ssij Û sfij

Ûfsij Ûffij

]
= (40)

β2

Gs4φ4%2
f

(
K + 4

3G
) [ (M0E +M1∇2)δij −M1∂ij (−M0C +M2∇2)δij −M2∂ij

(−M0C +M2∇2)δij −M2∂ij A(M0 +∇2M3)δij −M5∂ij

]
ψ

with the abbreviationsM0 = E A − C2, M1 = BE2, M2 = −BC E, M3 = BE, M5 =
BC2, A = G∇2 − s2((1− φ)ρs − φρf + ρf

φ2

β ), B = K + 1
3G, C = s2ρf (φ

2

β − φ), E =

−s2ρf
φ2

β . In equation (40), the functionψ has to be taken from (38).
As for the compressible case, the explicit expressions for the incompressible fundamental

solutions for the unknowns solid displacementsui and pore pressurep can be found in the
appendixI and their 2-d counterparts inSchanz and Pryl (2004).

BOUNDARY ELEMENT METHOD
The boundary integral equation for dynamic poroelasticity in Laplace domain can be ob-

tained using either the corresponding reciprocal work theorem (Cheng et al. 1991) or the
weighted residuals formulation (Domínguez 1992). Here, the approach with weighted residu-
als is used. Only the solid displacementsui and pore pressurep, i.e., one vector and one scalar,
are used for the set of independent variables. This set is sufficient (Bonnet 1987) and has fewer
degrees of freedom than with the solid and relative fluid to solid displacementsui, u

f
i , i.e., two

vectors of independent variables.
Following the procedure as described inSchanz (2001a) gives the time dependent integral

12



equation for poroelasticity on a domain with boundaryΓ

t∫
0

∫
Γ

[
U sij (t− τ,y,x) −P sj (t− τ,y,x)
Ufi (t− τ,y,x) −P f (t− τ,y,x)

] [
ti (τ,x)
q (τ,x)

]
d Γ d τ =

t∫
0

∫
Γ

C

[
T sij (t− τ,y,x) Qsj (t− τ,y,x)
T fi (t− τ,y,x) Qf (t− τ,y,x)

] [
ui (τ,x)
p (τ,x)

]
d Γ d τ +

[
cij (y) 0

0 c (y)

] [
ui (t,y)
p (t,y)

]
(41)

with the integral free termscij and c known from elastostatics and acoustics, respectively,
and with the Cauchy principal value integral

∫
c . T sij , T

f
i , Q

s
j , andQf denote the fundamental

solutions for tractions and flux as defined inSchanz (2001a), which can be computed from
U sij , U

f
i , P

s
j , andP f .

A boundary element formulation is achieved following the usual procedure. First, the
boundary surfaceΓ is discretized byE elementsΓe whereF polynomial shape functions
Nf
e (x) are defined. Hence, the following ansatz functions are used with the time dependent

nodal valuesuefi (t) , tefi (t) , pef (t), andqef (t)

ui (x, t) =
E∑
e=1

F∑
f=1

Nf
e (x)uefi (t) ti (x, t) =

E∑
e=1

F∑
f=1

Nf
e (x) tefi (t)

p (x, t) =
E∑
e=1

F∑
f=1

Nf
e (x) pef (t) q (x, t) =

E∑
e=1

F∑
f=1

Nf
e (x) qef (t) .

(42)

In equations (42), the shape functions of all four variables are denoted by the same function
Nf
e (x) indicating the same approximation level of all variables. This is not mandatory but

usual, non-isoparametric element types employing different ansatz functions for displacements
and pressure, as common in finite elements (Lewis and Schrefler 1998), can also be used (Pryl
and Schanz 2004). Inserting these ansatz functions (42) in the time dependent integral equation
(41) yields[

cij (y) 0
0 c (y)

] [
ui (y, t)
p (y, t)

]
=

E∑
e=1

F∑
f=1

{ t∫
0

∫
Γ

[
U sij (t− τ,y,x) −P sj (t− τ,y,x)
Ufi (t− τ,y,x) −P f (t− τ,y,x)

]
Nf
e (x)

[
tefi (τ)
qef (τ)

]
d Γ d τ

−
t∫

0

∫
Γ

C

[
T sij (t− τ,y,x) Qsj (t− τ,y,x)
T fi (t− τ,y,x) Qf (t− τ,y,x)

]
Nf
e (x)

[
uefi (τ)
pef (τ)

]
d Γ d τ

}
.

