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We introduce a versatile method to compute electronic steady-state properties of strongly correlated
extended quantum systems out of equilibrium. The approach is based on dynamical mean-field theory
(DMFT), in which the original system is mapped onto an auxiliary nonequilibrium impurity problem
imbedded in a Markovian environment. The steady-state Green’s function of the auxiliary system is solved

by full diagonalization of the corresponding Lindblad equation. The approach can be regarded as the
nontrivial extension of the exact-diagonalization-based DMFT to the nonequilibrium case. As a first
application, we consider an interacting Hubbard layer attached to two metallic leads and present results
for the steady-state current and the nonequilibrium density of states.
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Due to the progress made in microscopically controlling
quantum mechanical systems within quantum optics and
ultracold quantum gases [1-4], in solid-state nanoscience,
spintronics, molecular electronics, [5,6] as well as ultrafast
laser spectroscopy [7-10], the interest in correlated sys-
tems out of equilibrium has steadily increased in recent
years. These achievements have prompted new and
boosted old related theoretical questions such as nonequi-
librium quantum phase transitions [11], dissipation and
decoherence [12], and thermalization after a quantum
quench [13-15].

In this respect, the theoretical description and under-
standing of strongly correlated quantum systems out of
equilibrium poses an exciting challenge to modern theo-
retical physics. A widely used and successful method to
treat strongly correlated lattice systems in equilibrium is
dynamical mean-field theory (DMFT) [16-18]. The suc-
cess of the method lies on the one hand in the nontrivial
treatment of dynamical properties and on the other hand
in its applicability to a range of different problems, from
solid-state fermionic systems to ultracold bosonic atoms,
as well as the possibility to combine it with realistic
electronic structure methods [19]. Recently, DMFT has
been extended to deal with time-dependent nonequili-
brium problems [20-25]. The extensions are based on the
Kadanoff-Baym-Keldysh nonequilibrium Green’s function
approach [26-29].

DMEFT relies on the solution of a correlated impurity
problem that constitutes the bottleneck of the approach.
Several techniques have been adopted in the equilibrium
case. Most of them have been applied, in a more or less
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approximate or limited way, to nonequilibrium DMFT
as well, either in a steady state or within full time-
dependence. Among them are the iterated perturbation
theory [20], the numerical renormalization group [23],
continuous time quantum monte carlo (CTQMC) calcula-
tions [24,30], noncrossing approximation, and beyond
[31]. Additionally, exact DMFT solutions are available in
certain limits [21,32,33]. Nonequilibrium quantum impu-
rity problems (not within DMFT) have also been studied by
means of scattering-state approaches [34,35]; perturbative
methods [36,37] in combination with the renormalization
group (RG) [38,39], the time-dependent density-matrix
RG [40,41], and the numerical RG [42] flow equation
[43]; the functional RG [44,45]; dual fermions [46]; and
finally CTQMC calculations on an auxiliary system with
an imaginary bias [47-49].

In this Letter, we propose an approach that, in contrast to
previous work, while directly accessing steady-state prop-
erties, features a solution of the DMFT impurity problem
with controlled accuracy. This means that the accuracy
can be directly estimated by comparing the exact and the
effective bath hybridization functions (Fig. 2). Also, no
often unreliable analytical continuation is required. At the
heart of the method lies a solution of the nonequilibrium
DMFT impurity problem, which can be seen as a general-
ization of the exact-diagonalization (ED) approach, widely
used in the equilibrium case [16]. However, a crucial
difference with respect to conventional DMFT-ED is the
fact that here the effective impurity model describes an
infinite system and, thus, displays a continuous spectrum.

In ED-based equilibrium DMFT [16], a certain number
of noninteracting bath sites is introduced in order to fit
the bath hybridization function required by the the self-
consistency condition. The maximum number of bath sites
is limited by the exponential increase of the many-body
Hilbert space. In equilibrium, the fit is carried out in
imaginary (Matsubara) frequency space, where functions
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are smooth, in contrast to real frequency. There are several
difficulties in this approach when trying to extend it
to nonequilibrium steady states. (i) Due to the finite num-
ber of bath sites, a stationary solution of the impurity
problem will always produce some equilibrium self-
energy. Besides the fact that this may be questionable, it
is not clear which chemical potential or temperature should
be used for the impurity problem. (ii) Due to the finite
system, the bath spectrum is discontinuous, so that a fit
in real frequencies becomes problematic. Unfortunately,
there is no Matsubara Green’s function in nonequilibrium,
so this poses a serious problem.

