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Abstract. Computational fluid dynamics (CFD) simulations of dense gas-particle flows are 

extremely challenging due to the formation of clusters. These structures reduce the effective 

drag on the suspended particles and hence are key for the prediction of the flow in and the 

performance of fluidized beds. Our group has established models for the effective drag and 

particle-phase stress via Euler-Euler (EE) simulations [1]. However, EE simulations become 

cumbersome when treating polydisperse particle systems. Here, we focus on an Euler-

Lagrange (EL) approach, with the goal to establish a sophisticated filtered drag model for 

coarse-grid (i.e., incompletely resolved) EL-based simulations. First, we detail the effect of 

the grid resolution and the particle-scale (i.e., “microscopic”) drag law on our results. Based 

on our computational data from fully resolved EL-based simulations, we construct a filtered 

drag model for a later use in coarser EL-based simulations. Our results highlight the signifi-

cant effect of particle clustering on the average slip velocity between particles and fluid, and 

indicate how this clustering can be accounted for in incompletely resolved EL-based simula-

tions. 
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1 INTRODUCTION 

There have been significant efforts within the last ten years to quantify the effect of parti-

cle clustering on the slip velocity between a fluid and a particle phase [1–6]. Clustering is typ-

ically accounted for by modifying the expression for the fluid-particle drag, and recently a 

modification of the particle-phase stresses has also been suggested [1]. These modified ex-

pressions for the drag (and stress) can be used in so-called “coarse-grid” simulations with a 

computational grid resolution larger than that of the characteristic cluster size. As the diame-

ter of process vessels in many engineering applications is typically three orders of magnitude 

larger than the cluster size, coarse-grid simulations have to be used in industrial practice. 

Most of the previous work on clustering in fluid-particle systems was based on the so-

called two-fluid model (TFM), i.e., an EE-based model that treats the particle phase as a con-

tinuum. TFMs typically use the kinetic theory of granular flow (KTGF) to provide a closure 

for the particle-phase stress. The problem associated with most theories for KTGF is that they 

are based on the assumption of instantaneous particle-particle interactions and nearly elastic 

collisions. This limits the use of TFM to non-cohesive granular flows at low (particle) Mach 

numbers. 

Simulations based on a Lagrangian treatment of the particle phase do not have the above 

limitations, but they are restricted to relatively small systems because the number of particles 

that can be tracked is limited. For systems with reactions on the surface of particles, or wet 

gas-particle systems, however, Lagrangian methods have significant advantages over TFM-

based formulations. Similar to TFM-based simulations, the effect of particle clustering has 

already been taken into account in EL-based fluid-particle flow simulations [7–10]. However, 

the modification of the drag law in these previous studies was rather heuristic. For example, 

Helland and co-workers [11] propose the use of a second-order polynomial to describe the 

drag reduction at low particle volume fractions (i.e., below φp = 0.10). Their model is parame-

terized with some experimental findings for dilute suspension, which clearly cannot accurate-

ly describe the complex phenomena observed in dense suspensions. An open question 

remains whether the same correction to the drag force should be used for Lagrangian and 

TFM-based simulations. Here, we use detailed EL-based simulations of gas-particle systems 

to generate, in contrast to postulate, an expression for a drag law that is able to correctly quan-

tify the clustering effect.  

 

2 GOVERNING EQUATIONS 

We combine a solver for the incompressible Navier-Stokes equation [12] with a high-

performance implementation [13] of the discrete element method (DEM), henceforth referred 

to as CFD-DEM [14]. In this approach, we track the center of each particle, its rotational posi-

tion as well as its translational and angular velocity. We consider a large (i.e., O(10
6
)) number 

of particles, and hence cannot resolve the details of the fluid flow around each individual par-

ticle. Consequently we solve the mass and momentum balance equations for a locally-

averaged fluid velocity, and supply a “microscopic” drag law on the level of individual parti-

cles (see Chapter 2.3 for details). We supply a model for the contact force between particles to 

mimic the behavior of stiff, slightly inelastic particles (see Appendix A). 