(43)

Next, a time discretization has to be introduced. Since no time dependent fundamental solutions
are known, the convolution quadrature method (briefly summarised in appendixII ) is the most
effective method. Another possibility is an inverse Laplace transform of the Laplace domain
fundamental solutions at every collocation point in every time step using a series expansion
(Chen and Dargush 1995).
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Hence, after dividing the time periodt in N intervals of equal duration∆t, i.e.,t = N∆t,
the convolution integrals between the fundamental solutions and the nodal values in (43) are
approximated by the convolution quadrature method, i.e., the quadrature formula (55) is applied
to the integral equation (43). This results in the following boundary element time stepping
formulation forn = 0, 1, . . . , N[
cij (y) 0

0 c (y)

] [
ui (y, n∆t)
p (y, n∆t)

]
=

E∑
e=1

F∑
f=1

n∑
k=0

{ωefn−k (Û sij ,y,∆t) −ωefn−k
(
P̂ sj ,y,∆t

)
ωefn−k

(
Ûfi ,y,∆t

)
−ωefn−k

(
P̂ f ,y,∆t

)[tefi (k∆t)
qef (k∆t)

]

−

ωefn−k (T̂ sij ,y,∆t) ωefn−k

(
Q̂sj ,y,∆t

)
ωefn−k

(
T̂ fi ,y,∆t

)
ωefn−k

(
Q̂f ,y,∆t

)[uefi (k∆t)
pef (k∆t)

]}
(44)

with the weights corresponding to (57), e.g.,

ωefn−k

(
Û sij ,y,∆t

)
=

R−(n−k)

L

L−1∑
`=0

∫
Γ

Û sij

γ
(
ei`

2π
L R

)
∆t

,y,x

Nf
e (x) d Γ e−i(n−k)` 2π

L .

(45)
Note, the calculation of the integration weights is only based on the Laplace transformed fun-
damental solutions which are available. Therefore, with the time stepping procedure (44) a
boundary element formulation for poroelastodynamics is given without time dependent funda-
mental solutions.

To calculate the integration weightsωefn−k in (44), spatial integration over the boundaryΓ
has to be performed. Because the essential constituents of the Laplace transformed fundamental
solutions are exponential functions in 3-d, i.e., the integrand is smooth, the regular integrals are
evaluated by standard Gaussian quadrature rule, while the weakly singular parts of the integrals
in (44) are regularized by polar coordinate transformation. The strongly singular integrals in
(44) are equal to those of elastostatics or acoustics, respectively, and, hence, the regularization
methods known from these theories can be applied, e.g., the method suggested by Guiggiani
and Gigante (1990). Moreover, to obtain for equation (44) a system of algebraic equations,
collocation is used at every node of the shape functionsNf

e (x).
According tot− τ = (n− k) ∆t, the integration weightsωefn−k are only dependent on the

differencen − k. This property is analogous to elastodynamic time domain BE formulations
(see, e.g.,Domínguez (1993)) and can be used to establish a recursion formula (m = n− k)

ω0 (C) dn = ω0 (D) d̄n +
n∑

m=1

(
ωm (U) tn−m − ωm (T) un−m

)
n = 1, 2, . . . , N (46)

with the time dependent integration weightsωm containing the Laplace transformed funda-
mental solutionsU andT, respectively (see, equation (45)). Similarly, ω0 (C) andω0 (D)
are the corresponding integration weights of the first time step related to the unknown and
known boundary data in time stepn dn andd̄n, respectively. Finally, a direct equation solver
is applied.
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Table 1. Material data of Berea sandstone (rock) and sand (soil)