The alternative presented in this Letter consists in
replacing the DMFT impurity Hamiltonian with an effec-
tive one that is solvable by ED but at the same time
describes a truly infinite system. This is obtained by con-
necting the interacting impurity to a moderate number of
bath sites that, in turn, are attached to Markovian reser-
voirs; see below for details. The exact bath spectral func-
tion is smoothly obtained in the (ideal) limit of an infinite
number of bath sites. The action of such Markovian baths
on the reduced density matrix of the system consisting of
the other bath sites and of the impurity is described by the
Lindblad quantum master equation [50]. The latter can be
readily solved by diagonalizing the Lindbladian within the
many-body “super-Fock™ space of reduced density matri-
ces of the system. Its solution determines both the retarded
and Keldysh impurity Green’s function as well as the self-
energy. The latter is used in the DMFT loop to obtain the
new bath hybridization function, which is fitted by new
bath parameters.

In order to illustrate the approach, we apply it to a simple
model describing a heterojunction consisting of a corre-
lated interface (c¢) sandwiched between two metallic leads
a = [, r (see Fig. 1). Experimentally, such a setup has been
recently explored where the correlated layer was realized
by a V,053 microfilm that is coupled to Au leads [51].

Before a certain time 7 < 7, the three regions c, /, and r
are disconnected and in equilibrium at different chemical
potentials w., u;, and u,, respectively. This amounts to
applying a bias voltage ® = u;-u, between the leads.

—

v (time > 79)

FIG. 1 (color online).
at study.

Schematic representation of the system

The central region, lying on the x-y plane, is described
by a single-band Hubbard layer on a square lattice with on-
site interaction U, on-site energy €., and nearest-neighbor
hopping ¢. The leads consist of two half-infinite cubic
lattices described by a nearest-neighbor noninteracting
tight-binding model with hopping that we take as unit of
the energy + = 1 and on-site energies &,. We restrict for
simplicity to the particle-hole symmetric case for which
g, = —U/2, w, = —pu;, and &, = —¢g,. Finally, we take
Mo = €4, Which corresponds to having the same electron
densities in the two leads. A related nonequilibrium model
has been treated in DMFT within perturbative impurity
solvers in Refs. [25,31].

Starting at 7 = 7, a nearest-neighbor hopping v is
switched on between the central region and the leads.
After a sufficiently long time, a steady state is reached,
provided no trapped surface states occur. Nonequilibrium
properties, in general, and nonlinear transport, in particu-
lar, can quite generally be addressed in the framework of
the Keldysh Green’s function approach [26-29,52]. Here,
we adopt the notation (see, e.g., Ref. [29]) where the
(underlined) Keldysh Green’s function is a 2 X 2 matrix
containing the retarded (G¥), advanced (G*), and Keldysh
(GX) components. In a steady state, these depend on a
single frequency only. The system is translation invariant
in the direction parallel to the layer, which we denote as ||.
Accordingly, we can write Dyson’s equation for the layer
(c) Green’s function G(k|, ®), k being the || momentum
[52] as

Gk ) =gi'(w) = 3 v'g (k@) = Sk, ). (1)

a=Ilr

Here, 2(k|, ) is the self-energy; g is the v =0, U =0
layer Green’s function; and g, (k|, w) are the v = 0 lead
Green’s functions on the first lead layers. Their retarded
and Keldysh components are readily obtained analytically
in terms of the Green’s function of a half-infinite tight-
binding chain.

Within DMFT, one approximates the self-energy by
a local, i.e., kj-independent, %(w) that is determined
by solving a quantum impurity model with the same
interaction U embedded in a self-consistently determined
bath [16]. The latter is completely specified by the bath
hybridization function A(w) that is determined self-
consistently by requiring that the Green’s function of the
impurity Gpp(w) = [go(a))‘1 — 3(w)]"" be equal to the
local Green’s function of the layer (cf. Refs. [16,21,25])
Groclw) = I%Q(k”, w), where G(k, ) is given by
(1) with 2(k|, @) = 2(w), as obtained by the solution of
the impurity problem. Here, go is the “Weiss” bare
Green’s function of the impurity model defined as
Gy@) " = g(w) " = Alw).