2.1 Fluid Phase 

The mass and momentum balance equation for the fluid phase are: 
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Here g, ρf, φf, pf, ττττf and u are the gravitational acceleration, the fluid density, the fluid vol-

ume fraction, pressure, viscous stress tensor and (average) fluid velocity, respectively. ΦΦΦΦ is 

the specific coupling force exerted by the particle phase on the fluid phase (i.e., a force per 

unit volume of the gas-particle mixture) - in general, this term should include the drag, added 

mass, lift and history force contributions. However, for gas-particle flows considered here, the 

fluid-particle drag force contribution is the most significant one and all the other contributions 

are usually neglected. We also do not consider pseudo-turbulent motion in the fluid, and 

hence the fluid stress tensor ττττf can be easily calculated from the rate of deformation of the flu-

id and a molecular viscosity µf of the fluid.  

Because we are interested in the simulation of gas-particle flows in fully periodic boxes, 

we re-arrange the momentum equation, i.e., we split up the fluid pressure pf into a dynamic 

and hydrostatic pressure: 

=
f dyn mix

p p ρ∇ ∇ + g . (3) 

Here, ρmix is the domain-averaged mixture density. By inserting above expression for the 

pressure gradient, we obtain a momentum balance equation with a modified term for the grav-

itational acceleration, and u and pdyn as variables. We can now apply periodic boundary condi-

tions for pdyn, since the pressure gradient due to the weight of the gas-particle mixture is 

already taken into account via ρmix g. Consequently, our flow is driven by a pressure gradient 

that is equal to the weight of the particles, and the total momentum of our gas-particle system 

remains constant except for small numerical errors, which are less than 1% of the total parti-

cle momentum in our simulations. Details of the numerical algorithm to solve the fluid-phase 

equations are summarized in Appendix A. 

2.2 Particle Phase 

The particle phase is assumed to consist of frictional, inelastic spheres. We use contact 

force models inspired by Luding [15], specifically the linear spring-dashpot model with fric-

tional slider detailed by Radl et al. [13]. The acceleration of each particle is calculated via: 

( ),,

,

,

1p icont i

i i f i

p p i p p

p
V

β

ρ ρ ρ
= + − − ∇ +

f
a u v g . (4) 

Here fcont,i, ρp, vi and Vp,i is the total contact force that acts on particle i, the particle density, 

the particle velocity, and the particle’s volume, respectively. βp,i is a drag coefficient, for 

which a model equation is supplied in the next paragraph. The subscript i next to the fluid ve-

locity u and the fluid pressure pf indicates that these quantities are evaluated at the particle’s 

center position. 

2.3 Microscopic Drag Model 

We model the fluid-particle interaction force fd by a drag coefficient and the relative veloc-

ity between fluid and particle: 
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( ), , ,d i p i p i i iV β= −f u v . (5) 

Various models for the drag coefficient βp exist, but most of them can be condensed to the 

following expression: 
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The term in the square brackets is typically denoted as F, and dp and φp is the particle di-

ameter and the particle volume fraction, respectively. Here Rep is the particle Reynolds num-

ber: 
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Three typical drag models are summarized in Table 1, and they are valid up to Rep = 1,000. 

We have used the Wen-Yu [16] model, as well as the Beetstra et al. [17] model in our simula-

tions. We also checked the effect of a fluctuating drag force [18] on our results, however, we 

found that the effect of such a fluctuation is small for the parameter space investigated by us. 

It would be natural to include a model for the hydrodynamic torque that the fluid exerts on the 

particles. We have tested such a torque model as suggested by Hölzer and Sommerfeld [19], 

but since the fluid density in our case is small, the effect of this torque was found to be negli-

gible. 
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Table 1: Commonly used drag laws for gas-particle flow simulations. 
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3 CASE DESCRIPTION 

We perform CFD-DEM simulations in a fully periodic domain with proportions 1x4x1 

(width x height x length, see Figure 1, left panel). We considered a system size with a width = 

53.3 dp, as well as a width = 107 dp, and varied the domain-averaged particle volume fraction 

from 0.02 to 0.50. This required us to track between 2.3
.
10

4
 and 4.64

.
10

6
 particles. Our system 

is characterized by a particle Reynolds number of 1.18, a particle-to-fluid density ratio of 

1154, a particle Froude number of 65, and is equal to that used by Igci et al. [1]. 