K
(

N
m2

)
G
(

N
m2

)
%
(

kg
m3

)
φ Ks

(
N

m2

)
%f

(
kg
m3

)
Kf

(
N

m2

)
κ
(

m4

Ns

)
rock 8·109 6 ·109 2458 0.19 3.6·1010 1000 3.3·109 1.9 ·10−10

soil 2.1·108 9.8 ·107 1884 0.48 1.11010 1000 3.3·109 3.5510−9

EXAMPLE: WAVE PROPAGATION IN POROELASTIC HALF SPACE
In order to demonstrate the effect of modelling the constituents incompressible, wave prop-

agation phenomenon in a poroelastic half space is considered. Results obtained by the incom-
pressible model are compared to those of the compressible model. For the comparison, a
long strip (6 m × 33 m) is discretized with 396 triangular linear elements on 242 nodes (see
Fig. 1). The time step size used is∆t = 0.00008 s in case of rock and∆t = 0.00032 s for

A

P

20 m

zz

y x

−1000

t

t

permeable

traction free

Figure 1. Half space under vertical load: Discretization and load history

soil. The modelled half space is loaded on areaA (1 m2) by a vertical total stress vector
tz = −1000 N/m2H (t) and the remaining surface is traction free. The pore pressure is as-
sumed to be zero all over the surface, i.e., the surface is permeable. The material properties are
those corresponding to a rock (Berea sandstone) and a soil (coarse sand) given in Tab.1. The
interstitial fluid is water.

Before looking at the results, it may be convenient to look at the ratios of the compression
moduli. For rock there is:K/Ks = 0.22,K/Kf = 2.42 and for soilK/Ks = 0.019,K/Kf =
0.064. Hence, it can be expected that the incompressible modelling for the rock fails and give
good results for the soil. Exactly this is confirmed by the results given in Fig.2a for the rock
and Fig.2b for the soil. There, the horizontal displacement at the marked point on the mesh,
20 m from the margin of the loaded area, for an incompressible as well as compressible model
is plotted versus timet. Clearly, for the rock there are large differences whereas for the soil
both results are almost indistinguishable. Also, from the incompressible rock results it can be
observed that the arrival of the fast compressional wave, the first deviation from zero, tends to
zero. The Rayleigh wave, e.g., the large amplitude att ≈ 0.015 s for Berea sandstone, is not
affected by the different modellings. This is in accordance with the theory where one wave
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Figure 2. Vertical displacement versus time
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vanishes, i.e., one of the roots (27), (34) is zero, and the third root, corresponding to the shear
wave, is not influenced.

In Fig. 3, the pore pressurep at a point 3m under the loaded area is plotted versus timet
for both the incompressible and compressible model. Again, there are large differences for the
rock whereas for soil the results only show minor differences. In the incompressible results, the
instant arrival of the fast compressional wave can be observed better than in the displacement
plots. The results with increased permeabilityκ show that the slow compressional wave speed
is also changed, which corresponds to the theory. Clearly, for the soil also this wave type does
not exhibit any significant differences between the two models. Finally, it should be remarked
that the usage of the incompressible fundamental solutions needs about 20 % less CPU time.

CONCLUSIONS
To summarise, an overview of the differences between the compressible and incompressible

models is given. Assuming both constituents incompressible, the propagation speed of the fast
compressional wave becomes infinite, the slow compressional wave survives with changed
speed, and the shear wave remains unchanged. The incompressible modelling also changes the
steady state (consolidation) displacement.

Because there are no noticeable differences for some materials (e.g., loose grain with fluid),
the use of the incompressible model can be recommended for them to achieve better perfor-
mance. The speedup compared to the compressible computation is about 20 %.

Appendix I. EXPLICIT EXPRESSIONS FOR THE FUNDAMENTAL SOLUTIONS
The explicit expressions of the poroelastodynamic fundamental solutions for the unknowns

solid displacementsui and pore pressurep and for solid displacements and fluid displacements
ui andufi are given in the following for a 3-d continuum, for compressible as well as incom-
pressible constituents.

