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Abstract. Proxy signatures enable an originator to delegate the signing rights for a re-
stricted set of messages to a proxy. The proxy is then able to produce valid signatures only
for messages from this delegated set on behalf of the originator. Recently, two variants of
privacy-enhancing prozy signatures, namely blank signatures [27] and warrant-hiding proxy
signatures [28], have been introduced. In this context, privacy-enhancing means that a ver-
ifier of a proxy signature does not learn anything about the delegated message set beyond
the message being presented for verification.

We observe that this principle bears similarities with functionality provided by anonymous
credentials. Inspired by this observation, we examine black-box constructions of the two
aforementioned proxy signatures from non-interactive anonymous credentials, i.e., anony-
mous credentials with a non-interactive showing protocol, and show that the so obtained
proxy signatures are secure if the anonymous credential system is secure. Moreover, we
present two concrete instantiations using well-known representatives of anonymous creden-
tials, namely Camenisch-Lysyanskaya (CL) and Brands’ credentials.

While constructions of anonymous credentials from signature schemes with particular prop-
erties, such as CL signatures or structure-preserving signatures, as well as from special
variants of signature schemes, such as group signatures, sanitizable and indexed aggregate
signatures, are known, this is the first paper that provides constructions of special variants
of signature schemes, i.e., privacy-enhancing proxy signatures, from anonymous credentials.

Keywords: Proxy signatures, anonymous credentials, cryptographic protocols, privacy, provable
security.

1 Introduction

Proxy signatures allow an originator to delegate signing rights to a prozy, who is then able to
issue signatures on behalf of the originator (cf. [8] for various secure constructions). To restrict the
delegation, Mambo et al. [29] introduced the concept of a warrant, which basically encodes a policy
describing the delegation of the originator and is signed by the originator using a conventional
digital signature scheme as part of the delegation. For instance, such a warrant can be used
to restrict the set of messages (message space) a proxy is allowed to sign messages from. In
all known constructions, however, the warrant is revealed to every verifier, which could lead to
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privacy issues. When, for instance, delegating the signing rights for a contract containing multiple
choices for a price to a proxy the whole price range would be revealed to any verifier. We call
proxy signatures privacy-preserving, if they address this issue and do not reveal the warrant upon
verification, while still allowing to check whether the message signed by the proxy is covered by the
warrant. We note that this concept must not be confused with anonymous proxy signatures [24],
which aim at hiding the identity of the delegatee and all intermediate delegators. In this paper,
we consider two recently proposed instantiations of privacy-enhancing proxy signature schemes,
namely warrant-hiding proxy signatures [28] (WHPS) as well as blank digital signatures [27]
(BDS). Roughly speaking, WHPS allow to delegate the signing rights for a set of messages M,
e.g., M ={M,..., My}, to a proxy. Given a proxy signature anyone is able to verify the validity
of such a signature and the delegation while not learning anything about the remaining delegated
message space. Similarly, BDS allow for the delegation of the signing rights for a template T
containing fixed and exchangeable strings (called elements) to a proxy, who is then able to sign
a filled in version of such a template on behalf of the originator. Thereby, fixed elements can not
be changed by the proxy, while exchangeable elements allow the proxy to choose one message
out of a set of predefined messages, e.g., T = (M1, {Maz,, Ma,, Ms,}, M3) with M; and M3 being
fixed elements. Upon verification, again, anyone is able to verify the validity of the signature and
delegation while not learning anything about the unused choices in the exchangeable elements.

We observe, that this principle bears similarities with functionality provided by anonymous
credentials. In an anonymous credential system, an organization issues a credential on attributes
(which can be viewed as messages in the delegation) and the showing of a credential amounts
to selectively opening some of the attributes (messages), while only proving knowledge of the
undisclosed attributes. If the showing, thereby, is non-interactive and includes proving knowledge
of a secret key, it can be seen as issuing a digital signature. Loosely speaking, for instance, in case
of WHPS, one would use the messages in the warrant, i.e., M = {M;, ..., M, }, and the public key
of the proxy as attributes of the credential. A proxy signature then amounts to a non-interactive
showing of the chosen message and the proxy public key, while only proving knowledge of the
remaining message space and the proxy secret key (without revealing it).

1.1 Contribution

In this paper we provide black-box constructions of the two aforementioned privacy-enhancing
proxy signature schemes from non-interactive anonymous credentials. Therefore, we provide an
explicit encoding of message spaces to attributes of the credential systems. We show that a secure
credential system together with this encoding implies the security of the respective privacy-
enhancing proxy signature scheme. Furthermore, we present two instantiations based on non-
interactive versions of well known Brands’ [9] and CL [13] credentials, obtained by applying the
Fiat-Shamir heuristic [22] and being secure in the random oracle model. Moreover, we compare
the so obtained signature schemes to the originally proposed BDS and WHPS constructions and
discuss why they may represent an alternative in specific scenarios. To the best of our knowledge,
the presented constructions constitute the first approach to construct special signatures schemes
from anonymous credentials, which may be of independent interest and inspiring for the design
of other signatures.



1.2 Related Work

In [5], Belenkiy et al. propose a model for practical non-interactive anonymous credentials being
secure in the standard model, which uses Groth-Sahai proofs [26]. In [6], Bellare and Fuchsbauer
use similar building blocks, i.e., structure preserving signatures [2] and Groth-Sahai proofs, to
construct what they call policy based signatures. This approach basically allows for defining
policies enforcing certain properties on signed messages. In order to issue correct signatures w.r.t.
a policy, one is additionally required to be in possession of a signing key for this particular policy.
Their model allows for defining policies for any language in NP, which is then restricted to group
dependent languages due to using Groth-Sahai proofs in their instantiation. Furthermore, Backes
et al. [4] propose a model for delegating the signing rights for messages being derivable from an
initial message by applying a particular functionality to the message.

In [23], Fuchsbauer and Pointcheval introduce a generalized model for anonymous proxy sig-
natures and group signatures. The latter concept is conceptually very similar to anonymous
credentials and often anonymous credentials are built from group signatures. Though, to the best
of our knowledge, no formal implications regarding the security models of the aforementioned
concepts exist. Quite recently, two (black-box) constructions for anonymous credentials from ag-
gregate signatures [16], as well as sanitizable signatures [17] were proposed. In a way, this is the
opposite of what we are going to show in this paper.

2 Preliminaries

We use additive notation for groups G which are always of prime order p. A function € : N — RT
is called negligible if for all ¢ > 0 there is a ko such that e¢(k) < 1/k° for all k > ko. In the
remainder of this paper, we use € to denote such a negligible function.

Bilinear Map: A bilinear map (pairing) is a map e : G; X Go = G, with G1, Gy and Gr being
cyclic groups of prime order p. Let P and P’ generate G; and Go. We require e to be efficiently
computable and to satisfy:

Bilinearity: e(aP,bP’) = e(P, P')% = e(bP,aP’) Va,b € Z,
Non-degeneracy: e(P, P') # 1g,., i.e., e(P, P') generates Gr.
If G = Go, e is called symmetric and asymmetric otherwise.

Zero-knowledge Proofs of Knowledge: We use the notation from [14] for denoting the proof
of knowledge (PoK) of a discrete logarithm = = logp Y to the base P, i.e., PoK{(«a) : Y = aP},
whereas Greek letters always denote values whose knowledge will be proven. The non-interactive
version of such a proof can be obtained using the Fiat-Shamir [22] transform, which is then also
called a signature of knowledge (SoK) [18]. When such a proof includes proving knowledge of
a secret key, it is a secure digital signature in the random oracle model. Such a signature is
interpreted as the signature of the proxy in our setting and is followingly denoted as 7. A formal
definition of secure digital signature schemes is given in Appendix A.

