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Abstract. The Advanced Encryption Standard is used in many embedded de-
vices to provide security. In the last years, several researchers have proposed to
enhance general-purpose processors with custom instructions to increase the effi-
ciency of cryptographic algorithms. In this work we have evaluated the impact of
such instruction set extensions on the implementation security of AES. We have
compared several AES implementation options which incorporate state-of-the-
art software countermeasures against power-analysis attacks—with and without
the use of instruction set extensions. For both scenarios we provide a thorough
analysis for different countermeasures with regard to security, performance, and
memory. We have found that even a moderate level of protection requires a
considerable overhead both in terms of speed and memory. The instruction set
extensions, which have been solely designed to increase performance, help to
reduce this overhead, but it still remains high. An implementation with proper
protection through software countermeasures is only feasible in a setting where
the need for resistance against power analysis outweighs the need for perfor-
mance.

Keywords: Advanced Encryption Standard, side-channel attacks, software coun-
termeasures, instruction set extensions, implementation security, DPA, power
analysis.

1 Introduction

Today, more and more computational tasks are performed on small embedded systems.
Most of these systems feature an embedded processor with a wordsize of 8, 16, or 32 bit.
32-bit processors are common in mid-range to high-end embedded systems like PDAs
and cellphones but can also be found in wireless sensor networks and even in some high-
end smartcards. Many applications require the execution of cryptographic algorithms
in order to achieve some security assurances, e.g. data confidentiality or authentication.
But while the algorithms themselves are secure, a straightforward implementation on a
device is very likely to be vulnerable to side-channel attacks. Such attacks measure
and analyze some physical property of the device while it performs cryptographic
operations, with the goal of extracting the key used by the device. Power-analysis
attacks, which exploit the power consumption, have been studied very thoroughly, and
many proposals have been made on how to make them more effective as well as on how
to defend against them.
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While it is unlikely that side-channel attacks can be fully prevented, appropriate
countermeasures can hamper an attack to the point where it becomes practically in-
feasible. Some hardware countermeasures have proven to be rather effective in doing
this. On the other hand, counteracting power-analysis in software is very hard, as the
programmer normally has only a very limited influence on the power consumption of
the processor. To make things even worse, in the last years new attack variants have
emerged, which are very effective against software implementations of cryptographic
algorithms.

We have investigated the current situation regarding software countermeasures against
state-of-the-art power-analysis attacks. We have focused on 32-bit embedded processors
and on the AES algorithm, but most of the discussed methods also work for proces-
sors of different wordsize and other cryptographic algorithms. This paper is organized
as follows: In Section 2 we discuss software countermeasures for power analysis in
principal. We elaborate on the effectiveness of these countermeasures in Section 3.
Section 4 focuses on state-of-the-art attacks on protected software implementations. In
Section 5 we estimate the effect of different countermeasures on performance, memory,
and implementation security. We draw conclusions in Section 6.

2 Power-Analysis Countermeasures for Software Implementations

In order to secure software implementations of cryptographic algorithms against power-
analysis attacks there are two suitable approaches, namely masking and hiding. Mask-
ing conceals all intermediate values during the calculation with a random mask. Hiding
techniques try to break or at least weaken the link between processed intermediate
values and the side-channel leakage at a certain moment of time. In this section we
give an overview of these two types of countermeasures.

2.1 Masking

Masking means to conceal each intermediate value a with a random value m, which
is called mask. These masks are generated by the device for each execution of the
algorithm and they are not known by an attacker. Generally, we can distinguish between
Boolean and arithmetic masking. In arithmetic masking, intermediate values and masks
are combined with an arithmetic operation like addition or multiplication. For AES,
Akkar et al. suggested a multiplicative masking scheme [1] where the intermediate
values are concealed with a multiplicative mask am = a ·m (mod n). Boolean masking
uses the exclusive-or operation to combine intermediate values and masks am = a⊕m.
Masking schemes for software implementations of AES based on Boolean masking
have been proposed in [5] and [6].

