Event Correlation on the basis of
Activation Patterns

Peter Teufl*, Udo PayerT, Reinhard Fellner*

*Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Austria, 8010 Graz, Inffeldgasse 16a
Email: {Peter.Teufl @iaik.tugraz.at, felrei @sbox.tugraz.at}

TFH Campus02 University of Applied Science,

Austria, 8021 Graz, Koerblergasse 126
Email: {Udo.Payer@campus02.at}

Abstract—Intrusion Detection Systems (IDS) deploy
various sensors that collect data, process this data and
report events. The process of combining these events or
superordinate incidences is known as event correlation.
The key issues of this process are (1) to find a way how
to combine events based on different data types (e.g. log
entries, connection statistics or protocol identifiers), (2)
to build a model representing the relations between the
events and (3) to apply subsequent analysis that allow
us to extract meaningful information from the trained
model. In order to address these key issues, we introduce
the concept of Activation Patterns. These patterns are
generated by applying various techniques from machine
learning and artificial intelligence to the raw event data.
The presented technique is then integrated into an event
correlation system. We describe the system and evaluate
it by analyzing a popular intrusion detection data set
consisting of a wide range of different features.

I. INTRODUCTION

In the area of network security we often need to
deploy intrusion detection systems with a large number
of arbitrary sensors. The nature of the deployed sensors
depends on the environment and the main focus of
the intrusion detection system (e.g. network or host
based). These sensors collect and process information
and report events. The subsequent process of combining
or correlating the events or information flows produced
by the sensors is known as event correlation. This
process should enable us to extract knowledge to detect
attacks, gain insight about the relation between events,
find clusters of similar co-occurring events, search for
related behavior patterns and detect anomalies.

When dealing with the event correlation process, the
following questions immediately arise: (1) How can we
combine sensor data with different scale or different

units? (2) How can we combine discrete information with
continuous data? And finally, if we are able to answer
the previous questions, (3) how can we represent the
correlated information and extract knowledge about the
relations between the correlated events?

In order to find an answer to these questions we introduce
the concept of Activation Patterns and describe an event
correlation system based on this technique. The key con-
cept behind the proposed system is the transformation of
the raw sensor information into these Activation Patterns.
The Activation Patterns are the basis for subsequent
analysis procedures that help us to get insight on the
relations between the various events. The transformation
process and the analysis are based on various techniques
from machine learning and artificial intelligence.

In the following sections we give an introduction to the
topic of event correlation and describe the details behind
the concept of Activation Patterns and the proposed event
correlation system. Finally, we use the introduced system
to analyze real intrusion detection data — the KDD data
set.

II. EVENT CORRELATION AND RELATED WORK

To be able to classify event correlation approaches,
different classification schemas have been proposed. The
classification schema we use in this section is taken from
[3]. The graphical representation of this schema can be
found in Figure 1:

1) Models based on Artificial Intelligence - Models
of this group are based on human problem-solving
capabilities. Most of all, expert systems are used,
which attempt to reproduce the performance of a
human expert, and which are traditional applica-
tions or subfields of artificial intelligence.

Event Correlation Techniques

Al Techniques Error Propagation

Traversing Models Models

Expert Systems

Neural Code-based Models
Networks
Rule-based Bayesian Network
Systems
Decision
Trees Causality Graphs
Case-based
Systems
Model-based Dependency Graphs
Systems

Phrase-structured
Grammar

Fig. 1: ECS-techniques according to [3].

2) Traversing Models - Traversing is part of the field
of graph-theory and is a method to identify a route
whereas all nodes and edges of a graph are visited
only once. A model which is based on "traversing”
needs a formal presentation of relations (edges)
between the nodes, whereas to identify the “error
behavior”, the graph has to be processed in reverse
order.

3) Error Propagation Models - Models of this group
need to have predefined impact to other compo-
nents of the model, caused by a specific error.
Based on these predefined and related effects, we
can determine the cause of a specific error.

When comparing these three classes, we have to
note that models of class 2 and 3 are very expensive
in terms of generation-costs, since changes in the event
environment needs an adaption of the model. This does
not differ from class 1, but models based on artificial
intelligence can be trained automatically, which is
much “cheaper” than designing new models. Therefore,
models of class 2 and 3 are often used in the field
of telecommunication, since the model environment is
quite simple and does not change very often.