Solid displacementsui and pore pressurep
Compressible The elements of the matrixG4 (31) are the displacements caused by a Dirac
force in the solid:

Û sij =
1

4πr (%− β%f ) s2

[
R1

λ2
4 − λ2

2

λ2
1 − λ2

2

e−λ1sr −R2
λ2

4 − λ2
1

λ2
1 − λ2

2

e−λ2sr +
(
δijλ

2
3s

2 −R3

)
e−λ3sr

]
(47a)

with Rk = 3r,ir,j−δij
r2 + λks

3r,ir,j−δij
r + λ2

ks
2r,ir,j andλ2

4 = (%−β%f)
K+ 4

3
G

. The pressure caused by

the same load is

P̂ sj =
(α− β) %fr,j

4πβs
(
K + 4

3G
)
r
(
λ2

1 − λ2
2

) [(λ1s+
1
r

)
e−λ1sr −

(
λ2s+

1
r

)
e−λ2sr

]
. (47b)

For a Dirac source in the fluid the respective displacement solution is

Ûfi = sP̂ si (47c)

and the pressure

P̂ f =
s%f

4πrβ
(
λ2

1 − λ2
2

) [(λ2
1 − λ2

4

)
e−λ1sr −

(
λ2

2 − λ2
4

)
e−λ2sr

]
. (47d)

In the above given solutions the rootsλi, i = 1, 2, 3 from (27) are used.
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Incompressible For the case of incompressible constituents, the displacements caused by a
Dirac force in the solid are

Û sij =
1

4πr (ρ− βρf ) s2

[
R1

λ2
4

λ2
1

e−λ1sr −R2
λ2

4 − λ2
1

λ2
1

+
(
δijλ

2
3s

2 −R3

)
e−λ3sr

]
(48a)

with Rk = (3r,ir,j − δij) /r2 + λks (3r,ir,j − δij) /r + λ2
ks

2r,ir,j , λ1,3 from (34), andλ2
4 =

(ρ−βρf )

K+ 4
3
G

. The pressure caused by the same load is

P̂ sj =
(α− β) ρfr,j

4πsβ
(
K + 4

3G
)
rλ2

1

[(
λ1s+

1
r

)
e−λ1sr − 1

r

]
. (48b)

For a Dirac source in the fluid the respective displacement solution is

Ûfi = sP̂ si (48c)

and the pressure

P̂ f =
sρf

4πrβλ2
1

[(
λ2

1 − λ2
4

)
e−λ1sr + λ2

4

]
. (48d)

Solid and fluid displacementsui, u
f
i

Compressible The explicit expressions of the poroelastodynamic fundamental solutions are
given in the following. The four elements of the matrixG6 (32) are the displacements caused
by a Dirac force in the solid:

Û ssij =
ρf

4πr

{
(49)

e−λ1sr

(λ2
1 − λ2

2)(λ2
1 − λ2

3)

[
R1

φ2

β

(
K +

1
3
G

)(
λ2

1R− ρf
φ2

β

)
− ρf

(
(φ

2

β − φ)R+Qφ2

β

)2

R


− δij s2 φ

2

β

(
φ2

β
ρfρM +

(
−R(1− φ)ρs −

Q2

R
ρfφ− ρf

(R+Q)2

R
(
φ2

β
− φ)

)
λ2

1

+ λ2
1

(
K +

4
3
G

)(
λ2

1R− ρf
φ2

β

))]

+
e−λ2sr

(λ2
2 − λ2

3)(λ2
2 − λ2

1)

[
R2

φ2

β

(
K +

1
3
G

)(
λ2

2R− ρf
φ2

β

)
− ρf

(
(φ

2

β − φ)R+Qφ2

β

)2

R


− δij s2 φ

2

β

(
φ2

β
ρfρM +

(
−R(1− φ)ρs −

Q2

R
ρfφ− ρf

(R+Q)2

R
(
φ2

β
− φ)

)
λ2

2

+ λ2
2

(
K +

4
3
G

)(
λ2

2R− ρf
φ2

β

))]

+
e−λ3sr

(λ2
3 − λ2

2)(λ2
3 − λ2

1)