Power-analysis attacks are prevented by masking because each intermediate value
is masked with a random value and thus the power consumption caused by this value
can not be predicted by an attacker. This holds under the condition, that each masked
value am is independent of a. Usually the masks are applied to the plaintext values
at the beginning of the algorithm. During the execution of the algorithm one has to
keep track of the modification of the masks by the operations of the algorithm. For
the AES operations ShiftRows and AddRoundKey, this can be done with virtually no
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effort, because they are linear and do not change the applied masks. The MixColumns
operation combines different values of one column of the AES State, and therefore, one
has to calculate the modified masks after this operation. To monitor the change of the
masks through the nonlinear SubBytes transformation, a more elaborated approach is
needed. A very common way to implement the SubBytes transformation in software is
to use lookup tables: aout = S(ain), where S denotes the AES S-box, which is used on
every byte of the State for SubBytes. In order to mask the SubBytes transformation,
we have to calculate a masked table S′ such that S′(am) = S′(a⊕m) = S(a)⊕m′.
When implementing such a masking scheme, care has to be taken that all intermediate
values stay masked during the critical computations of the algorithm. At the end of
the calculation of the algorithm all masks have to be removed. Especially unintended
unmasking has to be considered. This can happen in a device which leaks the Hamming
distance of subsequently processed values, i.e. the Hamming weight of the exclusive-or
of these two values [12]. Two subsequent values with the same Boolean mask would
therefore be unmasked.

Provably secure masking schemes for AES have been published in [2] and [15].
These schemes focus on hardware implementations. In [16] a proposal for a software
implementation of the scheme presented in [15] has been made. This scheme has higher
performance rates than a conventional lookup scheme, as long as a set of masks is
only used for a single encryption. In schemes where masks are used for more than one
encryption, the lookup table approach is still faster. This is one of the reasons why we
have chosen a lookup based scheme for our implementation.

Masking schemes are an appropriate choice to defeat first-order power-analysis
attacks. Nevertheless, masked implementations are still vulnerable to higher-order and
template attacks. Higher-order attacks are discussed in [14], [19], [17], and [8]. A
template based attack on a protected AES software implementation has been published
by Oswald et al. in [13]. Due to the presence of these powerful attacks it is mandatory
to combine masking schemes with a second type of countermeasures to raise the level
of security.

2.2 Hiding
In general, hiding can take place in two domains, namely in the time domain and in the
amplitude domain. Hiding in the time domain tries to randomize the time of occurrence
of a specific operation, whereas hiding in the amplitude domain tries to reduce the effect
of the performed operation on the overall power consumption.

For software implementations, hiding in the time domain is normally easier to
achieve. The goal is to distribute the occurrence of critical operations and intermediate
values over a given period during each execution of an algorithm. This leads to a re-
duced correlation of targeted values at specific points of time. Two appropriate methods
to achieve this randomization are the insertion of dummy operations and shuffling of
operations. Both insertion and shuffling are controlled by random values generated
by the device. Inserted dummy operations should not be distinguishable from normal
operations. Otherwise an attacker could be able to remove their effect from the power
trace. Shuffling of operations means that for each execution of the algorithm, the order
of the occurring intermediate values is changed. How these two methods can be applied
to a software implementation of AES is described in Section 3.3.
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Hiding in the amplitude domain is rather hard for software implementations. Nev-
ertheless, a designer has the opportunity to choose only such instructions which leak
a minimum amount of information. This technique highly depends on the used device
and its leakage properties. The statistic effects of hiding have been investigated in [11],
[4], and [3].

3 Effectiveness of Software Countermeasures

This section gives a thorough evaluation of software countermeasures that can be ap-
plied to secure an AES implementation on a 32-bit platform. In this context we have
considered two classes of processing platforms. The first class consists of typical 32-bit
embedded processors with a standard RISC instruction set architecture. The second
class includes processors which have explicit support for cryptographic operations in
their instruction set (cryptographic instruction set extensions).

For the instruction set extensions we have used the “advanced word-oriented AES
extensions with implicit ShiftRows” described in [18]. These instructions work on 32-
bit words performing either four parallel AES S-box lookups (sbox4s/isbox4s/sbox4r)
or a MixColumns transformation for a single State column (mixcol4s/imixcol4s).
In the following, we will give the definition of the functionality of the sbox4s and
mixcol4s instructions. Note that rs1 and rs2 denote the two 32-bit input operands
and rd the 32-bit result of the instruction. Brackets with indices are used to select a
part of the respective 32-bit value, while | concatenates four 8-bit or two 16-bit values
to a 32-bit value. S-box substitutes an 8-bit value according to the AES S-box, while
MixColumns transforms a 32-bit value following the AES MixColumns operation.