 

 

Figure 1: Particle volume fraction at the particle position and fluid flow field in a periodic domain simulation 

(2.3
.
10

6
 particles, <φp> = 0.25, 107 x 427 x 107 dp domain size; the right panel shows a small slice located at the 

front of the image on the left). 

4 RESULTS 

4.1 Averaged Slip Velocities and Filtered Drag Coefficient 

We illustrate our filter strategy by defining a filtered slip velocity at the particle location. 

This slip velocity is calculated from a filtered fluid velocity and the velocity of a single parti-

cle: 

,

f f
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Here the subscript i indicates that the filtered quantity is evaluated at the particle position, 

and the overbar refers to an average over a cubic filter region with length ∆filter. In order to 

compare various numerical settings, it is useful to define a domain-averaged slip velocity 

,

,
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Here < > indicates averaging over the whole computational domain.  
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Similarly to the filtered slip, we define a filtered drag coefficient, which is essentially the 

ratio of the effective drag acting on a particle and the filtered slip velocity. In addition, we 

make use of the fact that in a coarse-grid simulation we will precisely know the filtered buoy-

ancy term. Hence, we subtract this contribution from the filtered buoyancy force acting on the 

particle, and require adding this term later in coarse-grid simulation. Thus, we define the fil-

tered drag coefficient in each spatial direction n as:  

( ), , , , ,

, ,

1
p i n f i f i p i i i

n
slip i n

p pβ β = −∇ + ∇ + − u v
u

 (10) 

For our analysis below, we consider only the component of the filtered drag coefficient 

that is parallel to gravity (i.e., the y-component). The filtered slip velocity and drag coefficient 

are calculated for each particle, binned with respect to the filtered particle volume fraction 

(typically, we use 100 bins and collect between a few thousand and 10
7
 samples per bin), and 

averaged over at least 20 dimensionless time units t
*
 = t / (ut / g). Averaging starts after the 

flow is developed, which is typically the case for t
*
 > 15. 

4.2 Domain-Averaged Slip and the Effect of the Microscopic Drag Law 

In order to assess the accuracy of the CFD-DEM approach for our gas-solid flow, we per-

formed a grid dependency study for small to moderately dense particle concentrations. This 

study showed that all our results for <uslip> (summarized in Table 2, data were time-averaged 

over at least 20 t
*
) are within 3% and 5% for a domain average volume fraction of <φp> = 

0.05 and 0.25, respectively. For the case with the highest particle volume fraction (i.e., <φp> = 

0.50) we found that there are more substantial variations upon grid refinement. We conclude 

that this is due the formation of bubbles (see Figure 2) which, depending on the fluid grid res-

olution, can have different sizes. The large bubbles observed at the finest fluid grid resolution 

(shown in Figure 2) lead to instantaneous vertical particle velocities in the order of the termi-

nal settling velocity. These large bubbles were not seen on coarser fluid grids. We hence have 

excluded this data from our results for the filtered drag coefficient. 

 
 

<φp> 

homogeneous 

suspension 

<uslip,y>    /    ut 

CFD-DEM 

simulation        
<uslip,y>    /    ut 

<uslip,y>CFD-DEM    / 
<uslip,y>homogeneous 

0.02 0.761 1.25 1.64 

0.05 0.607 1.26 2.08 

0.10 0.447 1.25 2.80 

0.15 0.340 1.26 3.71 

0.20 0.262 1.10 4.20 

0.25 0.203 1.04 5.12 

0.35 0.121 0.888 7.24 

0.40 0.0931 0.639 6.86 

0.50 0.0536 0.268 5.00 

Table 2: Domain-averaged slip velocity in a periodic domain (Beetstra et al. drag law,  

107 x 427 x 107 dp domain size, ∆fluid = 3.33 dp). 