3 Anonymous Credentials

In an anonymous credential system there is an organization as well as different users. Thereby,
the organization issues credentials to users, who can then anonymously demonstrate possession



of these credentials to verifiers. Such a system is called multi-show when showings carried out by
the same user cannot be linked and one-show otherwise. A credential cred; for user i issued by
the organization in such a system includes a set A = {(attr,, dom(attr,))}}_, of attribute labels
attry and corresponding domain dom(attr,) from which attribute labels can take their values.
When we speak of a set A; for user ¢, we mean a subset of A such that for every attr, contained
in the set, the second element of the tuple takes some concrete value from dom(attry). Whenever
a user ¢ demonstrates possession of a credential for a subset A} of A;, we write A} C A; to denote
that the showing is compatible with A;. This means that all selectively disclosed attribute values
have been issued for this credential and that all statements proven about attribute values can be
proven from the issued attribute values.

3.1 Abstract Model of Anonymous Credentials
Subsequently, we give an abstract definition of an anonymous credential system.

Setup(k,t): Gets a security parameter x and an upper bound ¢ for |A| and returns the global
parameters pp.

OrgKeyGen(pp): Takes pp and produces an organization key pair (osk, opk).

UserKeyGen(pp,): Takes pp and i € N and produces a key pair (usk;, upk;) for user i.

(Obtain(pp, opk, usk;), Issue(pp, osk, upk;, A;)): These algorithms are run by user i and the orga-
nization, who interact during execution. Obtain takes input global parameters pp, the user’s
secret key usk; and the organization’s public key opk. Issue takes input pp, the user’s public
key upk;, the organization’s secret key osk and a set A; of size n. At the end of this protocol,
Obtain outputs a credential cred; for A; for user i and the (updated) secret key usk;.

(Show(pp, opk, usk;, cred;, A;, A%), Verify(pp, opk, A)): These algorithms are run by user 7 and a
verifier who interact during the execution. Show takes input global parameters pp, the user’s
secret key usk;, the organization’s public key opk, a credential cred; with a corresponding set
A; of size n and a second set A} C A; of size n’ with n’ < n. Verify takes input the public
parameters pp, the public key opk and a set Al. At the end of the protocol, Show outputs an
(updated) credential cred; and the (updated) user’s secret key usk;. Verify outputs true upon
a valid showing and false otherwise.

We note that in some models the entire key generation is executed by the Setup algorithm.
However, we find it more natural to split these algorithms into three algorithms. Furthermore, we
note that if there are multiple organizations, then OrgKeyGen is run by every single organization
(on potentially distinct pp).

There are various definitions of security for anonymous credential systems [3,12,16,17], which
differ in their details as they are sometimes tailored to specific constructions. However, they are
essentially only slightly different ways of defining the properties unforgeability and anonymity
in addition to the usual correctness property. Correctness means that a showing of a credential
w.r.t. a set A} of attributes and values must always verify if the credential was issued honestly
w.r.t. A; such that A, C A;. Unforgeability means that an adversary can not succeed in showing
a credential which is accepted by a verifier, unless a credential w.r.t. to the shown attributes has
been issued to it. Anonymity means that no adversary, even playing the role of the organization,
should be able to identify the user when showing a credential. Furthermore, different showings of
a user w.r.t. the same credential must be unlinkable in multi-show anonymous credential systems.



Finally, we require a property denoted as selective disclosure. This is not covered by the security
definition of [3], which we are going to use, but is an informal requirement for all anonymous
credential systems. There is a simulation based notion capturing this fact [5], which, however,
turns out to be not useful for relating the security properties to our constructions. However, we
can assume that any reasonable anonymous credential system satisfies this notion, i.e., even if the
user is known, a showing transcript must not reveal any information about attributes beyond the
attributes revealed during showing [10]. This is underpinned by the fact that all known anonymous
credential systems employ (non-interactive) proofs of knowledge in their showing protocols and
such proofs by definition do not reveal anything beyond what is shown. A formal definition of
secure anonymous credential systems is provided in Appendix C.1.

Non-interactive anonymous credential systems: If interaction between the user and the
verifier when executing (Show, Verify) algorithms is not required, we call an anonymous credential
system non-interactive. These steps can, thus, be executed in isolation and the output of the
Show algorithm serves as input for the Verify algorithm. In constructions of credential systems
it is straightforward to make the showing non-interactive and the output of the Show algorithm
can, thus, be considered as a signature of knowledge.

3.2 Two Concrete Anonymous Credential Systems

Camenisch-Lysyanskaya (CL) credentials [11,13] are constructed from commitment schemes and
efficient protocols for proving the equality of two committed values and a signature scheme with
efficient protocols. Latter protocols are for obtaining a signature on a committed value (without
revealing the value) and proving the knowledge of it. The used signature schemes support re-
randomization, meaning that one can take a signature and compute another signature for the
same message without the signing key, such that the signatures are unlinkable. Thus, the resulting
credential systems are multi-show. Brands’ credentials [9] are built from blind signatures which
do not support re-randomization and, therefore, represent a one-show credential system.

The two aforementioned approaches are the basis for our instantiations of privacy-enhancing
proxy signatures from non-interactive anonymous credential systems. A more detailed discussion
of these schemes is provided in Appendix B.

3.3 Remarks on Anonymous Credentials in our Constructions

For our black-box constructions, we need to make some clarifications before being able to use an
arbitrary anonymous credential system.

First of all, in order to model the delegation, the designated proxy’s public key always needs
to be encoded within an attribute, being opened upon every non-interactive Show. Therefore,
we assume that the user’s public key (corresponding to its secret signing key) fits to the system
parameters of the anonymous credential scheme. If the proxy’s key does not fit to the system
parameters of the used scheme, one could include a hash value of the user’s public key as an
attribute and require the user to sign the output of the non-interactive Show algorithm using
the corresponding secret key (latter is not considered here). Moreover, in the case of BDS also a
second attribute containing the size of the template needs to be included and always opened during
showing. As already mentioned, we require the showing of the anonymous credential scheme to
be non-interactive and each non-interactive showing is required to include a proof of knowledge



of the secret key corresponding to the public key included in the first attribute. This constitutes
a signature of knowledge and is interpreted as the proxy’s signature.

Finally, we want to mention that the anonymity property of anonymous credential schemes is
stronger than what is required for BDS or WHPS. While we only require the hiding of attributes
(selective disclosure) which have not been opened, anonymous credentials also require unlinka-
bility of issuing and showing, which is not necessary for BDS and WHPS, but does not influence
our constructions. Similarly, we do not require the multi-show unlinkability, but it does not really
influence our constructions as well. One may explicitly enforce breaking the unlinkability by re-
quiring the credential issuer to additionally issue a conventional digital signature on the credential
and accepting the credential only if the signature is valid. Conversely, the unlinkability may also
be seen as an additional feature for BDS and WHPS, respectively (cf. Section 7).

4 Privacy-Enhancing Proxy-Type Signatures

This section is intended to give a brief overview of the privacy-enhancing proxy signature schemes.
Section 4.1 discusses the Blank Digital Signature Scheme (BDSS) proposed in [27], whereas Section
4.2 discusses the Warrant-Hiding Proxy Signature Scheme (WHPSS) proposed in [28§].

