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ABSTRACT:

The need to analyze and visualize differences of very similar objects arises in many research areas: mesh compression, scan alignment,
nominal/actual value comparison, quality management, and surface reconstruction to name a few. In computer graphics, for example,
differences of surfaces are used for analyzing mesh processing algorithms such as mesh compression. They are also used to validate
reconstruction and fitting results of laser scanned surfaces. As laser scanning has become very important for the acquisition and
preservation of artifacts, scanned representations are used for documentation as well as analysis of ancient objects. Detailed mesh
comparisons can reveal smallest changes and damages. These analysis and documentation tasks are needed not only in the context of
cultural heritage but also in engineering and manufacturing. Differences of surfaces are analyzed to check the quality of productions.

Our contribution to this problem is a workflow, which compares a reference / nominal surface with an actual, laser-scanned data set.
The reference surface is a procedural model whose accuracy and systematics describe the semantic properties of an object; whereas the
laser-scanned object is a real-world data set without any additional semantic information.

1 INTRODUCTION

Measuring and analyzing differences between surfaces is a nec-
essary task in many fields of research. These techniques are used,
for example, to validate reconstruction and fitting results of laser
scanned surfaces. As laser scanning has become very important
for the acquisition and preservation of artifacts, scanned represen-
tations are used for documentation as well as analysis of ancient
objects. Detailed mesh comparisons can reveal smallest changes
and damages. These analysis and documentation tasks are needed
– not only in the context of cultural heritage but also in engineer-
ing and manufacturing: differences of surfaces are analyzed to
check the quality of productions.

The current methods to describe the shape of three-dimensional
objects can be classified into two groups: composition of primi-
tives and procedural description. As a 3D acquisition device re-
turns an agglomeration of elementary objects (e.g. a laser scanner
returns points) the real-world data set is always a composition of
primitives. The nominal surface including its semantic informa-
tion is a CAD model. In many cases, the nominal surface is a
procedural model as they represent an ideal object rather than a
real one. As the enrichment of measured data with an ideal de-
scription enhances the range of potential applications, the bridge
between both the generative and the explicit geometry descrip-
tion is very important. It combines the accuracy and systematics
of generative models with the realism and the irregularity of real-
world data. This connection is a great challenge as pointed out
in “Procedural methods for 3D reconstruction” by David Arnold
(Arnold, 2006).

2 SYSTEM ARCHITECTURE

The presented system performs a variance analysis on a reference
mesh and a scanned mesh. It consists of three main parts.

1. Registration: The first step registers a generative model
(including its free parameters) to a laser scan. A genera-
tive model can be regarded as a function M , which gener-
ates geometry if called with parameters x. The registration
step takes M and determines a parameter set x0, such that
M(x0) fits a given scan S.

2. Variance analysis: The difference between the generative
model M(x0) and the laser scan S can be computed effi-
ciently using state-of-the-art ray tracing techniques.

3. Variance visualization and documentation: The obtained
variance is visualized using X3D technology. An X3D file
is generated containing the generative model M(x0), a tex-
ture of distance values and shader code capable of applying
the difference as displacements. This allows switching se-
lectively between the two models or displaying both of them
simultaneously.

3 REGISTRATION

The processing pipeline starts with registration. During this step
a generative model (including its free parameters) is fitted / reg-
istered to a laser scan.



A generative model does not store an object’s geometry (control
points, vertices, faces, etc.) but a sequence of operators and pa-
rameters in order to create it (Ullrich et al., 2010a). All models
with well organized structures and repetitive forms benefit from
procedural model descriptions. In these cases generative mod-
eling is superior to conventional approaches. Its strength lies in
a compact description, which does not depend on the counter of
primitives but on the model’s complexity itself. As a result es-
pecially large scale models and scenes can be created efficiently
which has promoted generative modeling within the last few years.
Another advantage of procedural modeling techniques is the in-
cluded expert knowledge within an object description; e.g. clas-
sification schemes used in architecture, civil engineering, etc. can
be mapped to procedures. For a specific object only its type and
its instantiation parameters are needed to create an instance. In
this way generative modeling techniques are the perfect basis to
encode procedural knowledge sematically (Schinko et al., 2010).

Reverse engineering forms the link between recording techniques
on the one hand and modeling, markup, and indexing on the
other hand (Ullrich et al., 2010b). The algorithm used in this
first step has been presented in “Semantic Fitting and Reconstruc-
tion” (Ullrich et al., 2008). It simply regards a generative script as
a function M with input parameters x ∈ Rk. These parameters
may have a semantic meaning (width, height, etc.). The regis-
tration respectively the parameter estimation is based on classical
minimization of an error function

f(x1, . . . , xk) =

n∑
j=0

ψ(d(M(x1, . . . , xk), si))
!
= min

(x1,...,xk)
.