sbox4s rs1, rs2, rd: rd[31..0] := S-box(rs1[31..24]) | S-box(rs2[23..16])
| S-box(rs1[15..8]) | S-box(rs2[7..0]);

mixcol4s rs1, rs2, rd: rd[31..0] := MixColumns(rs1[31..16] | rs2[15..0]);

The definition of isbox4s and imixcol4s is similar, with the difference that the
inverse AES S-box and the InvMixColumns transformation are used, respectively. Fi-
nally, the sbox4r instruction has only one input operand, whose bytes are transformed
with the AES S-box and where the result is rotated 8 bits to the left:

sbox4r rs1, rd: rd[31..0] := S-box(rs1[23..16]) | S-box(rs1[15..8])
| S-box(rs1[7..0]) | S-box(rs1[31..24]);

The sbox4r instruction is designed for use in the AES key schedule, while the other
instructions are intended to speed up the AES round transformations.

In the following sections we analyze different options for power-analysis counter-
measures. The most powerful attacks are listed and implementation-specific details for
use of the instruction set extensions are given. The maximum correlation coefficient ρ

is stated for each attack. The security gain can be approximated by the quotient of the
correlation coefficient for an attack on an unprotected and on a protected implemen-
tation: An attack on the protected implementation requires at least (ρunprotected

ρprotected
)2 more

power traces [12]. For our estimations we have ρunprotected = 1 and can therefore state



Protecting AES Software Implementations on 32-bit Processors 145

the security gain as ( 1
ρ
)2, where ρ always denotes the correlation coefficient for an

attack on the protected implementation. Note that we state ρ for noise-free environ-
ments, which is sufficient to make a relative comparison of unprotected and protected
implementations. The correlation coefficients observed in practical attacks will be lower
due to noise. The correlation coefficient has been determined under the assumption that
the Hamming weight of processed values leaks through the power consumption. Many
devices leak the Hamming distance of subsequently processed values, but it is very hard
to determine the correlation coefficient for such a setting without taking many details
of the processor architecture and software implementation into account. We therefore
take the Hamming-weight leakage model as a lower bound for devices that leak the
Hamming distance. This assumption holds as long as the software implementation
avoids potential vulnerabilities due to the Hamming-distance leakage, e.g. unintended
unmasking as explained in Section 2.1.

3.1 Unprotected Implementation

An unprotected 32-bit AES software implementation is vulnerable to a multitude of
attacks. One of the most powerful attacks is a first-order DPA on an 8-bit intermediate
result after the S-box lookup (ρ = 1). The key expansion can also be targeted directly
with a template-like attack as described in [10]. This attack extracts the Hamming
weights of 8-bit intermediate values of the key expansion and uses the dependency of
these values to narrow down the number of potential keys. The use of the instructions
set extensions from [18] allows to calculate the key schedule with 32-bit values only,
which makes this kind of attack infeasible.

3.2 Masking

A masked implementation protects critical intermediate values with a random mask.
An intermediate value of the AES operation can be considered critical when it depends
on a small portion of the (round) key and on the plaintext or ciphertext. In this case
the attacker can guess the part of the key and verify her guess through analysis of
the measured power traces. The choice of masks and the processing order of masked
values must always be done carefully with regard to the leakage of the device to prevent
problems like unintended unmasking.

If the masking countermeasure is implemented properly, it can prevent first-order
DPA attacks. However, a masked implementation is still vulnerable to higher-order
DPA attacks. In such an attack, several points of each power trace are combined to
a single value with a preprocessing function pre. The resulting value again depends
on some predictable value. The preprocessed values can then be subjected to a first-
order DPA attack. Normally, a second-order DPA attack is sufficient to break a masked
implementation. The targeted values for preprocessing are either a masked intermediate
value and the corresponding mask, or two intermediate values with the same mask.