The most frequently used ECS-approach is the
Rule-based Technique whereas rules are applied to all
incoming events of a system. It is obvious that these
rules have to be predefined and therefore it is clear that
such systems can only be used efficiently if systems
events do not change very often or not at all. Therefore,
these systems do not play an important role in the field
of adaptive IDSs.

Another very often used approach are Case-based
Techniques, which utilized the knowledge about past
events to fill a case library. New incoming events are
compared to events stored in this library and if no prior
event can be found in the database, the best matching
known event is taken as a starting point for a problem
solution process. Once this process is completed, the
result is stored in the case library for future use [4]
(see also Figure 2).

) case g

\
—| retrieve P adapt P process
T T T

Fig. 2: Case based EC architecture - according to [4].

While only a few Decision-Tree based Al-approaches
have been designed [5], several Neural Network based
approaches can be found [6], [7]. But the problem with
neural networks is to chose the correct level of model-
complexity. This means that it is difficult to determine
the right number of hidden units or correct regularization
parameters. Coming along with the complexity of neural
networks is the problem of “overfitting”!, which leads
to models with bad generalizing.

The proposed event correlation system and the concept
of Activation Patterns belongs to the broader category of
Al Techniques.

III. METHODS

Before we can describe the concept of Activation
Fatterns and how these patterns are used in the
proposed system, we need to give a short introduction
on the employed techniques. For the details on their
combination in the proposed event correlation system,
we refer the reader to the next section. The processes
that transform raw sensor data into Activation Patterns
and all subsequent analysis procedures are based on
various techniques from the areas of machine learning

"Designing a statistical model that has too many parameters. This
also reduces or destroys the ability of the model to generalize beyond
the fitting data

and artificial intelligence. The following three building
blocks are required for the generation of Activation
Patterns and their subsequent analysis:

Associative networks [8] are directed or undirected
graphs that store information in the network nodes
and use edges (links) to present the relation between
these nodes. Typically, the links are weighted according
to a weighting scheme. Associative networks play an
important role within Information Retrieval (IR) systems
such as [9], and [10].

Spreading activation (SA) algorithms [11] can be
used to extract information from associative networks.
The process activates an arbitrary number of nodes
within the associative network and spreads the activation
according to the strength of the links to neighboring
nodes.

Unsupervised learning algorithms group similar data
into clusters without any external information such as
class labels. There are algorithms for the clustering of
nominal features and distance-based features. However,
for the generation of the Activation Patterns and the
analysis of these patterns we only require cluster al-
gorithms for distance-based features features. Due to
advantages for the later described generation process of
the Activation Patterns, we employ a highly sophisticated
Neural Gas [12] based algorithm — Robust Growing
Neural Gas (RGNG) [13].

IV. HOw DO WE CORRELATE EVENTS?

Before we are able to describe the idea behind Ac-
tivation Patterns we need to focus on the structure of
the data represented by events and why this is im-
portant for subsequent analysis procedures. In the case
of intrusion detection systems, events are generated by
various sensors depending on the nature of the monitored
data. Thereby, the possible types of sensors are endless
(see Figure 3): There could be very simple sensors
that report the protocol (e.g. TCP, UDP) of all seen
connections, or the number of connections to all or a
specific system, or watch system logs and report certain
or all log entries. Other sensors might employ complex
mathematical functions to gain information about the
monitored data, or even monitor the output of other
event correlation systems. Regarding the distribution of
sensors, they could be placed on a single host, on the
whole Internet, on different protocol layers, in hardware
or software.

Regardless of the nature of the employed sensors we are
able to map the features of events thrown by all possible
sensors to two basic types:

RGNG map for error rates RGNG Map

Symbolic values for layer 4 protocols

Symbolic values for layer 7 protocols

Direct integration
of the features

Fig. 3: Combination of nominal and distance-based
feature values and relations between these features

o Distance-based features: In this case it makes sense
to define a distance measure such as the Euclidean
distance or the cosine similarity between the values
reported by the sensor: Examples are error rates,
histograms (e.g. byte occurrence in network traffic)
or timing based values.

o Nominal features: In this case it does not make
sense to define a distance measure. Examples are
log entries or protocol identifiers (e.g. TCP, UDP,
ICMP).

