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ABSTRACT: With increasing automation of driving tasks, reliable information on the road con-
ditions is required to ensure safe automated transport. A method is presented to determine the
maximum coefficient of friction between tire and road surface during driving based on measure-
ments of the vehicle’s dynamic state using a model-based approach. Particle filtering is applied as
a state estimation technique which is able to consider measurement noise and model uncertainties
within a Bayesian framework. Almost only standard sensors as installed in a vehicle with elec-
tronic stability control (ESC) are used. The sensor information required includes wheel speeds,
longitudinal and lateral chassis acceleration, the yaw rate, the steering wheel angle and the lon-
gitudinal velocity. Using real vehicle measurements, possibilities and limitations of the presented
approach are discussed. It is demonstrated that the tire and road conditions can be estimated in
many driving conditions with a high confidence.
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1 INTRODUCTION

The functionality of today’s vehicles is limited, because the maximum tire-road friction coeffi-
cient during driving, which limits the maximum transmittable tire-road forces, is not known. This
is especially relevant since automation of driving tasks is increasing. In case of fully automated
driving, the vehicle requires knowledge on the road (and tire) conditions in order to safely trans-
port passengers and payload through traffic in different road and weather conditions. Information
on the road condition is also required for semi-automated driving functions to adapt intervention
strategies or to instruct the driver to take over in a critical situation. This could be the case in
presence of poor road conditions that are outside the operability of an automated control, or if a
current estimate of the road conditions has too low confidence to be relied on during automated
driving, e.g. (Eichberger 2011).

The maximum tire-road friction coefficient µmax is defined as the ratio between the maximum
transmittable longitudinal tire force Fmax

x und the vertical tire load Fz . It depends on tire, road
and vehicle parameters, as well as on the presence and consistency of precipitation like rain or
snow. During typical driving, µmax may change between 0.1 and 1 because of changes in road and
weather conditions, e.g. (Gustafsson 1997).

1.1 State of the art

Due the importance of µmax for driving safety, its estimation has been extensively investigated.
Vehicles equipped with electronic stability control (ESC) already provide a good basis of sensor
signals to evaluate the vehicle’s dynamic state, thus many methods focus on determining µmax

based on these measurements. Among the published approaches based on vehicle dynamics, some
aim to estimate µmax by comparing the measured vehicle’s state to an expected one using a model-
based approach. To also consider measurement noise and model uncertainties, methods within the
Bayesian framework such as Kalman filtering, Bayesian state estimation and particle filtering have



proven to be suitable. For example, Gustafsson used Kalman filtering to estimate an effect of µmax

on the longitudinal tire force at small values of longitudinal slip using only measurements of the
wheel speeds, (Gustafsson 1997). Boßdorf-Zimmer estimated both the vehicle’s side-slip angle
and µmax during lateral manoeuvres using extended Kalman filtering, (Boßdorf-Zimmer 2007).
An adapted form of a particle filter has been used by Ray, who compared estimated horizontal tire
forces to those expected at certain values of µmax and thus determined the most probable µmax for
the current driving situation, (Ray 1997).

The present method focuses on the longitudinal dynamics of the vehicle, and especially the
wheels. Like within the approach proposed by Ray, a particle filter has been used to determine
µmax based on longitudinal tire characteristics, (Ray 1997). Other than the mentioned approach,
the presented implementation enables a good compromise between an accurate estimate that may
converge with time and the fast detection of changes of µmax by applying re-sampling and re-
initialisation strategies.

2 METHOD

The determination of µmax based on measurements of the vehicle’s states can be treated as a state
estimation problem, where the vehicle’s state equations are influenced by time-varying model
parameter µmax which is to be observed. Therefore, a model given in the form of

x(k) = f(x(k − 1),w(k)) (1)

z(k) = h(x(k),v(k)), (2)

with a non-linear difference equation for the state vector x(k) to be observed and a non-linear
measurement equation z(k) at discrete time step k, (Simon 2006). Within this model, uncer-
tainties due to process noise w(k) and measurement noise v(k) are also considered using
prior knowledge on their statistical probability distribution, e.g. their probability density func-
tions (PDF). The state x(k) includes the wheel-individual maximum coefficients of friction[
µmax
fl µmax

fr µmax
rl µmax

rr

]T, with the first subscripts f , r for the front or rear wheels and l,
r at the second position for left or right wheel. The measurement vector z(k) comprises the
longitudinal tire forces [Fx,fl Fx,fr Fx,rl Fx,rr]

T at each wheel. Rather than using a direct
measurement of z(k), it is estimated separately based on the vehicle’s dynamic reaction as shown
below. Within this section, first a brief presentation of particle filtering is given. Then, the wheel
and tire model used within the particle filter are described.

2.1 Particle filtering

Particle filters are Bayesian state estimators suitable to observe certain states of models given in
the form of Equations 1 and 2, (Simon 2006). These estimators are able to deal with w and v
using prior information on their statistical characteristics. Unlike Kalman filters, particle filters
can also be applied to non-linear models without additional adaptation like e.g. linearisation of
the non-linear equations at working point.

For each of the state variables in x, different realistic hypotheses for its initial values are
assumed. These N hypotheses of x are randomly generated for time step k = 1 using the a
priori PDF of x. The computational effort of the particle filter strongly depends on the number N
of particles that is chosen. With these hypotheses xh(k), model-based values h(xh(k)) are cal-
culated using Equation 2. Then, the relative likelihood of each of the particles is calculated. This
is done by comparing the assumptions h(xh(k)) and the measurement z(k) assuming a certain
statistical distribution between the two, in the given case a multivariate Gaussian distribution.