[
R3

φ2

β

(
K +

1
3
G

)(
λ2

3R− ρf
φ2

β

)
− ρf

(
(φ

2

β − φ)R+Qφ2

β

)2

R


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− δij s2 φ
2

β

(
φ2

β
ρfρM +

(
−R(1− φ)ρs −

Q2

R
ρfφ− ρf

(R+Q)2

R
(
φ2

β
− φ)

)
λ2

3

+ λ2
3

(
K +

4
3
G

)(
λ2

3R− ρf
φ2

β

))]}

with the rootsλi, i = 1, 2, 3 from (27) andρM = ρs(1 − φ) + ρf (φ − β). The relative fluid
displacements caused by the same load are identical to the solid the solid displacements caused
by a force in the fluid

Û sfij = Ûfsij =
ρf

4πr

{
(50)

e−λ1sr

(λ2
1 − λ2

2)(λ2
1 − λ2

3)

[
R1

(((
φ2

β
− φ

)
(K +

4
3
G)R+G

φ2

β
Q

)
λ2

1 − ρf
(
φ2

β
− φ

)2

Q

− φ2

β
QρβM − ρf

(
φ2

β
− φ

)
(K +

1
3
G+

Q2

R
)
φ2

β
−R

(
φ2

β
− φ

)
ρβM

)

− δij s2

(
φ2

β
− φ

)((
ρf
φ2

β
− λ2

1R

)(
(1− φ)ρs − (K +

4
3
G)λ2

1

)

−
((

φ2

β
− φ

)
(R+Q)2

R
+ φ

Q2

R

)
λ2

1ρf + ρ2
fφ

(
φ2

β
− φ

))]

+
e−λ2sr

(λ2
2 − λ2

3)(λ2
2 − λ2

1)

[
R2

(((
φ2

β
− φ

)
(K +

4
3
G)R+G

φ2

β
Q

)
λ2

2 − ρf
(
φ2

β
− φ

)2

Q

− φ2

β
QρβM − ρf

(
φ2

β
− φ

)
(K +

1
3
G+

Q2

R
)
φ2

β
−R

(
φ2

β
− φ

)
ρβM

)

− δij s2

(
φ2

β
− φ

)((
ρf
φ2

β
− λ2

2R

)(
(1− φ)ρs − (K +

4
3
G)λ2

2

)

−
((

φ2

β
− φ

)
(R+Q)2

R
+ φ

Q2

R

)
λ2

2ρf + ρ2
fφ

(
φ2

β
− φ

))]

+
e−λ3sr

(λ2
2 − λ2

3)(λ2
1 − λ2

3)

[
R3

(((
φ2

β
− φ

)
(K +

4
3
G)R+G

φ2

β
Q

)
λ2

3 − ρf
(
φ2

β
− φ

)2

Q

− φ2

β
QρβM − ρf

(
φ2

β
− φ

)
(K +

1
3
G+

Q2

R
)
φ2

β
−R

(
φ2

β
− φ

)
ρβM

)

− δij s2

(
φ2

β
− φ

)((
ρf
φ2

β
− λ2

3R

)(
(1− φ)ρs − (K +

4
3
G)λ2

3

)

−
((

φ2

β
− φ

)
(R+Q)2

R
+ φ

Q2

R

)
λ2

3ρf + ρ2
fφ

(
φ2

β
− φ

))]}
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with ρβM =
(
φ2

β − φ
)
ρf + (1 − φ)ρs. For a Dirac force in the fluid the respective relative

fluid displacement solution is

Ûffij =
1

4πr

{
(51)

e−λ1sr

(λ2
1 − λ2

2)(λ2
1 − λ2

3)

[
R1

(
−G(K +

4
3
G)Rλ4

1 +
(

(K +
7
3
G)RρβM + 2GQρf

(
φ2

β
− φ

))
λ2

1

−

(
ρf

(
φ2

β − φ
)
Q+ ρβMR

)2

R
− (K +

1
3
G)ρ2

f

(
φ2

β
− φ

)2
)

− δij s2

(
ρf
φ2

β
ρMρβM − (K +

4
3
G)GRλ6

1

−
(
ρ2
βMR+ ρfρβM

(
2
(
φ2

β
− φ

)
Q+

φ2

β
(K +

1
3
G+

Q2

R
)
)