4.1 Blank Digital Signatures

The BDSS allows an originator to delegate the signing rights for a certain template to a prozy.
Based on such a delegation, the prozry is able to issue a signature on a so called instance of
a template on behalf of the originator. A template T is a sequence of non-empty sets of bit-
strings T;, where these sets are either called fized or exchangeable, depending on the cardinality
of the respective set. More precisely, exchangeable elements contain more than one bitstring,
whereas fixed elements contain exactly one bitstring. Such a template is formally defined as
Ti = {Mil,MiQ,...,Mik}, T: (T17T2,...7Tn).

The template length is defined as the sequence length n of the template, while the template
size |T| is defined as |T| = >_7_, |T;|. An originator issues a signature for a template, which also
specifies the proxy. Based on this so-called template signature, the designated proxry can take the
fixed elements, choose concrete values for each exchangeable element, and compute a so-called
instance signature for an instance M, which is formally defined as M = (M;)?_,. If M is a correct
instantiation of 7, we write M < T.

Given an instance signature, anyone is able to verify its validity, i.e., verify the delegation,
whether M has been signed by the proxy and if M =< T holds. Thereby, the original template,
that is, the unused values of the exchangeable elements of the template, can not be determined
(the so called privacy property). Formally, a BDSS is defined as follows [27]:

KeyGen(x,t): On input of a security parameter £ and an upper bound for the template size t
the public parameters pp are generated. We assume pp to be an input to all subsequent
algorithms.

Sign(T,dsko, dpkp): Given a template 7T, the secret signing key of the originator dskp and the
public verification key of the proxy dpkp, this algorithm outputs a template signature o7 and
a secret template signing key for the proxy skg.



Verifyt (T, o7, dpko, dpkp, sk;—): Given a template T, a template signature o7, the public verifi-
cation keys of originator and proxy (dpko,dpkp) and the template signing key of the proxy
skg7 this algorithm checks whether o1 is a valid signature for 7 and returns true on success
and false otherwise.

Inst(T, o7, M, dskp, skg): On input a template 7 with corresponding signature o7, an instance
M =< T, as well as the secret template signing key sk} and the secret signing key of the proxy
dskp, this algorithm outputs a signature o x4 for M.

Verifym (M, o, dpko, dpkp): Given an instance M, an instance signature o and the public
verification keys of originator and proxy (dpko, dpkp), this algorithm verifies whether o is
a valid signature on M and M < T (for an unknown 7). On success, this algorithm outputs
true and false otherwise.

The security of a BDSS is defined as follows [27]. Correctness states that for all honestly generated
parameters and keys it is required that for any template 7 and honestly computed template
signature o7 and corresponding skg—, the verification always succeeds and for the originator it
is intractable to find a template signature that is valid for different templates (in the sense of
non-repudiation of [31]). Furthermore, for any honestly computed instance signature oy, the
verification always succeeds. Unforgeability requires that without the knowledge of dskg, dskp
and skg it is intractable to forge template or message signatures. Immutability means that for
a proxy (in possession of skg,dskp,T and o7) it is intractable to forge template signatures or
instance signatures which are not described in the respective template. Privacy captures that no
verifier (except for the originator and the proxy) can learn anything about 7 besides what is
revealed by instance signatures. More formal security definitions are provided in Appendix C.2.

4.2 Warrant-Hiding Proxy Signatures

A WHPSS allows an originator to delegate the signing rights for a message from a well defined
message space M (sometimes also denoted as w) to a prozy. The message space M is, thereby,
a non-empty set of bitstrings (messages) M;, i.e., M = {My,...,M,}. A proxy is then able to
choose one bitstring M; from the message space M and issue a proxy signature op on behalf of
the originator for M;. A verifier given M; and op can verify the validity of the signature and the
delegation, while the remaining message space (M \ M;) stays concealed.

One could argue that the functionality of WHPSS can be easily modeled by the originator
by separately signing each message in M and to let the proxy then countersign a message of its
choice. However, using this naive approach would allow the proxy to repudiate that a particular
message was contained in the delegated message space. In contrast, one can open the warrant
contained in the WHPSS proxy signature in case of a dispute in front of a judge.

Formally, a WHPSS is defined as follows [28] (we note that Setup is not included as a separate
algorithm in [28], but this makes no real difference):

Setup(k, t): On input of a security parameter x and an upper bound ¢ for the size of the message
space, this algorithm generates the public system parameters ppk. Note that ppk is assumed
to be an input to all subsequent algorithms.

(D(M, pk;, ski, 7, pk;), P(pk;, skj, pk;)): The originator and the proxy jointly compute a delegation
for the message space M as well as a proxy signing key skp. The originator runs D and
thereby computes the delegation and outputs the delegation o computed using its signing key



sk;, whereas the proxy verifies the delegation and obtains the proxy signing key skp, which
consists of its private signing key sk; and the originators delegation.

PS(skp, M): This algorithm computes and outputs a proxy signature op for message M € M
using the proxy signing key skp.

PV(pk;, M,op): This algorithm verifies whether proxy signature op is a valid proxy signature for
message M under pk;, delegated by pk;. On success, this algorithm outputs true, and false
otherwise.

ID(op): This algorithm outputs the identity j of the proxy, when given a proxy signature op.

The security of a WHPSS is defined as follows [28]. Correctness requires that for all honestly
computed parameters and for all skp obtained by running (D, P), it holds that for all warrants
and proxy signatures for a message M the algorithm PV accepts a signature for M if M is in
the warrant and rejects it otherwise. Furthermore, ID is required to return the correct proxy.
Unforgeability states that, without the knowledge of the originator’s and the proxy’s secret key,
it is intractable to produce valid delegations and/or proxy signatures which are either inside or
outside the warrant. Privacy requires that any verifier distinct form the originator and the proxy
can not efficiently decide whether a given message (except the ones being revealed by proxy
signatures) lies within the warrant when given a proxy signature. Formal security definitions are
given in Appendix C.3.

5 From Anonymous Credentials to Proxy-Signatures

Subsequently, we show how privacy-enhancing proxy signatures can be built from non-interactive
anonymous credential systems. Therefore, we use the abstract notion of an anonymous credential
system introduced in Section 3 and map the algorithms to the corresponding algorithms of the
respective proxy signature scheme. Furthermore, we introduce an encoding to attributes in order
to achieve the same properties as the proxy signature schemes.

The basic idea behind using an anonymous credential system for modeling privacy-enhancing
proxy signatures is that we interpret the elements of a template (or the warrant) together with
the public key of the designated proxy and the template length as attributes of a credential issued
by an originator (organization). On verification, the proxy only reveals the attributes belonging
to the instantiation of the template (or reveals one attribute corresponding to a message from
the warrant) while hiding all others. We note that the organization’s keypair (opk,osk) in the
anonymous credential scheme is interpreted as the keypair of the originator in the proxy signature
schemes and the user’s keypair (upk;, usk;) is the keypair of proxy i. We use this notation of the
anonymous credential model henceforth.

5.1 Mapping from Templates and Warrants to Attributes

In both proxy signature approaches, a finite sequence/set of strings needs to be encoded as
attributes of a credential, where in the case of BDSS this sequence represents a template and in
case of WHPSS the set represents a warrant. The ideas behind the encoding are quite similar,
although the BDSS case is a little trickier. Before presenting the encodings, we require some
operations on sets and sequences. Firstly, we define an operator Expand(:,-), which takes an
integer k and a set S = {s1,...,s,} as input and returns a sequence of tuples. This operator



assigns a unique position to each element of the set, e.g., by means of their lexicographic order,
and encodes the elements together with the integer k in a sequence. More precisely, we define an
output sequence a as:

a=((s1,k),...,(8n,k)) ;= Expand(k, {s1,...,8,}).