This distinction plays an important role for Event Clus-
tering, where similar behavior patterns (e.g. normal
behavior, attack types, etc.) are clustered in an unsu-
pervised way. The following key issues arise when we
take a closer look on these two types of features and the
unsupervised clustering process:

o Different value ranges for distance-based features:
In this case the features with values that have a wide
range have more influence on the distance between
two concepts and therefore, important details from
other features might be ignored.

o Different dimension of output vectors generated by
sensors: The number of output values depends on
the nature of the sensor and might range from single
values (e.g. duration of a connection) to large high
dimensional histograms (e.g. 256 entries for a byte
occurrence histogram). This variance is a problem

RGNG map for byte histograms

RGNG Map

for the unsupervised algorithm, since larger feature
vectors have more influence on the distance to other
concepts than feature vectors with a small number
of entries.

o Combination of nominal and distance-based fea-
tures: Unsupervised algorithms can either cluster
distance-based features features or nominal fea-
tures, the combination of both features is not possi-
ble. Therefore, the distance-based features features
need to be transformed into nominal features by
applying some kind of discretization.

e Further Analysis: Event Clustering forms an impor-
tant part of the analysis process. However, we also
want to get an insight on how events are related, we
want to execute semantic search queries that allow
us to specify certain features and leave others unde-
fined and we want to be able to detect anomalies.
This cannot be done by relying on unsupervised
clustering algorithms and their generated models
alone.

The first two issues can partly be addressed by applying
normalization operations to the information gained from
different sensors. The third issue could be addressed by
applying discretization operations to the distance-based
features values. However, these schemas are very simple
and cannot be used for more complicated analysis pro-
cedures such as anomaly detection. Even if we address
these three issues the forth issue still remains and leads to
the following question: How are we able to build a model
that allows us to apply all of the described analysis
procedures? The following section will introduce the
concept of Activation Patterns that will help us to find
an answer to this question.

V. ACTIVATION PATTERNS

In order to build a model for the described analysis
procedures, we transform the raw event data consisting
of different distance-based features and nominal
features into Activation Patterns by introducing five
layers depicted in Figure 4. The general idea is to
store the event information in an associative network,
where the nodes represent the event values and the
links between these nodes represent the relations and
their strength between these nodes. By applying SA
strategies, we are able to generate Activation Patterns,
which can be used for the subsequent analysis. For
the description of the five layers we assume that we
have an arbitrary number of data vectors, where each of
these vectors stores information about events that share
some kind of relation. For this work the co-occurrence

Relations
between
features

Unsupervised
analysis,
clustering with
arbitrary ML
algorithms

Supervised
analysis with
arbitrary ML
algorithms

analysis

activation
pattern
generation

network Network
generation

node
geneiallon RGNG

.

|
feature Continous values
generation &.g. byte occurence
histogram of connections e.g. error rates values

Fig. 4: The whole event correlation framework

Symbolic values
distance calculation not possible
Continous values

of different events within a given time frame is used
as relation. Obviously, the number of events per data
vector does not need to be constant.

L1 - Feature extraction: As mentioned before,
features of any data set can be separated into the
categories distance-based features and nominal features.
These two types of features are handled differently by
subsequent processing steps and need to be identified
correctly in LI. For distance-based features we have
the option to create groups that represent features with
similar meanings and value ranges. This grouping is
not a requirement for further analysis, but reduces the
computational complexity.

L2 - Node generation: This process layer creates the
nodes of the associative network that will be generated
in the next layer. The process of mapping feature
values to nodes depends on the type of the particular
feature. For nominal features the possible values are
directly mapped to separate nodes. For distance-based
features we need to apply some kind of discretization
operation to map values onto nodes. Although there
is a wide range of discretization algorithms available,
we employ a different strategy. We apply the Robust
Neural Growing Neural Gas (RGNG) algorithm to the
distance-based values and use the found prototypes as
nodes for the associative network.