+ ρf
φ2

β

(
2(1− φ)ρs + ρf (

φ2

β
− β)

)
G

)
λ2

1

+
(

(K +
7
3
G)ρβMR+Gρf

(
2
(
φ2

β
− φ

)
Q+

φ2

β
(K +

4
3
G+

Q2

R
)
))

λ4
1

)]

+
e−λ2sr

(λ2
2 − λ2

3)(λ2
2 − λ2

1)

[
R2

(
−G(K +

4
3
G)Rλ4

2 +
(

(K +
7
3
G)RρβM + 2GQρf

(
φ2

β
− φ

))
λ2

2

−

(
ρf

(
φ2

β − φ
)
Q+ ρβMR

)2

R
− (K +

1
3
G)ρ2

f

(
φ2

β
− φ

)2
)

− δij s2

(
ρf
φ2

β
ρMρβM − (K +

4
3
G)GRλ6

2

−
(
ρ2
βMR+ ρfρβM

(
2
(
φ2

β
− φ

)
Q+

φ2

β
(K +

1
3
G+

Q2

R
)
)

+ ρf
φ2

β

(
2(1− φ)ρs + ρf (

φ2

β
− β)

)
G

)
λ2

2

+
(

(K +
7
3
G)ρβMR+Gρf

(
2
(
φ2

β
− φ

)
Q+

φ2

β
(K +

4
3
G+

Q2

R
)
))

λ4
2

)]

+
e−λ3sr

(λ2
2 − λ2

3)(λ2
1 − λ2

3)

[
R3

(
−G(K +

4
3
G)Rλ4

3 +
(

(K +
7
3
G)RρβM + 2GQρf

(
φ2

β
− φ

))
λ2

3

−

(
ρf

(
φ2

β − φ
)
Q+ ρβMR

)2

R
− (K +

1
3
G)ρ2

f

(
φ2

β
− φ

)2
)

− δij s2

(
ρf
φ2

β
ρMρβM − (K +

4
3
G)GRλ6

3

21



−
(
ρ2
βMR+ ρfρβM

(
2
(
φ2

β
− φ

)
Q+

φ2

β
(K +

1
3
G+

Q2

R
)
)

+ ρf
φ2

β

(
2(1− φ)ρs + ρf (

φ2

β
− β)

)
G

)
λ2

3

+
(

(K +
7
3
G)ρβMR+Gρf

(
2
(
φ2

β
− φ

)
Q+

φ2

β
(K +

4
3
G+

Q2

R
)
))

λ4
3

)]}

Incompressible The explicit expressions of the poroelastodynamic fundamental solutions
are given in the following. The four elements of the matrixG6 (40) are the displacements
caused by a Dirac force in the solid:

Û ssij =
s4ρ3

f

4πr
φ6

β3

(
e−λ1sr

(λ2
1 − λ2

3)λ2
1

[
R1(K +

1
3
G)
(
Gλ2

1 − ρM
)

(52)

− δij s2

(
G(K +

4
3
G)λ4

1 − λ2
1ρM (K +

7
3
G) + ρ2

M

)]

− e−λ3sr

(λ2
1 − λ2

3)λ2
3

[
R3(K +

1
3
G)
(
Gλ2

3 − ρM
)

− δij s2

(
G(K +

4
3
G)λ4

3 − λ2
3ρM (K +

7
3
G) + ρ2

M

)]

− ρM
λ2

1λ
2
3

(
3r,ir,j − δij

r2
(K +

1
3
G) + δijs

2ρM

))
.

with λ1 andλ3 from Eq.(36). The relative fluid displacements caused by the same load are
identical to the solid the solid displacements caused by a force in the fluid

Û sfij = Ûfsij =
(

1− β

φ

)
Û ssij (53)

For a Dirac force in the fluid the respective relative fluid displacement solution is

Ûffij =
s4ρ2

fφ
2

4πr

{
(54)

e−λ1sr

(λ2
1 − λ2

3)