When we apply the concatenation operator || to two sequences, e.g., (z)™,||(y)/,, the result is a
sequence of the form (x1,...,2Zn,y1,...,Ym). For the concatenation of £ > 2 sequences sy, ..., ¢
we write ||¢_,s;. Moreover, we require an operator Hash(-) which takes a sequence a of tuples as
input and returns the sequence a’ of corresponding hash values obtained by applying a secure
hash function H : {0,1}* x {0,1}* — Z, to each element in the sequence. The i-th element of
such a sequence a’ obtained from a is further referred to as h; := H(s;, k). Note that we use H
to allow for messages/attribute values of arbitrary length.

BDSS: In the original construction of BDSS presented in [27], templates are encoded as polyno-
mials and each template element constitutes a root of the so called encoding polynomial. With
such an encoding polynomial at hand, one can not derive anything about the order of the elements
within the template and, in further consequence, this property hides the structure of the tem-
plate. In contrast, anonymous credential systems typically assume an ordering of the attributes
within the credential (cf. Section 3.2), and, thus, would leak information about the structure of a
template. Let us, for instance, consider a template T = (My, {Ma,, Ma,, Ma, }, M3, {My,, My, }).
Here, each element M; would be encoded within one attribute in the credential. While the unused
choices of the exchangeable elements are hidden upon Show, information on the cardinality and
position of exchangeable elements can leak due to the order of the attributes.

Template encoding: In order to map templates 7 and instances M, as defined in Section 4.1,
the first processing step is to apply the following transformation:

T <« Hash(||?_,Expand(i, T3)).

Subsequently prefixing 7" with the (authentic) public key upk; of the designated proxy and the
template size |T| would already deliver a suitable encoding for our constructions. However, as
mentioned above, such an encoding can leak information about the structure of the template. In
order to prevent this kind of leakage, we further apply a random permutation ¢ to the expanded
and hashed template, i.e., T < (upk;, [T, ¢(T)).

In doing so, the order of the attributes becomes independent of their position in the template,
and, thus, the template structure is hidden as in the original BDSS construction. Subsequently,

this mapping is denoted as Enc%DS.

Example: In the following, we illustrate the encoding of a template by a simple example: T =
{{"4”,7B”},”declares to pay”, {"503%”,7100%” } }. Note that the example is only for illustration
and not meant to reflect a real world application. After the operation Hash(||?_,Expand(i, T})) we
obtain the sequence:

(H("A”,1),H(”B",1), H(” declares to pay ”,2), H("508.”,3), H(”1008.”, 3)),
and continue by applying a random permutation ¢:

(H(71008.”,3), H(”50%.”,3), H(” declares to pay ”,2), H("A”,1), H("B",1)).



This leads to a template 7" = (upk;, |T|, hs,, ks, , ha, b1y, h1,).

Instance encoding: The encoding of instances M corresponding to a given template 7 does
not substantially differ from the encoding of templates. Additionally to the public key upk; of the
proxy and the template size |T|, the following information is included: a sequence M’ containing
tuples corresponding to the chosen elements, each containing the element itself, its position in
the template and its position in the sequence 7 "¢ according to the permutation ¢. Furthermore,
one includes a signature of knowledge (SoK) 7, which represents a proof of knowledge of usk; and
the non-revealed template elements:

M« (upk, | T|, M, ).
For our further explanations, this mapping is denoted as Encﬁ/?s. Observe that given M’ in M®"¢
one can not directly use it in a verification, but for every tuple (s,4,j) in M’ one has to compute
hj = H(s, 1), which then represents the value of the j’th attribute. Subsequently, we assume that
this step is implicitly computed by a verifier whenever M"¢ is provided for verification.

Example: Continuing the above example, we assume that ”B” and ”50$” are chosen as final
values in the exchangeable elements, which leads to the following encoded message M€™¢:

Me" = (upk;, |T], (("B",1,5), (" declares to pay ”,2.3), ("50$",3,2), ).

Note that the indices indicating the position in the template sequence according to the permu-
tation ¢ implicitly fix the indices for the sequence of unrevealed values. Furthermore, due to the
random permutation ¢ being random and secret (only known to the originator and the proxy),
the positions of the unrevealed attributes are independent of their position in the template, and,
thus, no information about the template structure leaks. In contrast, when considering the exam-
ple above, omitting the random permutation would lead to revealing that the first and the last
template elements are exchangeable elements with 2 choices each.

We also emphasize that both, the encoding function Enc?—DS and the encoding function EncJB\/'?S7
take the secret random permutation ¢ (only known to the originator and the proxy) as additional
parameter.

WHPSS: The mapping in terms of the WHPSS is a lot easier since, firstly, no explicit order has
to be enforced within the messages in the warrant and, secondly, the order of the messages can
not leak any useful information.

In order to encode a WHPSS message space for our setting, we redefine the operator Expand(+)
as a unary operator converting a set to a sequence by assigning a unique position to each element
from the set. Furthermore, we also redefine H as H : {0,1}* — Z,. The encoding of a message
space M then looks as follows:

MeEne (upki’ Hash(EXpand(M)>)'

Similarly, a message chosen by the proxy is encoded by choosing a message M} € M and com-
puting a signature of knowledge (SoK) 7 of usk; and the remaining messages in the warrant:

M «+ (upki7 Mkv ka ’/T)'



Observe, that M}, cannot be directly used as an attribute value, but needs to be mapped to H (Mj).
However, as above we assume that this step is implicitly computed by the verifier whenever My
is provided for verification. We refer to the encoding defined above as Enc¥}'** and Enciy™® for

our further explanations and note a secret random permutation ¢ is not required.

5.2 Constructing BDS from Anonymous Credentials

We assume that a credential is issued on an encoded template T¢"¢ using the encoding defined
above. Upon showing, the proxy chooses a concrete instantiation M¢"¢ for a template by disclosing
the elements corresponding to the instance M°"¢, while providing a signature of knowledge for
the elements remaining in 7°"¢. To be more precise, the proxy always discloses the attributes
representing the public key and containing the size of the template, as well as at least one element
for each position in the template, and provides a signature of knowledge of the secret signing key
and the unused choices for the exchangeable elements. We assume that every user (proxy) 7 has run
AC.UserKeyGen(pp, i) to obtain (usk;, upk,) compatible with pp locally. Furthermore, the template
secret key sk,;r is the secret random permutation ¢. Below, we provide the abstract definition of the
construction, where AC denotes an anonymous credential system with non-interactive showing.

KeyGen(k,t): This algorithm computes the public parameters pp by running AC.Setup(x,t) and
specifies the encodings Enc?—DS and Enc%/[l)s. Then, it runs AC.OrgKeyGen(pp) to obtain (osk, opk)
and outputs all these parameters. The public parameters pp as well as a description of the
encoding functions are assumed to be available to all subsequent algorithms.

Sign(T, (opk, osk), upk,): This algorithm chooses a random permutation ¢ and computes 7°"¢ <
Enc?—DS(T, #). Then, it locally runs (AC.Obtain(pp, opk, upk;)!, AC.lssue(pp, osk, upk;, 7°"¢))
and the results, i.e., the credential cred; as template signature and the template-specific secret
key ¢ for the proxy, are returned.

Verifyr (T, cred;, opk, (upk;, usk;), ¢): This algorithm computes 7¢"¢ < EncBPS(T, ¢) and checks
the validity of the credential cred; using usk; and opk. On success, this algorithm returns
true, and false otherwise.

Inst(7, cred;, M, (opk, upk;, usk;), ¢): This algorithm computes an encoding M°"¢ of an instantia-
tion M of the template 7 using ¢ by computing a SoK 7 including a proof of the user’s secret
key usk; and the unused choices of the exchangeable elements, i.e., AC.Show is executed. The
instance signature (7, cred;) and the encoded message M€ are returned.