The solution of the impurity problem is in fact the
DMFT bottleneck. The usual (equilibrium) DMFT-ED

086403-2



PRL 110, 086403 (2013)

PHYSICAL REVIEW LETTERS

week ending
22 FEBRUARY 2013

procedure consists in approximating the effect of the total
bath hybridization function A(w) by an “‘effective” bath
with a finite number N, of bath sites. Quite generally, in
equilibrium, one carries out some fit to the bath hybridiza-
tion function in Matsubara space. As discussed above, this
is not appropriate in a nonequilibrium steady state. In this
Letter, we present a different approach: In addition to a
certain (even) number N, of bath sites that we more con-
veniently connect to the impurity in the form of two chain
segments, we include two Markovian baths that represent
a particle reservoir and sink, respectively. Their role is to
compensate for the “missing” part of the infinite chain
that would be necessary to exactly reproduce the desired
A(w). The bath parameters, i.e., the hopping and on-site
energies of the bath sites, as well as the Lindblad coeffi-
cients (see below) of the Markovian baths, are then fitted
to A(w). More specifically, we minimize the cost function
JdoY g AIm[A*(w) — Afp(w)]}?, where A(w) is
obtained from Gy ¢ via

A(w) = gy(@)™" = Groc(w) ™! — Z(w), 2)

while Ay is the bath hybridization function produced
by the effective bath (bath sites + Markovian baths). An
important aspect is that, although the (outermost) baths
are Markovian, their effect on the impurity site is non-
Markovian due to the presence of the intermediate bath
sites. This can be seen, for example, in the spectrum of A
in Fig. 2, which in the Markovian case would be a constant.
Furthermore, upon increasing the number N, of intermedi-
ate bath sites, the effect of the Markovian bath becomes
weaker and one is expected to approach the exact result
Aci(w) = A(w) for large N,,.

We now specify the effective bath more in detail.
This consists of an Hamiltonian for the “‘system”
(a chain of impurity + bath sites)

H = Z En,mciﬁ'cmtr + UCgTCOTC(ngCOl’ 3)

n,m,o

in the usual notation, where O is the impurity site and

n=—1,..., =1 (n=1,...,]) are the left (right) bath sites.
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FIG. 2 (color online). Imaginary part of the DMFT and effec-
tive bath hybridization functions [retarded (R) and Keldysh (K)
components] for ® = 2, v2 = 0.1, and two different values of
U. We also plot the effective bath hybridization function (A 4)
obtained with N, = 4.

Here, Ey, = &. and the bath energies E,, ,, n # 0, as well
as the hoppings E,,, n # m, are fit parameters [53],
whereby one can restrict to the nearest neighbors E,, ,+.
The effect of the Markovian baths is expressed in terms of
the Lindblad quantum master equation that controls the
time (7) dependence of the reduced density matrix p of
the system [50]: £p = Lp, where L = Ly + L, and
Lyp = —i[H, p]. The dissipator £, has the form

1
.Ebp = ZZ[Fl(l{}n(Cna'pC;rnﬂ' - E{P» C;rﬂa'cna'})

n,m
1
+ Fs'lzyzn(cjl-o'pcmtf - E{pr Cmgcio'})]y

with real, symmetric, and positive definite Lindblad matri-

ces I‘S,)m. At first sight, one would assume a ““source’ bath
attached to the leftmost and a “‘sink’ bath to the rightmost
site. However, the accuracy improves considerably if one

allows all I‘ﬁ,{)m to be nonzero parameters to fit A.

As discussed in detail in Refs. [54-57], the open-system
problem describing the effective bath can be mapped
onto a super-Hamiltonian acting on a superfermion space
with twice as many degrees of freedom (i.e., ““orbitals”).
This many-body super-Hamiltonian, corresponding to i L,
which is non-Hermitian, can be diagonalized by conven-
tional methods within the super-Hilbert space. Quite
generally, £ has a unique eigenvector with eigenvalue 0
that corresponds to the steady-state density matrix pgg. All
other eigenvalues have a negative real part, corresponding
to decaying terms. With the same formalism and exploiting
the quantum regression theorem [58], one can evaluate
correlation functions C,z(7) = trA(7)B(0)pgg of any pair
of system operators A and B, and thus the required impurity
self-energy 2 (w) [59].

The noninteracting Green’s function for the effective
system + bath is necessary in order to extract %(w) and
the bath hybridization function A . This can be easily
obtained [60] by observing that the Markovian baths can
be exactly represented by two noninteracting fermionic
baths in the wide-band limit with chemical potentials
*oo. By taking into account the relation between the
matrices I" and the parameters of this bath [61], one obtains
for the noninteracting system Green’s function (boldface
objects represent matrices with indices corresponding to
system sites n) (Gy")f = wI — E + i(I'V + I'?) and
(G HX = 2i(rM — 1),

The DMFT self-consistency loop consists in (i) starting
from some initial values of the variational parameters
E,  and F%)m, (i1) solving the impurity problem via the
approach described above and determining 3, (iii) evalu-
ating Gy oc(w) and A(w) [from (2)], (iv) determining new
values of the parameters E,, ,, and ng)m by minimizing the
cost function, and, finally, (v) using these new parameters
to repeat the procedure from (i) until the parameter values
converge. Of course, there is an intrinsic inaccuracy that,
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for a fixed number of bath sites, cannot be reduced and
is due to the error in the fit of A(w) by a finite number
of parameters. In principle, this can be systematically
improved by increasing the number of bath sites. Of
course, this is limited by the exponential increase of the
Hilbert space, which, in this case, is even faster due to the
fact that the number of degrees of freedom of the super-
fermion space is twice the one of the fermion space, so this
makes the effort more difficult than in ordinary ED for the
same number of bath sites. One should, however, observe
that the number of fit parameters is larger than in the case
with “simple” ED without a Markovian bath [62].