Figure 3 illustrates the influence of the microscopic drag law on our statistics for the 

filtered slip velocity. Here we compare two microscopic drag laws, namely the Wen-Yu and 

the Beetstra et al. correlation, that differ quite significantly (i.e., roughly 40% for intermediate 
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volume fractions) from each other. In the left panel of Figure 3, our data on the dimensionless 

filtered slip velocity shows qualitatively similar trends, however, the (dimensionless) slip 

velocity is markedly different for the two drag laws (with an average difference of ca 30%). 

The results for the case with the higher microscopic drag (i.e., the Beetstra et al. model) yields 

a slip velocity closer to that of a homogeneous suspension, as expected. While there are 

quantitative differences for the filtered slip velocity, the filtered drag coefficients are in better 

agreement for both microscopic drag models, with significant differences only for 
p pφ φ>  

(see Figure 3, right panel, the average difference is ca 6%). Clearly, the microscopic drag law 

has little influence on the normalized filtered drag coefficient. Hence, we focus in the 

following work exclusively on the drag formulation of Beetstra et al.  

 

 

Figure 2: Particle volume fraction at the particle position (left panel), as well as the particles’ vertical velocity 

and vectors indicating the fluid flow field (right panel) in a cross-section of a periodic domain simulation 

(4.64
.
10

6
 particles, <φp> = 0.50, ∆fluid = 3.33 dp, 107 x 427 x 107 dp domain size; the reference velocity is ut = 

0.232 [m/s]). 

4.3 Model for the Filtered Drag Coefficient in Euler-Lagrange Simulations 

By combining results for simulations with <φp> ranging from 0.02 to 0.40, we now con-

struct a master curve for the normalized filtered drag coefficient (see Figure 4). We have also 

included a fit to our data (black lines in Figure 4), the former being of the form: 
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Here /
f p filt

F d= ∆  is a dimensionless (inverse) filter size, and ( )
fF p

a φ  as well as ( )p
h φ  are 

fitting functions to be published in a forthcoming paper. Note, the choice of dp as the refer-

ence length for the dimensionless filter size is rather arbitrary, and hence does not make our 

results universally applicably to fluid-particle systems. However, for typical gas-particle 

flows with dp and ρp close to 75 µm and 1500 kg/m³, respectively, this scaling will yield ac-

    φp 

vy  

[m/s] 
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y 
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ceptable results. φp,crit is a critical particle volume fraction that marks the transition from 

/p pβ β  > 1 for small 
pφ  to /p pβ β  < 1 for large 

pφ . 

 

 

Figure 3: Normalized drag coefficient (left panel; black lines indicate the settling velocity of a homogeneous 

suspension) and slip velocity (right panel) for Wen-Yu and Beetstra drag model (<φp> = 0.05; 53 x 213 x 53 dp 

domain; the top row shows data for ∆filter = 10 dp, and the bottom row for ∆filter = 16.7 dp). 

As can be seen from Figure 4 and unlike previous work [1], we find that the filtered drag 

coefficient can exceed the microscopic drag coefficient at extremely low particle concentra-

tions (see Figure 4, right panel). This is because in dilute regions, the fluid velocity experi-

enced by individual particles is on average larger than the spatially-averaged (i.e., filtered) 

fluid velocity. We will explain this fact in greater detail in the following paragraph. For 
pφ  

ranging from φp,crit = 0.016 to φp = 0.60, we observe a significant decrease of the effective 

drag on individual particles (see Figure 4, left panel). Similar to previously published models, 

the effective drag decreases for increasing filter size. We observe already a strong decrease 

(i.e., -50%) of the drag at a filter size of 10 dp. This is in contrast to the finding of Igci et al. 