The best vantage point to break a masked AES implementation is the masked S-box
lookup, which is used for SubBytes. This lookup requires masked 8-bit input and output
values, which are easier to target than the masked 32-bit values resulting from other
transformations (e.g. MixColumns). The cost for precomputing a single masked S-box
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is very high, and it is therefore necessary to reuse masked S-box tables. This results in
the processing of 8-bit values with the same mask, which can be targeted in a second-
order attack (ρ = 0.24, see [12]). But even if no 8-bit value carries the same mask,
the preprocessing function could use the power consumption of the mask itself (which
must occur at some time in the computation) as second value. In the worst case for the
attacker, this 8-bit mask will only occur in form of a 32-bit word, where the other 24 bits
are random (this can only be achieved with the help of the instruction set extensions).
Even in this case, the level of protection against a second-order DPA attack is rather
low (ρ≈ 0.1).

A possibility to prevent the S-box lookup in software is to perform most of the AES
round as table lookup (T-box lookup). However, the precomputation of masked T-boxes
would be much more costly than the precomputation of masked S-boxes. Moreover, a
T-box lookup still requires an 8-bit masked input value, which can be targeted in an
attack.

A masked implementation could use more than one mask for every intermedi-
ate value. However, it seems very difficult to generate a masked S-box table without
processing the definite input and output masks at some point of time. All in all, the
vulnerability to second-order DPA attacks is very hard to remove in a masked AES
implementation.

3.3 Randomization

In the following, we will denote countermeasures of hiding in the time domain (cf.
Section 2.2) as randomization. In a randomized AES implementation, the occurrence
of a specific intermediate value at a specific point in time is reduced to a certain proba-
bility. This can be done by shuffling of operations and by random insertion of dummy
operations. In this case an attacker needs to capture more power traces, in order to
compensate for this uncertainty.

Simple solutions, like the random insertion of nop instructions, are likely to be
detected and removed by an attacker. Therefore, if dummy operations are added, it is
important that they can not be distinguished from the genuine operations. This can be
achieved by performing the AES transformations on some dummy data.

The best degree of randomization can be achieved by using both the shuffling of
operations and the insertion of dummy operations. In AES, the smallest unit of data,
whose processing can be randomized, is the 8-bit input and output value used in the
S-box lookup. The 16 S-box lookups per AES round can therefore be shuffled, resulting
in a probability of p = 1

16 for a specific value at a specific point in time. Dummy
operations can be inserted by processing a certain number of dummy values. Processing
of complete dummy States (i.e. 4×4-byte matrices) seems to be a good granularity for
that purpose. If N dummy States are processed in addition to the genuine State, then the
probability for the occurrence of a specific value goes down to p = 1

(N+1)·16 .
It would be very inefficient to perform a selection for each of the (N + 1) ·16 byte

values separately. Moreover, the AES algorithm does not allow to perform all critical
round transformations with just a single byte. The smallest value which is sufficient
for all those transformations is a single State column. For practical implementation
it is sufficient to determine the processing order of the bytes in an orthogonal way:
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The States are processed one after the other, i.e. the processing of the genuine State
is randomly embedded within the processing of the dummy States. For each State, the
columns are processed in a fixed order beginning with a randomly chosen column. For
each column, the bytes are processed separately and also in a fixed order starting with
a randomly chosen byte.

The randomization degree p determines the resistance against DPA attacks. The
power traces obtained from an implementation with randomization are often referred to
misaligned power traces. A direct DPA attack on the misaligned traces would require
( 1

p )2 more traces to compensate for the randomization. However, Clavier et al. [4] have
proposed to sum up all points in the power trace, where the targeted value can occur.
This approach is often referred to as “windowing”. With this approach, an attacker only
requires 1

p = (N +1) ·16 more traces to defeat the randomization.
Therefore we can assume that the number of power traces to attack a random-

ized AES implementation scales up with a factor of only (N + 1) · 16, as ρ =
√

1
p =

1√
(N+1)·16

. Most of the overhead of a randomized implementation comes from the

preparation of the randomization and the byte-wise processing of the AES State. Dou-
bling the security (which corresponds to doubling of (N +1)) roughly doubles the total
running time. This results in a very large overhead.

3.4 Masking and Randomization

For better protection, an AES implementation needs to combine masking and random-
ization countermeasures. However, there are still several possible attacks which can
break such an implementation rather efficiently.

An attacker will try to defeat the masking with a second-order attack. At least
one of the attacked intermediate values (i.e. a masked 8-bit value) is protected by
randomization. As we have already outlined in Section 3.3, a very effective way to
defeat randomization is to sum up the power consumption at all moments in time where
the attacked value can occur (recall that for our considered randomization there are
(N + 1) · 16 points in time, where N is the number of dummy States). The second
attacked value can either be the mask of the first value, or another randomized inter-
mediate value carrying the same mask as the first value.