We have used here an effective bath containing N;, = 2
sites. Still, by taking all possible parameters into account,
i.e., allowing, for example, all matrix elements of the I"
matrices to be nonzero (within the constraints imposed by
symmetries), this gives eight independent fitting para-
meters. In “simple” ED, one would have only two in the
particle-hole symmetric case [63]. We take model parame-
ters [64] v2 = 0.1, = 1, and the leads are fixed to zero
temperature. In Fig. 2, we show the result of the fit to the
bath hybridization function for two values of U and bias
voltage ® = 2. As one can see, already with this small
number of bath sites, the fit is quite good. Moreover, the
structure of Ay is clearly non-Markovian, as expected.
For comparison, we also plot the result of the fit to the bath
hybridization function obtained with N, = 4 bath sites.
This shows a considerable improvement. The quality of
the fit can be also inferred by directly plotting the local and
the impurity Green’s functions in Fig. 3 for two different
values of U and ® = 2.

The bias voltage induces a steady-state current. The
expression for the current density j (current per square
plaquette) is obtained straightforwardly in terms of the
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FIG. 3 (color online). Imaginary part of the impurity and local
Green’s function for U = 1 (left) and U = 4 (right) and ® = 2.

layer Green’s function and the v = 0 lead Green’s func-
tions (see, e.g., Ref. [52]) as

. dk dw
j=v j;z (277-|)|2 P Re[GR(Kk), w)gf (ky, )

= GK(k”, w)gf(k”, a))]

This is plotted in Fig. 4 as a function of bias voltage.
The current, as expected, decreases with increasing U for
smaller biases. At larger ®, the behavior is opposite since
j extends over a range of voltages that increases with
increasing U. While at U = 0, a particle going through
the interface conserves Kk, and thus the current goes to
zero at a bias voltage equal to the one-dimensional
(z-direction) bandwidth and the scattering at nonzero U
mixes k|| and thus broadens the bandwidth of possible final
states. In Fig. 4, we plot the scaled current j/v> as a
function of bias voltage for different values of U, as the
conductance is expected to behave as v? in a conductor,
while it is suppressed (< v*) in a gapped system. The
crossing of the curves around U ~ 4 is a signal of the
nearby equilibrium metal-insulator transition. However,
this should be seen only as indicative, as the curves are
taken at a relatively high bias.

In conclusion, we have introduced a versatile method to
deal with strongly correlated systems out of equilibrium
within dynamical mean-field theory. The DMFT self-
consistent bath is approximated by an effective one
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FIG. 4 (color online). Scaled current density j/v? as a function
of (a) the bias voltage ®, for different values of U and v? = 0.1,
and (b) the interaction U, for different values of the hybridization
vand ® = 2.
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consisting of a small number of sites coupled to a
Markovian bath environment. The steady-state and
Green’s functions of the effective system are solved by
the ED of the corresponding Lindblad equation. The
approach is particularly appropriate to deal directly with
the steady state, without the need to consider full-time
evolution. Nevertheless, it should be straightforward,
although computationally more demanding, to deal with
time-dependent problems, e.g., to describe pump-probe
processes.

The accuracy of the effective bath to reproduce the
DMEFT one obviously depends on the number of bath sites,
which is limited by the exponential increase of the
“super”’-Hilbert space. Improvements can possibly go
along solving the Lindblad problem in the “smaller”
ordinary fermion space in combination with quantum
trajectory methods [65-67] and/or by density matrix
renormalization group approaches [68—70].

The approach illustrated here for a simple but experi-
mentally relevant [51] model can be extended straight-
forwardly to a number of other physically relevant systems,
including multilayer semiconducting heterostructures,
ultracold atoms, and correlated coupled-cavity arrays fea-
turing driving and dissipation and molecular contacts,
and can be used to study nonequilibrium quantum phase
transitions in these systems. Extension to a nonlocal self-
energy, as in cluster DMFT or in nonequilibrium varia-
tional or perturbative cluster approaches [71-73], is also an
interesting development.

We acknowledge illuminating discussions with S. Diehl.
This work is partly supported by the Austrian Science
Fund (FWF) Grants No. F4103-N13, No. J3361-N20, and
No. P24081-N16.
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