[1], which report grid-insensitive results for their TFM simulations when choosing a grid 

resolution of 10 dp. While the exact reason for this disagreement cannot be isolated, we specu-

late that this is due to the fact that (i) the small-scale clustering had only minor effects on the 

results of Igci et al. [1] as they used comparably large domains, and (ii) the inability of the 

TFM to accurately model structure formation at small scales and the resulting saturation of 

particle clustering upon grid refinement. Unfortunately, we cannot directly compare TFM- 

and CFD-DEM-based simulations in large enough boxes, because the latter would require ex-

tremely long computations. However, TFM-based simulations in boxes with the same size as 

used in this work show that TFMs behave poorly (i.e., predict significantly less clustering) 

than CFD-DEM-based models (data not shown). 
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Figure 4: Dimensionless filtered drag coefficient for various filter sizes and volume fractions (symbols: data 

from CFD-DEM simulation; black lines: model prediction, i.e., Eqn. 11; the right panel shows the data for vol-

ume fractions below 0.10). 

 

Figure 5: Dimensionless filtered slip velocity for various filter sizes (symbols and dash-dotted line) and slip ve-

locity for a homogeneous suspension (solid line; Beetstra drag model, <φp> = 0.40). 

As already mentioned, at low particle volume fractions, there is an increase in the filtered 

drag coefficient. The origin of this fact is simple: particles in dilute regions are surrounded by 

regions of higher particle volume fraction. Consequently, the particle of interest (placed in the 

more dilute region of the filter region) will experience a higher local fluid velocity in the ver-

tical direction compared to the average fluid velocity in the filter region (which includes also 

the denser regions with smaller slip). Thus, also the drag force on such a single particle is 

higher than one would expect from the average fluid velocity in the filter region. Hence, when 

calculating a filtered drag coefficient that is based on the force on the particle and the differ-

ence between the particle and the filtered fluid velocity in the filter region, one will obtain on 

average an effective drag coefficient for these particles that is larger than the microscopic 
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drag coefficient. To support our arguments, we show the filtered slip velocities for various 

filter sized and a domain-averaged volume fraction of <φp> =0.40 in Figure 5. As can be seen, 

the filtered slip velocity decreases with increasing filter size at low particle concentrations. In 

addition, we find that for simulations with <φp> smaller than 0.40 the filtered slip velocity 

does increase with increasing filter size, but still the normalized filtered drag coefficient is 

larger than unity in dilute regions. We argue that for these systems the slip velocity in the di-

lute region is (on average) between 2.0 and 2.4 times higher than the terminal settling velocity, 

and the filtered slip velocity decreases monotonically with increasing particle volume fraction 

(see Figure 3). This means that particles are strongly accelerated when moving from a moder-

ately dense to a dilute region, which leads to the observed increase of the effective drag coef-

ficient.  

5 CONCLUSIONS  

We outline an approach for constructing filtered drag models from CFD-DEM-based simu-

lations in order to account for the clustering of particles. We use such an approach to con-

struct an effective drag model for coarse-grid simulations that use Lagrangian particle 

tracking. Despite not being explicitly shown here, one can easily use our approach to con-

struct models for Euler-Euler based simulations, as has been done recently by Igci et al. [1] or 

Parmentier et al. [4]. Our approach is universal, since it can be readily applied to cohesive and 

polydisperse systems. The main findings of our work can be summarized as follows: 

• A fluid grid resolution of ∆fluid / dp between 3 and 6 was found to yield acceptable results 

for the domain-averaged slip velocity, which then varies less than 5% for particle volume 

fractions up to 0.25. For extremely dense flows, the requirement on the fluid grid resolu-

tion is even higher, and we recommend using a value for ∆fluid / dp less than 3. 

• We observe cluster formation, leading to significant gas by-passing (see Figure 1), and 

consequently to a substantial increase in the dimensionless slip velocity (see Table 1). 

This gives evidence to the fact that cluster formation occurs even at scales smaller than 

previously reported [1]. 