There are two main strategies on how to use the second value in an attack. On the
one hand, this value can be employed to introduce a bias in the occurring masks. On the
other hand, the value can be combined with the first one to yield a result that depends
on the unmasked value.

4 Attacks on Masked and Randomized AES Implementations

We have shown in the previous section, that a protection by masking or randomization
alone can not withstand power-analysis attacks. In this section we analyze the possible
attacks on software implementations which use a combination of both countermeasures.
The attacks presented in this section have either been published and evaluated or are nat-
ural extensions or combinations of existing attacks. The method of windowing (cf. Sec-
tion 3.3) published by Clavier et al. [4] is fundamental for all of the examined attacks,



148 S. Tillich, C. Herbst, S. Mangard

as it is a very good way to compensate the effects of the randomization countermeasure.
The possibility of second-order DPA attacks has already been mentioned in the original
publication of Kocher et al. [9]. Second-order attacks on software implementations of
block ciphers have been analyzed in [14].

In [13], Oswald et al. have evaluated the effectiveness of template-based attacks
against masked software implementations and have shown that such methods can be
very effective. However, as long as the targeted operation used for template-building
remains randomized in time, we assume that it is very hard to create well-matching
templates, which lead to better results than techniques based on counteracting random-
ization, e.g. windowing.

4.1 Biasing Masks

A very powerful attack is to introduce a bias into the masks used by the device, which
leads to a dramatic decrease of security. This idea has been introduced by Jaffe [7], and
practically evaluated by Oswald et al. [13]. In practice, an attacker can bias a mask by
examining a point of the power trace where the mask is processed and by discarding
all traces which have a value above (or below) a certain threshold. Figure 1 shows the
timeline of a power trace, where the time of occurrence of targeted values is marked
at the top. Below the timeline, it is shown how the power consumption values at these
times would be used in a biased-mask attack. Windowing is used to sum up the power
consumption at all points in time in the selected traces where the attacked value can
occur (due to randomization). A classical first-order DPA attack is performed on the
resulting preprocessed power values.

Without instruction set extensions, the 8-bit masks of the S-box can be targeted
directly during the generation of the masked S-box. With instruction set extensions, the
masked S-box can be generated using only 32-bit masks (provided that four masked
S-boxes are used). A bias of either the 8-bit or 32-bit mask has a devastating effect
on the security. For example, biasing the 8-bit masks to a Hamming weight (HW) ≥ 6
yields ρ =−0.1 (for N = 1). For 32-bit masks, a bias of HW ≥ 20 results in ρ =−0.05
(again for N = 1).

Increasing the degree of randomization does not lower the correlation coefficient
very effectively (see Table 2). Note that a possible defence against this attack could
consist of randomizing the time of occurrence of each mask. However, the mask and
values directly dependent on the mask occur at several points in the computation, e.g.
generation of the mask, appliance of the mask to the S-box, calculation of the mask
after MixColumns, (re)masking of the key schedule. Proper randomization of all these
operations would be quite challenging and also incur a considerable overhead in terms
of performance.

4.2 Combining Second-Order DPA and Windowing

A second-order DPA can be combined with windowing to break the masking and ran-
domization. This approach can be seen as performing multiple second-order DPA at-
tacks in parallel. The attack can be done by combining the power consumption for the
mask processing with each of the (N +1) ·16 points in time where the targeted masked
value can occur (due to randomization) using a second-order preprocessing function.
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Mask m

Masked value (a   m)

...

t

...

Select/reject trace

Fig. 1. Information extraction from power traces in a biased-mask attack

However, due to the randomization, the attacker does not know which of the result-
ing values corresponds to her targeted value. This is the same problem as in an imple-
mentation which has only randomization countermeasures. Consequently, an efficient
solution is to sum up all (N + 1) · 16 preprocessed values and to perform a first-order
DPA attack on the result. Figure 2 depicts this approach.

Mask m

Masked value (a    m)

...

t

2nd-order DPA preprocessing

...

...