L3 - Network generation: In this layer the links
between nodes are created according to their relations
in the following way:

e.g. log entries, protocol identifiers, binary

1) The features are analyzed according to the two
categories determined in L1. Nominal features
are directly mapped to nodes according to the
mapping from the previous step. For distance-
based features (single values or groups) we find the
prototype of the corresponding RGNG-map that
has the smallest distance to the data vector. This
prototype is called the Best Matching Unit (BMU).
Its corresponding node is found according to the
mapping generated in L2.

2) All these nodes are now linked within the asso-
ciative network. Newly created links between two
nodes are initialized with weight 1. The weight
of existing links is increased by 1. This linking
represents the co-occurence of different values of
distinct features. The link weight represents the
strength of this relation.

In order to extract information from the network, the
next layer utilizes the SA-algorithm. However, before
this processing step we need to normalize the link
weights within the associative network, so that the
maximum weight is equal to 1. We can apply different
strategies here that normalize the links locally or
globally.

L4 - Activation Pattern Generation: The associative
network resulting from L3 represents relations between
features. The values of the features are represented as
nodes. The information about relations can be extracted
by applying the SA-algorithm to the network. For
each data vector, we can determine those nodes in
the network that represent the values stored in the
data vector. By activating these nodes for a given data
vector, we can spread the activation over the network
according to the links and their associated weights for
a predefined number of iterations. After this spreading
process, the activation value for each node is extracted
and presented in a vector - the Activation Pattern. The
areas of the associative network that are activated and
the strength of the activation gives information about
which feature values occurred and how they co-occur.

L5 - Analysis: The Activation Patterns are the basis
for the following analysis procedures:

o Unsupervised clustering and search queries: Due
to the transformation of the raw data into Activa-
tion Patterns we can apply standard distance-based
unsupervised clustering algorithms. This allows us
to find clusters of similar behavior patterns (e.g.

attacks, normal behavior) and to deduce common
features within a cluster. By varying the model
complexity, we are able to build a hierarchy from
a very coarse grained categorization down to a
very detailed representation of system behaviors.
The distance information between the Activation
Fatterns can be used to implement semantic search
algorithms that retrieve similar behavior patterns.
These search queries can also be used to specify
certain events and find closely related patterns (e.g.
which patterns correspond to the protocol FTP and
a packet loss rate of 80%).

o Relations between events:. The associative network
allows us to define arbitrary relations between
events (e.g. based on time or location). By activation
one or more nodes (corresponding to events) within
the associative network, and spreading their activa-
tion via the links to the neighbors, we are able to
extract details about the relations between events.
Based on this information we would also be able
to increase/decrease the link strength and thereby
change the influence of certain events.

o Anomaly detection: The associative network stores
the relations between events and how this events
co-occur in the training data set. Anomalies — either
new events that were not present during the training
phase, or events that co-occur in a way that was not
seen before — can be detected by analyzing the total
energy of activation functions. By applying these
procedures we are able to ignore known/normal
behavior and concentrate on anomalies.

VI. CASE STUDY: APPLYING THIS EC MECHANISM
TO KDD

To explain the correlation mechanism in detail, the

proposed approach will be discussed on the base of
the KDD data set [14], which was published by the
Massachusetts Institute of Technology (MIT) in 1999
in the context of a machine learning competition. Due
to space constraints, we will focus our discussion on
the unsupervised analysis procedure and leave the other
techniques (semantic search queries and anomaly de-
tection) to future work. For the visualization of the
high dimensional Activation Patterns, we employ Self
Organizing Maps (SOM).
The analyzed data set contains the network traffic of a
dedicated network, which was exposed to attacks for a
duration of nine weeks. During this period, several GB
of data were collected by the following Sensors:

e TCPDump: A very well known tool to store and
analyze network traffic

o Basic Security Module (BSM): A tool, which is
used to monitor the OS-kernel. BSM can be used
as a host based IDS.

e System file dumps: Different tools are used to
generate dump- and log-files.