• We propose a filtered drag law for coarse-grid Lagrangian-based simulations that is a 

function of the filtered particle volume fraction and dimensionless filter size. Our model 

is relatively insensitive to the microscopic drag model used, and hence we conclude that 

it reflects the effect of cluster formation on the flow, and not the features of a specific 

drag model. 

• Lagrangian-based simulations also need to account for clustering in for cases in which 

the fluid grid resolution is larger than ca. 7 dp, since conventional microscopic drag laws 

do not take this clustering into account. 

Finally, it must be noted that the effective drag model presented here is only parameterized 

with the filtered particle volume fraction. This model cannot reflect the influence of the fil-

tered slip velocity on the effective drag coefficient, which we observed when comparing re-

sults for systems with different <φp>. The construction of a more precise model that takes this 

effect into account is underway. 
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APPENDIX A - DETAILS OF THE NUMERICAL METHOD 

A.1 Particle Phase 

To advance the particle positions and velocities in time, we use an implementation based 

on the work of Radeke [21], with some modifications with respect to tangential contact forces 

and rolling friction [13]. To increase the robustness of the algorithm for fluid-particle flows, 

we take the gas-particle coupling force implicitly into account when updating the particle ve-

locity v. Thus, we obtain the particle velocities vi at the new time step n+1 by setting: 

( )

( ) ( ), ,1

,

/

1

n

i p i p i p cont p i pn

i

p i p

f
t Vp

t

β ρ ρ ρ

β ρ
+

 + ∆ + − + =
+ ∆

∇v u g f
v . (12) 

A.2 Fluid Phase 

For the fluid phase, we use a combination of the PISO (Pressure-Implicit with Splitting of 

Operators) scheme and the SIMPLE (Semi-Implicit method for Pressure-Linked Equation) 

scheme, which is termed PIMPLE here. Details of the implementation of these algorithms for 

single-phase flows can be found in the original work of Issa [22], as well in the publications 

of Nilsson [23], Kaerrholm [24], and Ferziger and Peric [25]. A new aspect for the present 

work is that we have to take (i) the displacement of fluid by the particles into account, and (ii) 

need to implicitly couple the two phases for stability reasons. The latter is critical for simula-

tions of flows at high particle volume fractions and small particles sizes (i.e., large specific 

coupling forces ΦΦΦΦ). We now focus on the handling of the velocity-pressure coupling and the 

handling of the coupling force. Therefore, we first rewrite the specific coupling force ΦΦΦΦ as: 

( )
,

, ,

,

1

cell j

j ij p i p i i i

i Vcell j

w V
V

β
∈

= −∑Φ v u . (13) 

Here i and j is the (fluid) cell and particle index, respectively. Vcell and wij is the volume of 

the fluid cell, and the weight of particle i in cell j (which is given by the mapping function, see 

below), respectively. To consider the fluid velocity field at time step n+1 (i.e., to consider the 

effect of the drag term on the fluid flow implicitly), we need to introduce the fluid velocity at 

the cell center (u
P

j) in the coupling force term. This can be accomplished by a simple re-

arrangement of the coupling force term: 

{ }( )
, ,

, , , ,

, ,

1

cell j cell j

P

jP

j ij p i p i i i j ij p i p i

i V i Vcell j cell j

w V w V
V V

β β
∈ ∈

= − − −∑ ∑
u

Φ v u u . (14) 

Thus, the first part on the right hand side of above equation is only weakly dependent on 

the fluid flow field (since the difference between ui and u
P

j is small, and βp,i is a relatively 

weak function of the particle’s relative velocity). This term will be taken into account explicit-

ly. The second part, however, is now linearly dependent on the fluid flow field (again, here it 

is assumed that βp,i is a weak function of the particle’s relative velocity). We are now in the 

position to write-down the discretized momentum equation for the fluid phase, where the 

coupling term is treated implicitly: 

( ) P N

P coupl N f dyn

N

a F a pφ+ + = − ∇ +∑u u
u u r . (15) 
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Here u