Fig. 2. Information extraction from power traces for second-order DPA combined with window-
ing

The effectiveness of this attack can be evaluated for both attack stages separately.
In the first stage, the second-order DPA preprocessing function is applied to each pair
of values (mask and masked value). For our randomization scheme we have an 8-bit
masked value. As already stated in Section 3.2 we have ρ = 0.24 for 8-bit masks and ρ≈
0.1 for 32-bit masks (using instruction set extensions). The summation of the second
attack stage corresponds to windowing, which scales down the correlation coefficient
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with a factor of 1√
(N+1)·16

. The overall correlation coefficient is therefore very high:

For the 8-bit masks we get ρ = 0.24√
(N+1)·16

, and for 32-bit masks we get ρ≈ 0.1√
(N+1)·16

.

So in order to achieve ρ = 0.01, we would need at least N = 5.
Principally, it would be desirable to randomize the occurrence of the mask to the

same degree as the masked value. This measure would require to sum up all possible
combinations where mask and masked value can appear. The number of combinations
is ((N +1) ·16)2, which would lead to a reduction of the correlation by a factor of (N +
1) ·16 after windowing. At N = 1, the correlation would already be about as low as ρ =
0.003 for 32-bit masks. However, as already mentioned in Section 4.1, randomization
of the mask would be very costly in terms of performance.

4.3 Targeting Weak Randomization

Targeting two randomized intermediate values which carry the same mask is normally
less efficient than to target one fixed (e.g. the mask) and one randomized value. How-
ever, a weak randomization can be broken more easily with this strategy.

In this context, a weak randomization is one where two intermediate values with the
same mask always occur with a fixed distance in time. An example for this are the S-box
inputs of the first and second AES round, when the used S-boxes have the same input
masks and the two lookups are not randomized separately. The attacker can therefore
apply the second-order DPA preprocessing function to each such pair of values, which
is depicted in Figure 3. The rest of the attack is exactly the same as the previously
described one (summation followed by first-order DPA).

1st value

(a   m)

...

t

2nd-order DPA preprocessing

...

...

2nd value

(b   m)

Fig. 3. Information extraction from power traces when attacking a weak randomization

Targeting two 8-bit intermediate values with the same mask is equivalent to target-
ing one intermediate value and the according 8-bit mask. The correlation coefficient
is therefore ρ = 0.24√

(N+1)·16
. However, it might be necessary to hold some parts of the
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plaintexts constant and guess more than a single key byte to be able to set up a good
hypothesis.

The effectiveness of this attack can again be evaluated for both attack stages inde-
pendently. In the first stage, the second-order DPA preprocessing function is applied
to each pair of values with the same mask. For our randomization scheme we have
two masked 8-bit values, which yields ρ = 0.24 [12]. The summation of the second
attack stage again corresponds to windowing, which reduces the correlation coefficient
by a factor of 1√

(N+1)·16
. The resulting correlation coefficient remains rather high with

0.24√
(N+1)·16

(e.g. ρ = 0.01 would require N = 35).

To counteract this attack it would be necessary to randomize the S-box lookup in
the first and second AES round separately (and similarly in the two last rounds). This
countermeasure would render the described attack less efficient than the other described
attacks.

4.4 “Classical” Second-Order DPA on Windowed Traces

Another way to combine second-order DPA and windowing is to perform windowing
first to counteract the effects of randomization, and to do a “classical” second-order
DPA attack on the result. Figure 4 depicts the processing steps performed on every
power trace. The resulting value can then be subjected to a first-order DPA attack. A
preprocessing function pre, which is generally very effective, is the absolute difference
of the inputs: pre(a,b) = |a−b| [12]. For this function, it is important that both a and
b are of the same magnitude, e.g. if a is a single point from the trace and b is a sum of
n points, then the preprocessing function should scale a up to b: pre(a,b) = |n ·a−b|.

Mask m

Masked value (a   m)

...

t

2nd-order DPA preprocessing

...

Fig. 4. Information extraction from power traces in a “classical” second-order DPA

For a randomization degree of N = 1, the correlation is about ρ = 0.013 for 8-bit
masks and ρ = 0.012 for 32-bit masks. Doubling the randomization degree approxi-
mately halves the correlation coefficient.
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5 Performance Estimation

The security evaluation of the last section has shown that there are powerful attacks
which can break implementations even when they employ very sophisticated counter-
measures. Under the assumptions of our analysis, one might be inclined to regard the
use of software countermeasures as futile. Nevertheless there are scenarios, where a
protected implementation might be desired, even if the provided protection is rather
moderate:

– In a device with a fixed processor, the use of software countermeasures is likely to
be the only available option. In some applications, a certain degree of implementa-
tion security could still be much better than none at all.