The raw data of the KDD data set was gathered

in 1999 and was published to the attendees of the
competition in a slightly modified form. Data packets—
belonging to the same connection—have been separated
from the rest and have been stored in separate files.
Thereafter, a fraction of these data files was offered to
the attendees of the competition as a set of training data,
while a small set was retained as test data. After the
competition (which was won by Dr. Bernhard Pfahringer
from the Austrian Research Institute for Artificial Intel-
ligence) the whole data set was published and is down
to the present day a very popular data set in the field of
network intrusion detection.
One of the reason for its popularity is that most of the
test data is based on simple DOS attacks and so it is
very easy to build DOS-detection models with a hit rat
higher than 95%. But among the huge number of DOS
samples, the data set also contains a small number of
U2R? and R2L? attacks. Table I gives an idea about the
small number of U2R- and R2L attacks compared to the
frequent occurrence of probing- and DOS attacks.

training test

normal 19.69% | 19.48%
probe 0.83% 1.34%
DOS | 79.24% | 73.90%
U2R 0.01% 0.07%
R2L 0.23% 5.20%

TABLE I: U2R and R2L attacks are chosen rare

Each entry in the KDD-data set describes a connection
by using 41 features. These features can be subdivided
into four groups:

1) Connection related features: Features of this group
contains information about a peer-to-peer connec-
tions (e.g.: service, protocol. duration, etc.)

2) Content related features: Packet content has been
separated, classified and extended.

2User to root (U2R): unauthorized access to local super user

*Remote to local (R2L): unauthorized access from a remote
machine

3) Time based features: Based on predefined time
intervals, similarities between pairs of peer-to-peer
connections have been analyzed and interpreted
(e.g. the number of connections to the same target
within a predefined time interval).

4) Host based features: These features contains the
long term analysis of network connections and
are summarized in some sort of statistical infor-
mation (e.g. the percentage of connections using
malformed flags)

To demonstrate the proper application of the proposed
EC-mechanism, the KDD data set was used, since KDD
offers a nice mixture of distance-based features and
nominal features.

After applying the five layers of the event correlation

system and thereby transforming the raw event data into
Activation Patterns we visualize the high dimensional
data of Table I in Figure 5. As expected, a large part
of the data set is normal traffic (magenta), which flocks
together in the north-east part of the presented SOM.
When giving a closer look at Figure 5, we can see that
the rest of the SOM is covered with DOS attacks (green).
U2R- (blue) and R2L attacks (red) are forming small
and well defined areas, but are mixed up with normal
traffic. This means that there are no big differences in
feature values. Only probing attacks (yellow) are forming
two delimited clusters, which are not mixed with normal
traffic.
Thus, when applying unsupervised clustering mecha-
nisms, it is very easy to find clusters—which are located
far from each other—but which belong to the same
category.

Fig. 5: Visualization of 10% of the KDD data set.

But we are interested in finding clusters—belonging
to the same attack—without having any tagged informa-
tion. In doing so, we want to utilize the joint occurrence
of not obviously related features, by the help of asso-
ciative networks. Thus, the actual problem we want to
solve is to correlate events (or features), which are of
different nature, but closely related to each other.

Normally, we do not know the relation between a
single instance and the corresponding class. Therefore,
it is important to keep the number of classes low, which
needs to be allocated manually. To demonstrate the effect
of a high number of clusters, the detection rate of an
unreduced set of 168 clusters—generated by RGNG—is
shown in Table II.

| Cluster [[normal | probe | DOS | U2R | R2L |
[168] 09960 | 09560 | 0.9485 | 0] 0.7176 |

TABLE II: Detection rate of a pure RGNG analysis

What we can see in Table II is, that even in the case
of a maximal number of clusters (168) no U2R attacks
can be detected. This effect is due to the low number of
instances (16) and the similarity of U2R- to R2L attacks.

Assuming the case that we do not have information
about the relation between a single instance and the
corresponding class, the following mechanism can lead
to the desired results:

1) Generate a model—which is not too complex—
by using a standard unsupervised clustering mech-
anism. The complexity of the requested model
should be based on the number of expected attacks.

2) Determine the cluster for all instances of the data
set and determine the corresponding class. Find
a mapping between all classes and clusters and
repeat this step for all remaining clusters.