Pa and u

Na  are the diagonal and off-diagonal coefficients in the system of algebraic 

equations, respectively. These vectors are obtained during the discretization of the momentum 

equation, by considering the local particle volume fraction. The latter is known from mapping 

the particle volumes to the Eulerian grid. The vectors P
u and N

u are the velocity vectors at the 

cell center P and at the neighboring cells, respectively. The vector r incorporates the known 

part of the system, i.e., the first term on the right hand side of the coupling force Φ , as well as 

the divergence of the viscous tensor. Fcoupl is the coupling strength associated with the implicit 

part of the coupling term (see Eqn. 14). Based on Eqn. 15, an estimate for the new fluid veloc-

ity field can be calculated: 

( )
1

P

P coupl f dyn
a F pφ

−
 = + − ∇ 

uu H , (16) 

with  

N

N

N

a= −∑ uH r u . (17) 

By multiplication with φf and enforcing continuity (i.e., Eqn. 1), we obtain the following 

expression for the pressure: 

( ) ( )
( )1 1

2 f f

f f P coupl dyn f f P coupl
a F p a F

t

ρ φ
ρ φ ρ φ

− − ∂   ∇ ⋅ + ∇ = ∇ ⋅ + +
       ∂

u u
H . (18) 

In this equation the right-hand side is known from the previous calculation steps, and the 

resulting Poisson-like equation can be solved for the unknown dynamic pressure pdyn. For this 

purpose we use fast geometric-algebraic multi-grid (GAMG) solvers with preconditioning 

[12]. Finally, the velocity P
u  can be calculated using Eqn. 16 with the newly updated pressure. 

A.3 Mapping 

While the method of interpolation of Eulerian quantities (i.e., the pressure gradient and the 

fluid velocity) at the particle position has little influence on our results (we use tri-linear in-

terpolation), the mapping of Lagrangian quantities to the Eulerian grid requires more attention. 

Same as in our previous work on bubbly flows, we use a 4
th

-order smoothing function [26] to 

calculate the weight wij of particle i in the fluid cell j. For the smoothing length we use the 

particle radius, such that particle volume and the fluid-particle interaction forces are distribut-

ed over the region occupied by the particle. 

A.4 Numerical Settings 

The particle contact force model requires us to specify a characteristic stiffness kn, a damp-

ing coefficient γn and a friction coefficient. We have based these parameters on a characteris-

tic dimensionless shear rate ( ) ( )* / / /
t p n p p

u d g k dγ ρ=  = 10
-3

, and the expression for the 

coefficient of restitution ( )( )2

12exp / 4 /
p n n n

e k mγ π γ= − −  = 0.90. Here m12 is the reduced mass 

of the particles in contact, and ut is the terminal settling velocity of an isolated particle. The 

time step was then chosen to be 1/50 of the contact time ( )
22

12 12/ / / 2c n nt k m mπ γ= − . These 

settings ensure that the particles are stiff enough to mimic hard spheres (i.e., quasi-static flow 

in dense regions and inertia-dominated flow in dilute regions [27]), as well as yield acceptably 

large particle time steps. We have chosen a value for the particle-particle friction coefficient 
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of µPP = 0.1, and the tangential stiffness and damping coefficient were set to kt = 2/7 kn and γt 

= γn, respectively. 

To ensure a precise solution of the Navier-Stokes equation for the fluid phase, we perform 

six “pressure-velocity” correction loops (i.e., “outer corrections”) and two pressure iterations 

(i.e., “inner corrections”) within the PIMPLE algorithm. The relaxation factors for all but the 

last correction loop are 0.6 and 0.3 for the fluid velocity and pressure, respectively. We use 

second-order accurate spatial (central-differences-based) and temporal (a backward-Euler) 

discretization schemes. For the linear solvers (i.e., the solver for the Poisson-like pressure 

equation and the ones used to estimate the fluid velocity) we used absolute tolerances between 

10
-5

 and 10
-9

 - these settings yielded stable simulations and acceptable mass conservation er-

rors. The fluid time step was chosen such that the Courant number was below 0.3. 