– The most powerful attacks used in our security evaluation might not be applicable
due to other security measures of the device (e.g. limited number of AES encryp-
tion/decryptions, plaintext/ciphertext not selectable by the attacker, etc.).

– The device has some hardware countermeasures (e.g. noise generators) and the
resistance against power-analysis should be amplified by the software countermea-
sures.

In order to provide performance estimations for different countermeasures, we have
implemented AES-128 encryption with both masking and a scalable randomization.
With the help of this implementation we have estimated the performance for several
design options and degrees of randomization. First, we present the most important
design decisions and implementation characteristics of our solution. Then we give the
performance figures for interesting implementation variants regarding expected security
level, speed, and memory requirements.

5.1 Features of Our Protected AES Implementation

Some basic design decisions for our 32-bit implementation are similar to the secure
AES implementation for 8-bit microcontrollers presented in [5]. This mainly concerns
the basic types of countermeasures (masking and randomization), the concept of ran-
domized zones, etc. We assume the availability of a random number generator to pro-
vide mask values and randomization parameters.

The masking scheme requires six distinct byte masks as input. Two mask bytes
are used to derive a masked S-box lookup table with input mask M and output mask
M′. The four other bytes (denoted M1, M2, M3, and M4) mask each input column to
the MixColumns transformation. The corresponding output masks can be derived by
performing MixColumns on the mask values alone. More precisely, M1 to M4 are used
as an input column for the MixColumns transformation, resulting in the output masks
M1′, M2′, M3′, and M4′.

All operations which yield intermediate results depending on a relatively small
portion of the key are executed in a randomized fashion. Randomization is achieved
both by shuffling of operations as well as the addition of dummy operations. The
processing of the AES State is shuffled so that each byte is processed at one of 16
moments in time with equal probability. Dummy operations are inserted as normal AES
round tranformations, but work on a random State (dummy State). The processing of
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the genuine State is randomly embedded in between the processing of several dummy
States. The parts of the encryption where execution is randomized are denoted as ran-
domized zones. The randomized zone at the beginning of AES encryption reaches up to
and including the SubBytes operation of round 2, while the randomized zone at the end
starts with SubBytes in round 9. Figure 5 gives a general overview of the program flow
for the AES implementation and shows the masks on the State as well as the randomized
transformations.
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Fig. 5. Program flow of masked and randomized AES encryption

Randomization of operations is costly in terms of performance. Therefore it is
desirable to keep the randomized zones as short as possible. In our implementation
we have reordered the round transformations, so that ShiftRows is not included in the
randomization. This reordering requires the first and last round key to be transformed
with ShiftRows or InvShiftRows.

In order to reduce the overhead for masking, the AddRoundKey operation is used for
remasking whenever possible. This requires masks to be applied on some of the round
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Table 1. Performance and RAM requirements of AES-128 encryption implementations

Countermeasures Pure Software ISE Memory (RAM)
cycles cycles bytes

None 1,637 196 176
1SB WR 6,465+1,888N 2,023+1,028N 476
4SB WR 14,958+1,888N 3,631+1,028N 1248
4SB SR 15,332+2,208N 3,978+1,348N 1388

keys. The masks on these round keys must be renewed whenever the masks change.
When the masks are changed for each AES encryption—which is the ideal case—then
it would be equally efficient to change the mask explicitly during the AES encryption.

In our implementation, the rounds 3 to 8 are not masked. AddRoundKey of round 2
removes the masks from the State, and AddRoundKey of round 8 masks the State again.
All unmasked intermediate values have therefore been subjected to three AddRoundKey
transformations and depend on sufficiently many key bytes, to prevent an efficient DPA
attack. The advantage of the unmasked inner rounds is that the AES instruction set
extensions can be fully used.

The randomization follows the concepts described in Section 3.3. In the randomized
zones, only values which depend on a single State byte are processed. This allows for a
randomization degree of (N +1) ·16, where N is the number of dummy States.