Since the complexity of RGNG can be preset, the
number of detected clusters can be controlled. In doing
so, models of different complexity can be generated,
which are shown in Table III:

| Cluster H normal [probe [DOS [U2R [R2L ‘

11 0.9836 | 0.6406 | 0.3766 0 0

30 0.9839 | 0.8826 | 0.7282 0 0.2443
45 0.9953 | 0.8875 | 0.8899 0 0.2443
168 0.9960 | 0.9560 | 0.9485 0 0.7176

TABLE III: Number of found clusters - controlled by
the RGNG-complexity

A useful upper-bound for the complexity of RGNG
are 30 clusters, since we know that there are 23 different
attacks in the data set plus several types of normal traffic.
To get an impression of all process steps in the special
case of 30 RGNG clusters, the classification steps are
shown in Figure 6, Figure 7 and Figure 8.

First, RGNG was used to determine 30 different clusters,
which are enumerated randomly in Figure 6, without

any relation to the classification. Thus, the SOM BMU*-
colors are meaningless and do not represent any class
IDs. As described above, the next step is to count the
number of different instances within each single cluster.
As a result of this counting, the whole cluster is assigned
to those class with the highest number of counts. In doing
so, eight clusters can be identified, which are shown in
Figure 8.

Fig. 6: Real class distribution.

«3,3
k&&) 5

A L .
Fig. 7: Real classes mapped to 30 RGNG clusters.

These eight clusters are: 3 (yellow in Figure 8),
7 (green in Figure 8), 8, 12, 18, 19, 27 and 28.
All remaining clusters (magenta) are classified as
normal traffic. Now, we can identify attacks in the real
traffic—which cannot be classified by the proposed
mechanism—if colored BMUs in Figure 7 are compared
to BMUs in Figure 8. Notable—for instance—is an
area close to 24 (red and blue in 7) which was not
identified by RGNG as a unique cluster. Furthermore,
cluster 24 (blue in 7) which was obviously similar to

“Best Matching Unit (BMU)

Fig. 8: Classification results if RGNG-complexity is set
to 30 clusters.

normal traffic so that it was not classified as a separate
cluster. The reason for this is that the distances between
different clusters are too small (e.g. 24 vs. 2). This fact
is represented by a grey or light grey border in the map.
Strongly separated clusters are separated by a dark grey
or even black border between clusters.

o, 4 2L
i] 2 "....A‘
X ' o Z 3
o Vay S
3 £ e ‘o o

Fig. 9: 4 main areas in the map.

VII. CASE STUDY RESULTS

Beside the topology in the map, we are also interested
in the distribution of single attacks. Figure 10 shows
the result of 8 detected attacks and the corresponding
areas in the map (generated by RGNG-30). The mapping
between real attacks and detected clusters is shown in
Table IV. This table represents the fact that such as
in the case of a dedicated DOS attack (e.g. DOS-19)
the set of “generating attacks” consists of: Neptune
(148), Sata (10) and Portsweep (2). This is due to the
unsupervised RGNG, which does not know the fine

differences between these three attacks. Thus, RGNG
groups them together to a new class of DOS attacks.

d s
s L t

Fig. 10: Detected attacks with a RGNG complexity of
30 clusters

l Detected Cluster H Attack 1 Attack 2 Attack 3 [Attack 4 [Attack 5 ‘
R2L (27) ‘Warezcl.-32 Norm.-27 - - -
Probe (3) Portsw.-93 NMAP-11 Norm.-2 - -

DOS (8) Neptune-24 NMAP-14 Portsw.-8 Norm.-3 Land-2
DOS (7) Back-208 Norm.-119 - - -
DOS (18) Smurf-28 Norm.-5 - - -
Probe (28) IPsweep-116 Pod-16 NMAP-6 Norm.-1 -
Probe (12) Satan-138 Portsw.-3 - - -
DOS (19) Neptune-148 Satan-10 Portsw.-2 - -

TABLE IV: Mapping between detected attack and caus-
ing attacks in the data set

When mapping all detected instances to the whole set
of attacks, we get detection rates as shown in Table V.

| Attacks H # of Inst, [Detected Inst, [Detection Rate ‘

Neptune 179 172 96.0%
Back 220 208 94.5%
Portsweep 104 93 89.4%
IPsweep 124 110 88.7%
Satan 158 138 87.3%
Smurf 39 28 71.8%
Warezclient 102 32 31.3%

TABLE V: Detected attacks in a RGNG-map with a
complexity of 30 clusters

Related to these detection results, we can make the
following observations:

o There are no clear borders between different clus-
ters. Instances of a specific cluster can also be found
in at least one neighboring cluster.

o Sometimes, the level of mixing is very high. In the
case of R2L, we have a mixing ratio of 27 : 32.