[
R1

βλ2
1

(Gλ2
1 − ρM )(K +

1
3
G)ρf

(
φ2

β
− φ

)2

+ δij s
2 φ

2

β2

(
(K +

4
3
G)G2λ4

1 −
ρβMρ

2
M

λ2
1

− G

β

(
Gβρ+ 2ρs(1− φ)β(K +

4
3
G)− β2ρf (K +

7
3
G) + ρfφ

2(K +
4
3
G)
)
λ2

1

+
ρM
β

(
ρfφ

2(K +
7
3
G)− φρfβ(K +

4
3
G)−Gβ2ρf + ρs(1− φ)β(K +

10
3
G)
))]

− e−λ3sr

(λ2
1 − λ2

3)

[
R3

βλ2
3

(Gλ2
3 − ρM )(K +

1
3
G)ρf

(
φ2

β
− φ

)2
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+ δij s
2 φ

2

β2

(
(K +

4
3
G)G2λ4

3 −
ρβMρ

2
M

λ2
3

− G

β

(
Gβρ+ 2ρs(1− φ)β(K +

4
3
G)− β2ρf (K +

7
3
G) + ρfφ

2(K +
4
3
G)
)
λ2

3

+
ρM
β

(
ρfφ

2(K +
7
3
G)− φρfβ(K +

4
3
G)−Gβ2ρf + ρs(1− φ)β(K +

10
3
G)
))]

− 3r,ir,j − δij
r2

ρM
βλ2

1λ
2
3

(K +
1
3
G)ρf

(
φ2

β
− φ

)2

− δij s
2

βλ2
1λ

2
3

φ2

β
ρβMρ

2
M

}
.

Appendix II. CONVOLUTION QUADRATURE METHOD
The ’Convolution Quadrature Method’ developed by Lubich numerically approximates a

convolution integral forn = 0, 1, . . . , N

y (t) =

t∫
0

f (t− τ) g (τ) d τ → y (n∆t) =
n∑
k=0

ωn−k (∆t) g (k∆t) , (55)

by a quadrature rule whose weights are determined by the Laplace transformed functionf̂ and a
linear multistep method. This method was originally published inLubich (1988a) and (1988b).
Application to the boundary element method may be found inSchanz and Antes (1997b). Here,
a brief overview of the method is given.

In formula (55), the timet is divided inN equal steps∆t. The weightsωn (∆t) are the
coefficients of the power series

f̂

(
γ (z)
∆t

)
=
∞∑
n=0

ωn (∆t) zn (56)

with the complex variablez. The coefficients of a power series are usually calculated with
Cauchy’s integral formula. After a polar coordinate transformation, this integral is approxi-
mated by a trapezoidal rule withL equal steps2πL . This leads to

ωn (∆t) =
1

2πi

∫
|z|=R

f̂

(
γ (z)
∆t

)
z−n−1 d z ≈ R−n

L

L−1∑
`=0

f̂

γ
(
Rei`

2π
L

)
∆t

 e−in`
2π
L , (57)

whereR is the radius of a circle in the domain of analyticity off̂ (z).
The functionγ (z) is the quotient of the characteristic polynomials of the underlying mul-

tistep method, e.g., for a BDF 2,γ (z) = 3
2 −2z+ 1

2z
2. The used linear multistep method must

beA (α)-stable and stable at infinity (Lubich 1988b). Experience shows that the BDF 2 is the
best choice (Schanz 1999). Therefore, it is used in all calculations in this paper.

If one assumes that the values off̂ (z) in (57) are computed with an error bounded byε,
then the choiceL = N andRN =

√
ε yields an error inωn of sizeO (

√
ε) Lubich (1988a).

Several tests conducted by the author lead to the conclusion that the parameterε = 10−10 is the
best choice for the kind of functions dealt with in this paper (Schanz and Antes 1997a). The
assumptionL = N leads to a order of complexityO

(
N2
)

for calculating theN coefficients
ωn (∆t). Due to the exponential function at the end of formula (57) this can be reduced to
O (N logN) using the technique of the Fast Fourier Transformation (FFT).
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