(1)
In this equation the laser-scanned, input data set is represented
by a point cloud S = {s0, . . . , sn}. The optimization algorithm
determines some instance parameters x so that as many points as
possible are close to the corresponding model instanceM(x); i.e.
the sum of distances d between points and model instance is min-
imal. In order to eliminate a disproportionate effect of outlying
points an additional weighting function

ψ(x) = 1− e−x
2/σ2

(2)

is used. The additional parameter σ should correspond to the
noise level of the input data set. An adequate σ ensures that points
whose distance to a model is ±ε have only a small contribution
to the error function. The heuristic to select σ such that a point
with distance d and noise ε will be weighted ψ(d + ε) = 1/2,
yields good results.

A numerical optimization evaluates the generative script up to
several thousand times. Therefore, we integrated a compiler which
translates the script code to machine code (Schinko et al., 2010),
(Strobl et al., 2010). The compiler parses the script, creates an
abstract syntax tree and differentiates it with respect to input pa-
rameters; i.e. the complete generative model description M (in-
cluding all possibly called subroutines) is differentiated with re-
spect to its input parameters. As a consequence, the optimization
can use both the objective function

f(x1, . . . , xk) =

n∑
j=0

ψ(d(M(x1, . . . , xk), si)) (3)

as well as its partial derivatives ∂f
∂xi

. This differentiating compiler
offers the possibility to use gradient-based optimization routines
in the first place. Without partial derivatives many numerical op-
timization routines cannot be used at all or in a limited way.

As the distance computation is by far the most time-consuming

part of this algorithm, it uses geometrical, spatial hashing to speed
up the cimputation. Due to the fact that the weighting function ψ
has an upper limit

∀x ∈ R : ψ(x) < 1 (4)

and converges relatively fast to one the objective function can
be evaluated very efficiently. The weighted distances of points
“far away” (depending on a threshold calculated using σ) can be
approximated by ψ ≈ 1 and do not have to be calculated exactly.
Only small distances are evaluated exactly.

4 ACCELERATION STRUCTURE CONSTRUCTION

To speed up the ray intersection queries, we organize our laser-
scanned triangle data in a special manner. In a first step, we en-
close each triangle with an axis-aligned bounding box (AABB).
By grouping AABBs recursively, a tree like structure is obtained.
This kind of hierarchy is called bounding volume hierarchy (BVH)
and is a very popular acceleration structure for ray tracing (see
(Wald et al., 2007)). The BVH construction can be performed
fully automatically using a recursive, top-down algorithm out-
lined in Algorithm 1.

Algorithm 1 Recursive, Top-Down Construction of the Bound-
ing Volume Hierarchy. The geometry is partioned according to a
cost function and the bounding volume of each node is updated
accordingly.

1: procedure BUILDBVH(BVHNode node)
2: if NEEDSPLIT( ) then
3: SPLITGEOMETRY( )
4: BUILDBVH(LeftChild)
5: BUILDBVH(RightChild)
6: COMPUTEAABB(LeftChild, RightChild)
7: else
8: COMPUTEAABB(objects)
9: end if

10: end procedure

We use a binary BVH, where each node has two child nodes max-
imum (called left and right child). The construction is invoked for
the root node of the BVH, which is passed all triangles of the in-
put mesh. If the geometry contained in a node needs to be split,
it is partioned among the child nodes and construction proceeds
recursively. Then, the node’s AABB has to be updated, either us-
ing the child AABBs or the contained objects (if no split has been
performed).

In our implementation, a node is split whenever it contains more
than four triangles. Splitting itself is guided by the commonly
used surface area heuristic (SAH) cost function. It states that, as-
suming uniformly distributed rays, the probability of a ray inter-
secting a child node C given that its parent node P is intersected
is proportional to the ratio of the surface areas of the bounding
boxes as shown in Formula 5

Prob(ray hitsC | ray hits P ) ∝ surfaceArea(C.AABB)

surfaceArea(P.AABB)
.

(5)
We use Formula 6 proposed in (Wald, 2007), which is based on
the SAH, to guide our object partioning step.

cost(L,R) = NLAL +NRAR (6)

NL and NR represent the number of primitives and AL and AR
the surface area of the AABB for a given partition L ] R of
geometric objects. This function tries to minimize the overall



intersection costs of a ray with the BVH by grouping suitable
AABBs. To reduce the search space for partitions, the centroids
of the AABBs are projected along each coordinate axis and sorted
in ascending order. The partition with minimal costs can then be
found by ”sweeping” a split plane along the axis (see also (Wald
et al., 2007)). This is done for all three coordinate axes and the
split with minimal costs is finally selected.

5 PARALLEL RAY TRACING

A previously constructed BVH can be traversed in depth-first or-
der using Algorithm 2. This recursive approach traverses the
nodes that are intersected by a ray in strict front-to-back order.
To maintain this node odering, a stack per ray is required, to store
intersected nodes for later use.