« Attack detection is highly influenced by the service-
and flag feature. But in the map, we can also find
different clusters with identical service- and flag
features. The reason—why they are different—is
due to strong differences in the remaining features.

o The identified attack Neptune is distributed between
two clusters. In doing so, cluster 19 contains the
bigger part of all instances, while cluster 8 contains
a set of different groups.

e There is a little number of clusters containing
different attacks of the same class. Nevertheless,
if it is the case (e.g. cluster 12 and 28), then the
number of mixed instances is very low.

Motivated by these observations, we now want to
give a closer look to the clusters in the map and the
corresponding attacks:

In the case of a ”normal data traffic’’, we can
identify a large part of clusters, which do not differ
too much. This means that the borders between clusters
of normal traffic are mostly light grey or grey. The
smallest distance between two clusters within area 1
is—regarding to the shade of grey varies of the border
cells—in the north east corner of the map (see Figure 9).
When giving a look to Figure 6, we can identify these
clusters as cluster number 11 and 16. When computing
the mean value of all feature vectors of these two
clusters and computing the difference, we can see that
these two clusters only differ in a single feature. While
borders between clusters in area 1 are very smooth,
the separators in area 2 are more distinctive, which is
represented by “turbulent” feature vector differences.

Due to the fact that the R2L.-detection rate is very bad
(only about 24%), the ability to detect ”Warezclient”
merits a closer examination. In doing so, the following
facts have been analyzed:

e Missing instances: The detected cluster (27) only
contains 30% of all Warezclient instances.

e Data mixing: The ratio between Warezclient- and
normal traffic instances is almost identical.

e Borders to normal data traffic: The question is, if
distances to neighboring clusters are sufficient.

As already mention, more than 60% of all Warezclient
instances are not in cluster 27, which was used to detect
this attack. Therefore, it would be interesting to
”localize the missing instances”.

In Figure 11 we can see a lot of feature vector-
differences® between Warezclient instances of cluster 27
and vectors of Warezclient instances in cluster 2. These
differences results in a distinctive separation of clusters
2 and 27.

‘\r';\‘ Y I)l

, | A

NI “_/‘w“ n ,‘\\ , .M' | M“
) \'H\A"T

| [\‘ | “‘ \U I|Vw I

1 1 1 1 1
flag bytes durationp_features c_features count rest time features d_count

L

1
eeeeee t rest host features

Fig. 11: Differences between Warezclient clusters 27

and 2

A closer look to the original data and a comparison
of the original data with the data generating clusters 27
and cluster 2 resulted in the following observations:

« Warezclient uses the FTP-service to move from one
infected node to the next one. Thus, the use of FTP
is an necessary indicator, but FTP exists in two
different ways in the data set (ftp, ftp_data). This
leads to the confusion of the RGNG classification
mechanism.

o There is a big difference in the number of sent-
and received byte, but also in the duration of
a connection. In all cases where we can detect
service=FTP (cluster = 27), the duration of such
connections are always longer than connections
with service=FTP_data. One reason for this is that
service=FTP also includes the receipt of data, while
service=FTP_data only sends data.

o When giving a look at Figure 11, we can see
a difference between time based traffic features
(count, rest_time_features, where we can see two
peaks up) and host based traffic features (d_count,
rest_host_features, where we can see a lot of dif-
ferences in both directions). This behavior—which

SDifferences in feature vectors, which identify different clusters,
are represented in a graph to demonstrate similarities or differences.

was observed in a small set of training data—can
also be observed in the original data set.

e There are also big differences in content based
features (c_features). In this particular case, two
features are highly affected: hot and is_hot_login.
Both features can be clearly assigned to one of the
services FTP or FTP_data. Very interesting are also
variations in the associative network, which can be
generated by a bad combining of features or by co-
activation of nodes in the associative net.