Verifypm (M€, (7, cred;), opk, upk;): This algorithm verifies whether 7 is a valid signature of knowl-
edge w.r.t. M and upk; by executing AC.Verify. On success, this algorithm returns true,
and false otherwise.

5.3 Constructing WHPS from Anonymous Credentials

Similarly, we interpret the messages in the delegated message space M in the WHPSS as at-
tributes. We assume that the credential is issued for M€ using the encoding defined above.
Upon showing, the proxy reveals the attributes representing the public key and the chosen mes-
sage M together with a proof of knowledge for the unrevealed messages in the warrant and the

1 As we assume that the user’s key pair fits to the system parameters, we do not require usk; as an input
to the AC.Obtain algorithm and so the credential is issued using upk; as public commitment to usk;.
This allows the originator to run both algorithms locally.



user’s secret key. Again, we assume that every user j (proxy) has run AC.UserKeyGen(pp) to obtain
(usk;, upkj) compatible with pp locally. Furthermore, the secret proxy signing key is defined to
be (cred;, usk;). Below, we provide the abstract definition of the construction, where AC denotes
an anonymous credential system with non-interactive showing. For the ease of presentation we
include the key generation of the originators keys into the Setup algorithm.

Setup(k, t): This algorithm creates public parameters pp by running AC.Setup(k, t) and specifies
the encodings Encvj\\ﬁtHPS and EchA\}HPS. Then it runs AC.OrgKeyGen(pp) to obtain (osk, opk)
and outputs all these parameters. The public parameters pp as well as a description of the
encoding functions are assumed to be available to all subsequent algorithms.

(D(M, opk, osk,j, upk;),P(upk;, usk;, opk)): This algorithm computes the encoding of the message
space M€ EchA\ﬁlHPS(M). Then, (AC.Obtain(pp, opk, uskj), AC.Issue(pp,osk,upk;, M) is
jointly executed by the originator (acting as the organization) and the proxy (acting as the
user). The user obtains as local output the credential cred; for the sequence M°"¢ encoding
the message space (which represents the proxy signing key skp).

PS((cred;, usk;), M): This algorithm computes a signature of knowledge 7 including a proof of
the user’s secret key usk; and the remaining message space from M®"¢, i.e., executes the
AC.Show algorithm non-interactively and returns the proxy signature (m,cred;).

PV((opk, upk;), M, (m,cred;)): This algorithms verifies whether  is a valid signature of knowledge
w.r.t. M and upk; by executing AC.Verify. On success, this algorithm outputs true, and false
otherwise.

ID(7): Given the output 7 of the Show algorithm, this algorithm outputs the public key of the
corresponding proxy.

5.4 From AC Security to BDS and WHPS Security

In this section, we argue that if we have a secure non-interactive anonymous credential system
AC, the constructions of the BDS and WHPS schemes from AC are also secure. Consequently,
when building such schemes in the proposed way, these schemes provide adequate security within
their respective models.

We note that the unforgeability properties of all these approaches are compatible. Yet, the
anonymity property required from a credential system is much stronger than what is required
from BDS and WHPS. Basically, a goal achieved by an anonymous credential system is the indis-
tinguishability of showings of different users, which have credentials to identical attributes, with
respect to any verifier (including the issuer). In contrast, the goal of the proxy signature schemes
is to hide the non-shown ”attributes” from any external verifier, whereas the issuer (the origi-
nator) knows all attributes. Consequently, we relate the privacy of the schemes to the selective
disclosure of the anonymous credential system. Next, we discuss both approaches.

Blank Digital Signatures: In BDS, the required correctness, unforgeability and immutabil-
ity properties are implied by the unforgeability of an AC system. The privacy is implied by the
selective disclosure property of the AC system. In Appendix D.1 we show the following:

Theorem 1. If AC represents a secure anonymous credential system and the hash function used

in the encodings Enc7B—DS and Encﬁ/?s is secure, then the BDS from Section 5.2 based on AC is

secure.



Warrant-Hiding Proxy Signatures: In WHPS, the required correctness and unforgeability
properties are implied by the unforgeability of an AC system. Furthermore, privacy is implied by
the selective disclosure of the AC system. In Appendix D.2 we show the following:

Theorem 2. If AC represents a secure anonymous credential system and the hash function used

in the encoding EchA\ﬁlHPS is secure, then the WHPS scheme from Section 5.3 based on AC is secure.

6 Instantiations from CL and Brands’ Credentials

In this section, we provide two instantiations of BDS making use of CL [13] and Brands’ [9]
credentials, respectively. We omit the constructions of WHPS as after having seen the construction
for BDS, the construction of WHPS is straightforward. In both presented schemes, we assume the
keypair of the proxy (upk,usk) to be compatible with the system parameters, i.e., usk is a scalar
in Z, and upk = usk - P, with P being a generator of the respective group.

Furthermore, with hide we denote the elements of 7°"¢ corresponding to the elements in T
without M, whereas with show we denote the elements of M*“"¢ corresponding to elements in M.

In Scheme 1, we present our construction of BDS from CL credentials [13] in detail. Our
second instantiation builds up on Brands’ one-show credentials, following the certificates based on
Chaum-Pedersen signatures approach proposed in [9]. In Scheme 2, we present our construction
in detail.

Setup(k,t): Choose an appropriate group G of large prime order p such that a bilinear map e : G X G — G exists.
Further, choose a generator P of G, as well as =,y yid Zp. With t being the maximal template size, select z; & Ly
for 0 < ¢ <t and compute X < zP,Y <« yP, Z; < z; P. The algorithm outputs pp = (G, Gy, e, P, p, Enc?rDS, Enc?\[,)ls),
opk « (X,Y, Z1,...,Z¢) and osk « (z,y,21,...,2¢).

Sign (7, (opk, osk), upk): Choose « £ Zp and compute R < aP, A; < z;R,B < yR,B; < yA;. Further, choose a
random permutation ¢ and compute T "¢ < EncsPS(T7 ¢). Then, upk™ < a - upk = «a - usk - P. Compute C <+
z- R+axy-upk™ +ay - |T|- Ao+ >0 cx ¥y - hiA; and return the credential cred < (R, {A;}, B, {B;},C) and the
template-specific proxy secret key ¢.

Verifyy (T, cred, opk, (upk, usk), ¢): Compute T°"¢ <« Enc?rDs(T, ¢) and verify whether cred is a valid signature un-
der opk, i.c., e(R,Z;) = e(P,A;) A e(R,Y) = e(P,B) A e(A;,Y) = e(P,B;) and e(X,R) - e(X,B)"* -
e(X, By)! 7! HhiGTE"C e(X, B;)"i < e(P, C) holds and return true on success and false otherwise.

Inst(7, cred, M, (opk, upk, usk), ¢): Using T°"° and M°"¢, obtained by applying the encoding functions w.r.t. ¢ and
compute vy < e(X, R),Vay < (X, B),V(zy,i) < e(X, Bi),vs + e(P,C),

_ X | T ™ h:
vo =vavikvir, o0 T v, I v,
m = SoK ¢ ({ (1) m; ¢ M Xusk}) 117 Ehide h; Eshow ,
A Xusk - P = upk

Return the instance signature (7, cred) and the encoded message M“"°.

Verifym (M®™, (7, cred), opk, upk): Compute vy < e(X, R), Vay < €(X, B), V(zy,q:) < €(X, Bi) and vs <+ e(P, C), check
whether e(R, Z;) < e(P,A;) Ne(R,Y) < e(P,B)Ne(A;,Y) < e(P, B;) and verify the SoK m w.r.t. M¢"¢, the public
key upk and check whether |7| equals the number of message elements in the proof. On success, return true and
false otherwise.