5.2 Performance Figures

Table 1 contains the execution times and RAM requirements for several implementa-
tions of AES-128 encryption with masking and randomization countermeasures. The
performance figures are given for the case without instruction set extensions (pure
software) as well as with instruction set extensions (ISE). The RAM requirements for a
specific implementation is always the same for both cases. The cycle counts are given
in dependence on the number of dummy States (N).

We have given performance figures for three protected implementations, which
employ both masking and randomization countermeasures. The cycle counts include
all overhead when the masks are refreshed for each new encryption. The first imple-
mentation (1SB WR) uses 1 masked S-box and a weak randomization (weak in the
sense defined in Section 3.4). The second implementation (4SB WR) is similar, but
uses 4 masked S-boxes. The last implementation (4SB SR) has a strong randomization.

For comparison, the performance figures of an unprotected implementation, as stated
in [18], are provided.

Table 2 gives a complete analysis of the security/performance trade-off for the three
protected implementations. Note that SW denotes the software implementation, while
ISE denotes the respective implementation with instruction set extensions. The table
lists the estimated correlation coefficients for the four attacks presented in Section 3.4:
Biased mask attack (BM), combined second-order DPA and windowing attack (2W),
weak randomization attack (WR), and “classical” second-order DPA attack on win-
dowed traces (W2). The maximum correlation coefficient is listed in the last column.
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Table 2. Analysis of the security/performance trade-off

Implementation Performance BM 2W WR W2 max(ρ)
1SB WR (SW), N = 0 6,465 -0.14 0.06 0.06 0.03 -0.14
1SB WR (SW), N = 3 12,129 -0.07 0.03 0.03 < 0.01 -0.07
1SB WR (SW), N = 5 15,905 -0.06 0.02 0.02 < 0.01 -0.06
1SB WR (SW), N = 11 27,233 -0.04 0.02 0.02 < 0.01 -0.04
1SB WR (ISE), N = 0 2,023 -0.14 0.06 0.06 0.03 -0.14
4SB WR (ISE), N = 0 3,631 -0.05 0.03 0.06 0.02 0.06
4SB SR (ISE), N = 0 3,978 -0.05 0.03 N/A 0.02 -0.05
4SB SR (ISE), N = 1 5,326 -0.04 0.02 N/A 0.01 -0.04
4SB SR (ISE), N = 3 8,022 -0.03 0.01 N/A < 0.01 -0.03
4SB SR (ISE), N = 5 10,718 -0.02 0.01 N/A < 0.01 -0.02
4SB SR (ISE), N = 11 18,806 -0.01 < 0.01 N/A < 0.01 -0.01

For the pure software implementation, the biased-mask attack (BM) is the most
powerful one. In software, the only option is to increase the randomization degree
N. But the correlation coefficient only decreases very slowly with rising N. When
instruction set extensions are available, we can work exclusively with 32-bit masks if we
use four masked S-boxes instead of one (4SB WR). In that case, the attack exploiting
the weak randomization becomes the most efficient one. To counteract, we use the
implementation with strong randomization (4SB SR), which makes this attack inappli-
cable. Then the biased-mask attack becomes again the most effective one. With heavy
randomization (N = 11), the correlation coefficient can be pushed down to ρ =−0.01.
This corresponds to an increase of the security level by four orders of magnitude in
comparison to an unprotected implementation. This comes at the price of an execution
time, which is increased by two orders of magnitude (cf. Table 1). Compared to the
unprotected pure software implementation, the execution time is increased by one order
of magnitude.

6 Conclusions

In this paper we have provided a thorough analysis of power analysis countermeasures
in software in the face of state-of-the-art attacks. We have concentrated on 32-bit em-
bedded processors, but most of the results could also be applied to 8-bit and 16-bit
processors. By means of an AES implementation we have shown the impact of power
analysis countermeasures on the performance and RAM requirements. When restricted
to the original instruction set architecture, the attainable degree of protection of our
protected implementation is increased by three orders of magnitude. If the processor
is equipped with custom instructions for AES, then a protection level of four orders of
magnitude is achievable. But the performance penalty is rather high, so that it is prob-
ably not acceptable for all applications. As of now, no set of software countermeasures
seems suited to offer a reasonable degree of protection at a negligible overhead.
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Future Work The use of existing instruction set extensions for AES is not sufficient to
support power analysis countermeasures. A promising approach which we will investi-
gate in the future is to enhance the extensions with hardware countermeasures.
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