Thus, based on these observations, we can say that
the clustering mechanism did nothing wrong, since due
to the properties of the given data, several instances of a
single attack was classified. In addition, if normal data
looks (almost) identical to an attack, which we want
to identify automatically, machine learning techniques
reach the end of their ability.

VIII. CONCLUSIONS

In this paper, we introduced the concept of Activation

Fatterns in the field of event correlation. The basic idea
was to use associative networks to describe relations
between events or features, which cannot be directly pro-
cessed by classical classification methods. By applying
spreading activation, we are able to deduce Activation
Fatterns that allow us to apply conventional unsupervised
clustering algorithms, to execute semantic search queries,
to detect anomalies and to extract information about the
relations between events.
Based on the well known KDD data set, we concentrated
primarily on the unsupervised clustering analysis and
presented the applicability of the proposed approach. In
almost all instances, the mechanism performed very well.
Only in the case of a single attack, the mechanism did not
generate the expected results. Therefore, we investigated
into the bad detection rate of ”Warezclient”. The reason
for this was—on the one hand—the similarity to normal
traffic but also the numerous different types of a single
attack on the other hand.

IX. ACKNOWLEDGEMENTS

We especially want to thank P. N. Suganthan for
providing the Matlab sources of RGNG [13].

REFERENCES

[1] S. Klinger, S. Yemini, Y. Y. ad D. Ohsie, and S. Stolfo, “A cod-
ing approach to event correlation,” in Proceedings of the fourth
international symposium on Integrated network management 1V,
1995, pp. 266-277.

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

(11]

(12]

[13]

(14]

G. Jakobson and M. Weissman, “Real-time telecommunication
network management: extending event correlation with tempo-
ral constraints,” 1995, pp. 290-301.

M. Steinder and A. Sethi, “The present and future of event
correlation: A need for end-to-end service fault localization,”
http://citeseer.ist.psu.edu/steinderO1present.html, 2001.

L. M. Lewis, “A case-based reasoning approach to the reso-
lution of faults in communication networks,” in Proceedings
of the IFIP TC6/WG6.6 Third International Symposium on
Integrated Network Management with participation of the IEEE
Communications Society CNOM and with support from the
Institute for Educational Services. North-Holland Publishing
Co., Amsterdam, 1993, pp. 671-682.

K. Ali, “On the link between error correlation and error reduc-
tion in decision tree ensembles,” Department of Information and
Computer Science University of California, Irvine, CA, Tech.
Rep., 1995.

M. G. DONDO, N. JAPKOWICZ, and R. SMITH, “A neural
network event correlation approach,” in Proceedings of SPIE,
the International Society for Optical Engineering, 2006.

H. Wietgrefe, K. dieter Tuchs, and G. Carls, “Using neural
networks for alarm correlation in cellular phone networks,”
in In Proc. International Workshop on Applications of Neural
Networks in Telecommunications, 1997.

M. R. Quillian, “Semantic memory,” Cambridge, MA, pp. 227—
270, 1968.

C. Fellbaum, “Wordnet: An electronic lexical
database (language, speech, and communication),”
Hardcover, May 1998. [Online]. Available:

http://www.amazon.ca/exec/obidos/redirect ?tag=citeulike09-
20&path=ASIN/026206197X

G. Tsatsaronis, M. Vazirgiannis, and 1. Androutsopoulos,
“Word sense disambiguation with spreading activation networks
generated from thesauri,” January 2007. [Online]. Available:
http://www.ijcai.org/papers07/Abstracts/IJCAI07-279.html

F. Crestani, “Application of spreading activation techniques in
information retrieval,” pp. 453482, 1997.

T. Martinetz and K. Schulten, “A “neural gas” network
learns topologies,” in Artificial Neural Networks, T. Kohonen,
K. Mikisara, O. Simula, and J. Kangas, Eds. = Amsterdam:
Elsevier, 1991, pp. 397-402.

A. K. Qin and P. N. Suganthan, “Robust growing neural gas
algorithm with application in cluster analysis,” Neural Netw.,
vol. 17, no. 8-9, pp. 11351148, 2004.

U. of California Irvine, “Kdd cup 1999 data.”