Scheme 1: BDSS from CL credentials




Setup(k,t): Let G be a group of prime order p which is generated by P. Choose yo,y1, ..., Yi+2 ¥id Zp, with t being

the maximal template size and compute Hg < yoP, Py < y1 P, ..., Piy2 < yi4+2P. The algorithm outputs pp <«
(G, P, p, Enc?rDs7 Enc?&s), opk < (Hq, P1, ..., Pi42) and osk < (Yo, ..., Yt4+2).
Sign(7, (opk,osk),upk) The originator and the proxy jointly compute a signature on the template 7°"¢ «+ Encs—DS(T, )
as follows.
Originator Proxy
wO(EZp,A[j(—w()P a,oz27a3<£Zp

H « yrupk + |T|P2 + 1T hiPiys

i=1

Ag,Bg,H,Z
Bo  wo(Ho + H), Z < yo(Ho + H) =227

H' + a(Ho + H),Z' + oZ
A(,J < asHo + agP + Ag
By + a2Z’ + azH' + aBy
co + H(H'||Z'|| Apl| By)
— co < ¢4+ az (mod p)
To <= o - yo +wo (mod p) 20 roP —coHp £ Ag
ro(Ho + H) —coZ < By
r6 <~ ro + a3
Output the template signature cred «— (H', Z', Ay, Bj, r{, cy) and the template-specific proxy secret key (¢, ).
Verify (T, cred, opk, (upk, usk), (¢, &)): Compute T°"° « EncEPS(T, ¢) and H < uskPy + |T|P2 + le—ll h;Pii2 as well
as H' < a(Ho + H), and check whether the value H’ contained in cred is equal to the the computed value for H'.
Check whether 7‘6(P +H) - C()(Ho + Z/) 2z A6 + Bé holds and return true if all checks hold and false otherwise.
Inst(7, cred, M, (opk, upk, usk), (¢, @)): Compute 7°"° and M°"° from T, M and ¢ as well as

H' = a(Ho + XxuskP1 + |TI1P2 + 3, chige i Pit2t
: . u 1; Ehide Pid7i42
™+ SoK { ((Hz)m”z/vu a, Xusk) Y e hiPia) A XesP = upk '

and return the instance signature (7, cred) as well as the encoded message M°"°.

Verifyy (M®"¢, (m, cred), opk, upk): Verify whether r{(P + H') — c¢y(Ho + Z') a8 Ay + B holds, verify the SoK 7 w.r.t.
M and the public key upk and check whether |7 is equal to the number of message elements in the proof. Return
true if all checks hold and false otherwise.

Scheme 2: BDSS from Brands’ credentials

7 Comparison and Discussion

In this section, we compare the instantiations of the proxy signature schemes obtained from
non-interactive anonymous credentials with the original instantiations of BDS and WHPS from
[27,28]. Moreover, we discuss the pros and cons of the various approaches and provide an overview
regarding computation, bandwidth and parameter sizes in Table 1.

Firstly, we note that for most practical usecases it can be assumed that template sizes are
quite small. Consequently, under this assumption, the fact that in some cases the asymptotic
computation times and signature sizes are linear in the size of the template does not have a
notable influence on the overall performance of the schemes obtained from anonymous credentials.
Though, when a usecase requires larger templates, the originally proposed schemes would be
preferable.

However, the credential based constructions are flexible regarding the underlying anonymous
credential scheme, which, in turn, could be exploited to reach additional properties. For instance,
the unlinkability of multiple instances w.r.t. the same template can be realized by using a multi-
show anonymous credential system. Such a multi-show setting immediately leads to a stronger
notion of privacy, since even multiple instance signatures w.r.t. the same template, which, viewed
all together, would reveal the whole template in the original constructions, would not reveal the
whole template in a multi-show setting. Furthermore, the credential based constructions can be




Computational effort Signature size
Scheme Sign | Verifyr| Inst | Verifyy |Params| Cert op

BDSS o(ThloUTh[oUTh[O(MD|O(TD]| ©1) | O()

BDSSc  [O(ITNIO(TDOATN[O(T] [O(TH[O(TH|OT])

BDSSeranas | O(ITD[O(TDOUTNH O(T [O(TDH| ©1) [O(UT

Computational effort Signature size

Scheme D P PS PV ID | Params Cert op
WHPSSpoiycommit [O(|MND[O(M])|  O(M]) o) omlo(mpl o) o(1)
WHPSSvectorcommit | O (M) [O( M) |O(log (M) | O(log(IM[)|O(1)| O(1) | O1) |O(og(IM]))
WHPSSc( o(Mplo(IMD|  O(M]) o(IM]) foMo(Mplo(M]|  O(M])
WHPSSgrands o(Mmplo(mMp|  o(Mm]) o(M]) jomo(Mh| o) | o(ml)

Table 1. BDSS/WHPSS efficiency comparison.

augmented with an anonymity feature, hiding the identity of the signing proxy. This can be
achieved by simply leaving out the part of the proof linking usk and upk (xusk - P = upk). Since
usk is still required for a successful computation of the SoK, such a change would not influence
the security of the respective scheme.

Moreover, and very important, due to multiple projects such as ABC4Trust [1] building
high-level interfaces for credential systems such as IBM’s idemix [11,13,15] or Microsoft’s U-
Prove [9,30], there are quite some implementations of anonymous credential systems available to
date. These implementations directly yield a basis for practical implementations of the schemes
presented in this paper, which renders them very attractive from a practical point of view.

While the complexities of our instantiations are quite comparable to the originally proposed
schemes, our proposed instantiations leave more freedom regarding the choice of groups since
there is no pairing friendly elliptic curve group required in Brands’ credentials [9] and one could
also easily use the RSA based version of CL credentials [11]. This enables implementations on
constrained devices such as smart cards (cf. [7,21]). In contrast, the originally proposed instanti-
ations of BDS as well as one of the instantiation of WHPS require pairing friendly elliptic curve
groups.

Finally, we mention that in this paper the first approach for building special signature schemes
from anonymous credentials is introduced, which might also be inspiring for other constructions.
For instance, one could make use of the proposed encoding to encode finite sets of attribute values
into credentials of an anonymous credential systems.
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A Digital Signature Schemes (from X-Protocols)

Below, we briefly define digital signature schemes and discuss digital signatures from X-protocols.

Definition 1 (Digital Signature Scheme). A digital signature scheme DSS is a triple (DKey-
Gen, DSign, DVerify) of PPT algorithms. Thereby, DKeyGen is a key generation algorithm that
takes a security parameter x € N as input and outputs a secret (signing) key sk and a public
(verification) key pk. Further, DSign is a (probabilistic) algorithm, which takes a message M €
{0,1}* and a secret key sk as input, and outputs a signature o. Finally, DVerify is a deterministic
algorithm, which takes a signature o, a message M € {0,1}* and a public key pk as input, and
outputs a single bit b € {true, false} indicating whether o is a valid signature for M under pk.

A digital signature scheme is required to be correct, i.e., for all (sk,pk) € DKeyGen(x) and all
M € {0,1}* one requires DVerify(DSign(M,sk), M, pk) = true. Additionally, for security one
requires existential unforgeability under adaptively chosen-message attacks (EUF-CMA) [25].