Algorithm 2 Depth-First Traversal of the Bounding Volume Hi-
erarchy (BVH). The recursive algorithm traverses the nodes of
the BVH in a strict front-to-back order and test the geometry con-
tained in the leaves for intersection.

1: procedure IINTERSECTBVH(Ray ray, BVHNode node)
2: if node is a leaf then
3: INTERSECTTRIANGLES(ray)
4: else
5: tleft ←INTERSECTAABB(LeftChild, ray)
6: tright ←INTERSECTAABB(RightChild, ray)
7: if tleft AND tright then
8: if tleft < tright then
9: PUSHNODE(RightChild)

10: INTERSECTBVH(ray, LeftChild)
11: else
12: PUSHNODE(LeftChild)
13: INTERSECTBVH(ray, RightChild)
14: end if
15: else
16: if tleft then
17: INTERSECTBVH(ray, LeftChild)
18: else if tright then
19: INTERSECTBVH(ray, RightChild)
20: else
21: node← POPNODE

22: if node then
23: INTERSECTBVH(ray, node)
24: end if
25: end if
26: end if
27: end if
28: end procedure

The traversal is started from the root node using the ray as param-
eter. If the node is a leaf, the contained geometry is intersected
with the ray and the ray parameters are updated. An inner node
has two child nodes, which are both intersected with the ray. If
both children are intersected, the child that is closer to the ray’s
origin is traversed recursively first, while the farther one is pushed
onto the stack. If just one of the children is intersected, traversal
proceeds to this child immediately. When no child node was in-
tersected, a node is popped from the stack and traversal continues.
The intersection search stops, if the stack gets empty and no more
nodes are left for traversal. This depth-first order traversal can be
used to find an ray intersection in O(log(N)) time on average,
instead of the naive O(N) (N denotes the number of triangles).

To trace millions of rays in parallel, we implemented the depth-
first traversal on the GPU using NVidia’s CUDA technology (see

(Lindholm et al., 2008) and (NVIDIA, 2010)). As mentioned be-
fore, the constructed BVH is transferred to GPU memory, where
it is subsequently traversed in massively parallel fashion. We use
the approach of Aila et al. (Aila and Laine, 2009), which maps
one ray to one thread. All threads execute our implementation of
Algorithm 2 to find their intersection points.

6 DISTANCE CALCULATION AND ENCODING

The distance values for visualization and documentation purposes
are obtained in a pre-processing step. A tool expects the reference
model as well as the scanned model as input. Both models are en-
coded in common 3D formats such as Alias / WaveFront object
(.obj) or 3D Systems stereolithography (.stl) in order to be recog-
nized by our importer. Once the mesh data is available, the ray
casting library is initialized with the scanned model.

The next step is to obtain vertices and the corresponding normals
on the reference mesh to start casting rays. A trivial approach
would be to just use the vertices and normals supplied by the im-
porter. By analyzing a typical mesh with texture coordinates one
can easily see why this approach would be a waste of resources.
Texture coordinates seldomly degenerate to one single (u,v) co-
ordinate for all vertices defining a primitive - may it be a triangle
or a quad. Therefore it is meaningful to not only use the texels as-
sociated with the vertices defining the primitives to store the dis-
tance values, but to use all texels inside the primitive. To fill the
texels with distance values it is necessary to obtain position and
normal in object coordinates. This is an easy task at the border
texels of the primitive - since these values are available directly,
but involves calculating object coordinates out of texel values for
all other texels.

After obtaining all texels covered by the primitive, the corre-
sponding object coordinates are calculated. These coordinates
together with two vectors, one in positive and one in negative nor-
mal direction of the primitive, represent rays to be tested against
the scanned model. The ray casting library calculates the inter-
section points - if there are any - up to a predefined maximum
distance. The next step is to encode the distance values in a tex-
ture following a pre-defined scheme. We store the distance of a
hit in positive and negative direction as unsigned byte in the red,
respectively green channel of the texture. The blue channel is
used to encode the available distance information:

• A value of 0 means there is no hit in positive or negative
direction.

• If there is a hit in negative direction, the value of 64 is added.

• In case there is a hit in positive direction, the value of 128 is
added.

For an example distance texture please see Figure 1.

The texture encoding allows to carry out a selective displacement
in the geometry shader incorported in the output X3D (Web3D Con-
sortium, 2003) file. A built-in exporter creates the X3D file which
we describe in detail in the next paragraph.