Signatures from Y-Protocols: An essential ingredient for many constructions of anonymous
credentials are honest-verifier zero-knowledge proofs of knowledge (X-protocols). Thereby, we will
use the notation from [14], i.e., a proof of knowledge of a discrete logarithm = = logp Y to the
base P will be denoted as PoK{(«) : Y = aP}, whereas Greek letters always denote values whose
knowledge will be proven. We note that compositions of single X'-protocols using conjunctions and
disjunctions can be efficiently realized [19]. Furthermore, non-interactive versions of (composed)
proofs can be obtained by applying the Fiat-Shamir transform [22].

The resulting non-interactive version of a proof PoK is denoted as SoK and often also called
a signature of knowledge [18]. If this proof includes proving the knowledge of a secret key with
respect to a public key, this constitutes a secure digital signature in the random oracle model.
Such a signature is interpreted as the signature of a proxy in our setting and is denoted as 7 in
this paper.

B Credential Systems used in our Constructions

Subsequently, we briefly review both, CL and Brands’ credentials, and denote attribute values by
a; which are considered to be values in Z,. To support larger attributes, the hash-then-commit
approach can be used, i.e., hashing a; to Z,.

CL Credentials: CL credentials are based on the re-randomizable CL signature scheme [11,13],
which allows to sign a message sequence in a way that single elements of the sequence may be
provided as (unconditionally hiding) commitments and one can selectively prove knowledge of the
signature and message elements. In this work, the pairing-based version [13] is used (cf. Section 6),
but, the construction works in similar vein for the RSA based variant of the signature scheme [11].
In CL credentials, basically, the message sequence is treated as an attribute sequence. Thereby,
a signature o = (R, 4;, B, B;, C) for a sequence of n + 1 attributes (ag,...,a,) € Z;LH w.r.t. to
the secret key (z,y,21,...,2,) and a random value R € G is computed as follows

n—1
A; < zR, B+ yR, B;<+yA; C<+ (x+zya)R+ Z xya; A;

i=1



and can be verified using pairings.

The principle of the credential system is that such signatures are issued on commitments to
the actual attributes and the user can then selectively disclose attributes (messages) contained
in C. However, in our construction we do not require all of the attributes to be blinded upon
issuance of the credential, since the attributes (representing messages) can be known to the issuer
(originator).

Brands’ Credentials: The idea behind Brands’ credentials [9] working in a group G of prime
order p is to commit to attributes (ai,...,a,) € Z; by making use of a discrete logarithm
representation (DLREP) w.r.t. public generators (P, ..., P,):

=1

Once such a DLREP H of the attributes (a1, ..., a,) is computed, a variant of a blind signature,
jointly computed by the organization and the user, is generated. Note that H is additionally
blinded in Brands’ construction, i.e., is a generalized Pedersen commitment, which is omitted in
our above explanation for the sake of simplicity. Showing a credential amounts to checking the
validity of the blind signature on H and the user proving knowledge of the attributes encoded
in the DLREP. Thereby, certain attributes can be disclosed to the verifier while others stay
concealed. In this paper, we rely on the Chaum-Pedersen signature version of Brands’ credentials
(cf. Section 6), as only this version allows to issue credentials, where not all attributes are disclosed,
i.e., known to the issuer, during the issuing protocol. This is required in order to be able to include
the user’s secret key as an attribute into the credential without revealing it.

C Security Models

C.1 Security of Anonymous Credentials

We use the definition of [3] for a secure anonymous credential system. It requires unforgeability and
anonymity (called anonymity and unlinkability there) and we augment it by selective disclosure.
We call an (non-interactive) anonymous credential system secure if all subsequent properties hold.

Unforgeability: An anonymous credential system is called unforgeable if for all PPT adversaries
A there is a negligible function € such that

Py |PP < Setup(k, t), (osk, opk) < OrgKeyGen(pp), (state, A*) < A (pp, opk), (%)
(-,b%) + (A(state), Verify(pp, opk, A*)) : b* = true A A* Z A; Vi =€

where A has access to an oracle O that acts as the Issue algorithm and the values A; are the
attribute sets queried to O.

Anonymity: An anonymous credential system is called anonymous if for all PPT adversaries A
there is a negligible function € such that

1
Pr [(state, pp, opk) < A(k,t),b & {0,1},b* + A91:Ov.OLor (state) : b* = b} < 5t €(k)
where A has access to oracle O once, which he queries with A. Oy runs the Obtain protocol with
A for two users 0 and 1 with respect to attributes A. Furthermore, the adversary can query an



oracle Oy acting as a verifier for user 0 or user 1 as well as a left-or-right oracle Op,r, which
plays the role of the Show algorithm on behalf of user b. Both latter oracles can be queried an
arbitrary number of times. Note that in case of one-show credentials, A is restricted to query
Opror once and is not allowed to query Oy for user 0 or 1.

Selective disclosure: For selective disclosure, we require that for any (computationally bounded)
verifier distinct from the issuer it holds that: For any user ¢ in possession of an honestly issued
credential for A;, revealing (AL, 7, cred, upk;) for A} C A; a polynomial number of times, reveals
nothing about A; \ A’.

C.2 Security of BDSS

Unforgeability: For all PPT adversaries A there exists a negligible function e such that

pp < KeyGen(k,t), (dsko,dpko) < DKeyGen(k), (dskp, dpkp) <— DKeyGen(k),
((T*v UT*vSkg— )7 (M*a O-./\/i*)) — AOT,OM(ppvdpk07dka) : < E(KJ)
(Verifyr(T*,07+,dpko, sk} ,dpkp) =true A T* ¢ Q7) V -
(Verifym (M*, o pq+,dpkp, dpko) = true A M* € Qaq+)

Pr

where Q7 is the list of queried templates and Q¢+ is the list of queried instances for template
T*. The adversary A has access to a template signing oracle O issuing templates signatures
for templates of its choice and an instance signing oracle O, issuing instance signatures for
previously queried templates 7;.

Immutability: For all PPT adversaries A there exists a negligible function € such that

pp < KeyGen(k,t), (dsko,dpko) <— DKeyGen(k), (dskp, dpkp) <— DKeyGen(k),
((T*ﬂ OT*, Sk,lz;* )a (M*7 UM*)) — AOT(ppv dpkOa dka7 dSkP) : <
(Verifyr(T*,07+,dpko, sk} ,dpkp) = true A T* ¢ Qr) V < (k)
(Verifym (M*, o pq+,dpkp, dpko) = true A M* A T¥)

Pr

where @7 is the list of queried templates. The adversary A has access to a template signing oracle
O issuing templates signatures for templates of its choice and returning the respective template
secret keys as well as an instance signing oracle Oy, issuing instance signatures for previously
queried templates 7;.

Privacy: For all PPT adversaries A there exists a negligible function € such that
pp < KeyGen(k,t), (dsko, dpko) < DKeyGen(k), (dskp, dpkp) +— DKeyGen(k),
Pr (7o, T1, state) «— AT+ (pp, dpko, dpke), <
(To,o7,,) = APT-OMOn (state, o7, 07,) : b=V

+ e(k)

where the adversary in the first phase has access to O and Oy as in the unforgeability defini-
tion and ends this phase by outputting two templates which allow instantiation of k > 1 equal
messages. Then in the second phase the adversary gets the two templates signatures in a ran-
domly permuted order, has access to O7 and O, as in phase 1 (excluding 7o and 7;) and can
additionally query a modified instantiation oracle O at most k times for instances M =< 7y, 71
and obtains the output of Inst for both templates in a randomly permuted order.



C.3 Security of WHPSS

Unforgeability: For all PPT adversaries A there exists a negligible function € such that

pp < Setup(k,t), (sky, pk;) < DKeyGen(k),
((M,0), (M, 0y, pk;)) + AOROD-O805:0Ps (pp pk) :
(DVerify(o, M, pk,) = true AM ¢ Qs) V < e(r)
(PV(pk;, M,op) =true A i#1 A ID(cp)=1 AN M&Qps) V | —
(PV(pk;, M,op) =true A i=1 A ID(ocp)=1 AN M ¢ Qps) V
(PV(pk;, M,op) =true A i=1 A VM, M ¢ Mppo,))

where the adversary has access to an oracle Op to register public keys for users, to Op for the
designation of signing rights for message spaces M, to Og which exposes the /-th proxy signing
key produced during self-delegation (user 1 to user 1), to Og to obtain standard signatures from
user 1 and to a proxy sign oracle Opg for proxy signatures by user 1. Furthermore, Qg and Qpg
are the lists of queried standard and proxy signatures, respectively. With o we denote a standard
signature.

Pr

Privacy: For all PPT adversaries A there exists a negligible function € such that

pp < Setup(k,t), (ski, pky) < DKeyGen(k),
((i,c),state) + A9R:Op.05.0s.0rs (pp pk,), 1
<
Pl sk = (DM, pky, sk i, py), P(pkss sk pky)) | = ] %)

M?* — AOm0p.05.05.0r5 Orsi (state) : M* = M,

where the adversary has access to the same oracles as in the unforgeability game in the first
phase. The adversary then outputs ¢ > 1 and ¢, a random warrant M,. of size ¢ 4+ 1 is chosen
from a message space M and a delegation of user i computed. Then, in the second phase the
adversary has access to the same oracles as in phase 1 and an additional oracle Opgs to obtain
proxy signatures w.r.t. skp* for randomly chosen messages from M, at most ¢ times. Note, that
the adversary has no direct access to skp™ and thus is not aware of M,.. The goal of the adversary
is to guess the warrant M, with negligible probability away from @ where M’ represents the
space of all potential messages M minus all message queried to Opg:.

D Proofs

D.1 Proof of Theorem 1

In the following, we sketch the proof which shows that an adversary A against the BDS constructed
from AC can be turned into an adversary B against AC. We do not analyze the correctness of BDS
here, since this can be verified by construction of the BDS approach from AC. The proof outline
is as follows.

First we will show that if A4 breaks the immutability of BDS, A can be used to break the
unforgeability of AC. We note that when constructing BDS from AC, security against immutability
then implies security against unforgeability, since the only difference is that A does not get to
know the secret key usk of the user (proxy) and, thus, immutability represents a stronger adversary
in the same setting. Then we will show that if A breaks the privacy of BDS, A can be used to
break the selective disclosure of AC.



We denote by S the challenger interacting with A (A and S form algorithm B) in the respective
BDS game and S interacts with the challenger C from the respective AC game.

Immutability: Initially, C runs Setup(k,t) to obtain pp and OrgKeyGen(pp) to obtain (osk, opk).
The latter is given to S, who generates (usk,upk) and runs A on pp, opk and (usk, upk). Now,
if A makes a call to the template signing oracle O with template 7 and key upk, then S uses
the query from A, chooses ¢, computes 7¢"¢, and engages in an issuing protocol by querying
oracle O of C with attributes 7¢". Then, S returns to A the cred and the template secret key
¢ as template signature. If A queries the signing oracle O, for an instance M of template T,
S executes the oracle as in the real game. If at some point A outputs either a valid forgery for
a template signature (7*, cred™, usk™) (defined as (7*, JT*,sk,Z—*) in the original game) or a valid
forgery for an instance signature (M*, (7*, cred”)) (defined as (M®"* o x4+ ) in the original game),
then we have three cases:

Case 1: A has broken the encoding 7°"¢ which means that S can output a colliding pair of
inputs for the hash function used in the encoding and aborts.

Case 2: Note that if (7, cred™, usk™) is a valid forgery then 7* ¢ Q7. Thus, S can save its state.
Then, C runs B on state again and S then simply produces a showing w.r.t. 7* for cred* using
usk™. Clearly, B wins the unforgeability game as no credential for 7°"“* has been requested.

Case 3: The case for a valid forgery (M*, (7*, cred™)) is identical to case 2 with the only difference
that S does not produce a showing but gives n* as showing for M* to C. Clearly, B wins the
unforgeability game as M* £ T*.

Privacy: Observe that if an adversary A is able to break the privacy property of the BDS,
when given showings of a credential (instance signatures) and is, then, able to determine the
full template (remaining attributes), this immediately gives an adversary B against the selective
disclosure of the anonymous credential system. a

D.2 Proof of Theorem 2

In the following we sketch the proof which shows that an adversary A against the WHPS con-
structed from AC can be turned into an adversary B against AC. The proof outline is as follows.
First we will show that if A breaks the unforgeability of WHPS, A can be used to break the
unforgeability of AC. Furthermore, if A breaks the privacy of WHPS, A can be used to break the
selective disclosure of AC.
We denote by S the challenger interacting with A (A and S form algorithm B) in the respective
WHPS game and S interacts with the challenger C from the respective AC game.

Remarks on unforgeability: In the original definition of unforgeability for WHPS, users use
the same keys to sign messages, delegations as well as issue proxy signatures. Consequently, the
security model requires arbitrary delegations from users i to user 1, where ¢ may be some user
different from user 1. Furthermore, this also allows self delegation queries of user 1 to user 1, which
does not match with the construction from anonymous credentials since (sky, pk;) = (osk, opk), as
this key pair does not represent a signing key pair of a standard signature scheme. Consequently,
there is no direct self delegation, but user 1 would need another key pair of a digital signature
scheme (and thus this is covered by the delegation to any other user ) and the oracle Op is not



required. When constructing WHPS from anonymous credentials, we can assume that the keys
used in the role of an originator (keys of an organization in the credential system) and the keys
in the role of a proxy (keys of a standard digital signature scheme) are distinct. Consequently,
we only consider delegations from user 1 to other users ¢ # 1, which can be registered by an
adversary. Furthermore, if we considered delegation from some user ¢ # 1 to user 1, then we
would just run another unforgeability game of the credential system with a new organization key
pair for user i. In the WHPS security model it is assumed that the originator’s key pair (sky, pk;)
is from a standard signature scheme and, thus, Og is a standard signing oracle . However, here
we have (skq,pk;) = (osk,opk), which does not support standard signature queries but only
credential issuing queries. Consequently, the access to Og as well as Opg is not reasonable in this
construction.

Taking all together, the forgeries remaining to be considered in the WHPS unforgeability game
are those of type 4, i.e., (PV(pk;, M,0p) = true Ai = 1 AVMp(s) M & Mip(o,))-

Unforgeability: Initially C runs Setup(k,t) to obtain pp and OrgKeyGen(pp) to obtain (osk, opk)
which is given to §. Then, S runs A on pp and opk. Now, we need to discuss how the queries of
A are simulated by S (note from the above discussion that O and Og are not available):

Or: S obtains upk; and simply stores it.
Op: If A requests a delegation for M for user i, then S forwards the communication between A
and the issuing oracle of C.

If at some point A outputs either a valid forgery (M*, (7*,cred™), upk™) (defined as (M, o,, pk;)
in the original game), then we have two cases:

Case 1: A has broken the encoding M®"¢ which means that S can output a colliding pair of
inputs for the hash function used in the encoding and aborts.

Case 2: BB engages in a showing with C using (M*, (7*, cred™), upk™) and wins the unforgeability
game as no credential for M* has been requested.

Privacy: Observe that if an adversary A is able to break the privacy property of WHPS, when
given showings of a credential and is able to determine the unshown messages (attributes), this
immediately gives an adversary B against the selective disclosure of the anonymous credential
system. O