7 VISUALIZATION AND DOCUMENTATION

For visualization and documentation purposes we propose a so-
lution which displaces vertices of a reference mesh to lie on the
surface of a scanned mesh. In addition to a flexible solution we



Figure 1: This distance texture is used in a displacement shader
to create an output mesh which ideally matches a target mesh.
Three color channels are used to encode distance values. The red
and green channels are used to store distance values, whereas the
blue channel is used to store additional information.

prefer a commonly used framework - which we found in X3D.
For documentation purposes, the X3D solution offers an inte-
grated, standard compliant approach to visualize both, the gener-
ative as well as the laser-scanned model. Furthermore, the stan-
dardized X3D format meets most documentation requirements.
The generated X3D file incorporates the following components:

• The geometry of the reference mesh as indexed face set,

• a texture storing distance values to the scanned mesh

• as well as vertex, geometry and fragment shaders for dis-
placement and lighting purposes.

The reference mesh and the distance texture represent the input
for the shader stages. The vertex shader primarily acts as a pass-
through stage. Position, normal and texture coordinates of the in-
put vertex are handed over to the geometry shader for further pro-
cessing. The geometry shader accepts triangles as input and out-
put type. For each input vertex, a texture lookup reveals whether
the vertex needs to be displaced. In case there is a distance value
in the texture, the displacement of the 3 vertices is calulated and
an output triangle is generated. When distance values in positive
and negative direction are available, two triangles are emitted. In
all other cases there is no output at all. Additionally the shader
allows to recursively subdivide input triangles to meet the desired
output resolution of one vertex for almost every texel. This way
we obtain a good representation of the scanned mesh. As a last
stage, Blinn-Phong lighting is carried out on a per pixel basis in
the fragment shader.

8 RESULTS AND DISCUSSION

To demonstrate our workflow we use an example data set, which
consists of a laser-scanned cup and a generative reference model.

The laser scan has 66 243 vertices and 130 973 faces (triangles).
As the real cup has a clean and shiny surface, it has been difficult

to scan. The scan result is noisy and its not-cleaned-up mesh
(mesh reparing, hole filling, mesh smoothing has not been done)
has many holes (see Figure 3 (left)).

The generative cup model takes 15 parameters: (x, y, z) is the
base point of the cup and (α, β, γ) define its orientation. Its
shape is defined by an inner fin(x) = 1

25
(x + 1

10
)2+shape and

outer fout(x) = x3+shape shape function with one free parame-
ter shape. These functions are rotated around the cup’s main axis
and scaled with the parameters r and h. The handle is defined
via six parameters, which form points in 2D (in the plane of the
handle, which is defined implicitly by its orientation γ); namely
(h1, fout(h1)), (h2A, h2B), (h3A, h3B), and (h4, fout(h4)). They
are the control points of a Bézier curve. Its tube with a fixed di-
ameter (10mm) defines the cup’s handle.

The registration and optimization routines of the first step of our
piepline determine the best-fit parameters automatically. The re-
sult is shown in Figure 3 (middle).

The next step performs the variance analysis and stores its result
in a texture map. The distance values are:

average distance 2.9613 mm
maximum distance 8.6856 mm
standard deviation 1.9820 mm

The per-texel-distances are visualized in Figure 2. As the gener-
ative cup is rotationally symmetric, and the laser-scanned has an
octagonal footprint, the distance map shows eight repetitions of
(more or less) the same pattern. Furthermore, the starting-points
of the handle can be identified clearly. The texture of the handle
itself is on the right-hand-side of the texture map.

Figure 2: This is the distance texture of a cup with an orthogonal
footprint. One can identify eight repetitions of (more or less) the
same pattern.

9 CONCLUSIONS AND FUTURE WORK

In this paper we presented a workflow for comparing a reference
/ nominal surface with an actual, laser-scanned data set. The ref-
erence surface is obtained by registering a generative model to



Figure 3: This figure shows the scanned model (left), the reference model (middle), as well as the output of the variance visualization
(right). The reference model is defined by a set of parameters obtained in a fitting process applied on the scanned model. A subsequent
variance analysis leaves us with a X3D file capable of displacing the reference mesh to match the scanned mesh as good as possible.

the laser-scanned data set. An efficient ray intersection algorithm
is used to obtain distance values between sample points on the
reference surface and the scanned surface. These distance values
are encoded in a texture and exported together with the refer-
ence mesh as X3D file. An embedded displacement shader gen-
erates a mesh resulting in a good representation of the actual,
laser-scanned data set.

However there are some deficiencies in the output mesh since we
are displacing the vertices in normal direction. Depending on the
curvature of the surface we have to deal with gaps or overlaps.
This could be fixed by taking the adjacent primitives into account
and displacing the vertices in averaged normal direction.

Another aspect are artifacts or holes in the scanned surface which
may produce unwanted results. This could probably be fixed in
a pre-processing step. Still an open question is how to deal with
scan data that has no correspondence in the generative model at
all. We can deal with this kind of problem by adjusting the max-
imum allowed distance value, but this leaves us with no output
geometry for that part of the scan data.
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