The relative likelihood of unlikely states is very small and does not contribute to an estimate, but
still requires computational effort for calculation of these particle’s likelihoods. To counteract, a
re-sampling strategy is applied. Using the relative likelihood of the prior particles, which describes
the probability distribution of the particles, a new set of again N particles x+(k) is generated.
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Figure 1. Schematic structure of observer including the measurement inputs, vector z of current longitu-
dinal tire forces calculated based on the vehicle’s reaction, vector h for the different particles xh calculated
based on a tire model and the resulting estimates x̂. Graphic depiction based on (Lex 2015).

Different strategies for re-sampling may be applied, influencing the computational effort and the
convergence speed of an estimate. Finally, the most probable state is calculated by

x̂(k) =
1

N

N∑
h=1

x+(k). (3)

2.2 Wheel and tire model

Figure 1 shows the schematic structure of the observer used. As mentioned, the vector z comprises
the current longitudinal tire forces Fx,i for each of the i wheels. Using the wheels’ rotational
equilibrium, they are given by

Fx,i(k) =
1

rs,i
·
(
MD,i(k)−MR,i − Ii ·

ωi(k)− ωi(k − 1)

t(k)− t(k − 1)

)
. (4)

Required inputs are the wheel’s driving and braking torque MD,i, the rolling resistance MR,i, the
wheel speeds ωi, the wheel’s moment of inertia Ii and the static tire radii rs,i. The wheel speeds
were directly measured using ESC sensors. The wheel’s parameters Ii and rs,i were assumed
constant, and MR,i was modelled as a function of the tire vertical load. Wheel load transfer
during braking, accelerating and cornering was considered using the measured horizontal body
accelerations ax and ay. The wheel’s torqueMD,i was being calculated with ax using the vehicle’s
longitudinal equilibrium of motion, (Lex 2015).

Simultaneously to the calculation of z, the longitudinal tire forces expected for different
hypotheses or particles xh of µmax are calculated for the current driving state. The vector h con-
taining these expected longitudinal forces is calculated using the tire model TMsimple, (Hirschberg
2009). Apart from µmax, the required inputs for the tire model are the wheel’s longitudinal and
lateral slip, as well as the vertical tire load. To calculate the wheels’ longitudinal slips, the vehi-
cle’s longitudinal velocity is required. ESC sensors were not sufficient to calculate this velocity
sufficiently accurate, thus in addition GPS velocity and inertial measurements had to be used.
These are the only sensor signals required apart from ESC sensors.

Within this article, only results for pure longitudinal manoeuvres with the lateral slip being zero
are presented. However, although not shown, combined longitudinal and lateral driving conditions
are included within the estimator. Therefore, the steering wheel angle δS and the vehicle’s yaw
rate ωz as shown in Figure 1 are also considered. Finally, z and h(x)h are being compared within
the particle filter in order to get the most probable value of x̂.



time

F
x

µmax

µmax=0.1

µmax=0.5

µmax=1.2z

h(x
h
)

Figure 2. Representation of longitudinal tire forces over time for an exemplary driving manoeuvre, i.e.
during accelerating (cf. Figure 3). The thick black line shows z estimated based on the wheels’ dynamics,
the thin grey lines show the tire model-based h for different xh, (Lex 2015).

3 RESULTS

The identification of the friction potential has been investigated using measurements from accel-
erating and braking manoeuvres with different dynamic excitations (e.g. maximum body acceler-
ations) on high- and low-friction surfaces, for changing road conditions (µ step), and for different
road conditions on left and right wheels (µ split). Existing methods identify the most probable
estimate at every time step, e.g. (Ray 1997), without letting the estimate converge with time.
This enables fast detection of changes in road and tire conditions, but is also sensitive to small
deviations due to uncertainties and results in noisy estimates. To find a balance, convergence of
particles was allowed in dependence of statistical characteristics of the estimate, (Lex 2015). The
following results comprise both results for estimation without convergence (fixed particles), and
converging particles including a re-initialisation strategy (sampled particles) enabling detection of
changes. In both cases, the particles for µmax start with uniform distribution between 0.1 and 1.2.

For an exemplary driving condition, Figure 2 shows both z and h for different xh over time. As
described in Section 2, µ̂max is estimated within the particle filter based on the estimate z of the
longitudinal force depending on the wheels’ dynamics (thick black line), and based on the model-
based calculated longitudinal forces h(x)h for different hypotheses of µmax (thin grey lines). It
can be seen that there are deviations between z and h(x)h at certain times, e.g. due to model
and measurement uncertainties. Also, time delay due to a delayed vehicle response to an input
influences the estimate can be a reason, which occurs in Figure 2 when Fx starts to increase.

3.1 Accelerating on constant µmax

Figure 3 shows the estimation results for the front left wheel during an acceleration manoeuvre
on a high-friction surface. Whereas the estimate based on fixed particles (non-converging) shows
high deviations in the beginning and a noisy characteristic, the estimate using sampled particles
rapidly converges. For this particular case shown in Figure 3, particles have not been re-initialised.
It can be seen that the estimate does not change with time once it converged, and thus a change in
friction after convergence would not be detected.

3.2 Braking on µ step

Figure 4 shows the estimation results for two braking manoeuvres on µ step conditions, both
transitioning from a high- to a low-friction surface. It can be seen that with higher decelerations
as shown on the left side, both estimation strategies show good results when detecting the high-
and the low-friction condition as well as the transition. During gentle braking, however, the high-
friction surface cannot be detected. Within the estimator, the low acceleration is being interpreted
as a low-friction surface. This is undesirable for further applications, which also require informa-
tion on the trustworthiness of the current estimate. Further investigations implicate that statistical
characteristics of the estimate and the particles may be a useful measure for the trustworthiness of
the current estimate, (Lex 2015).
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Figure 3. Estimates of µmax for front left wheel for two estimation strategies shown on right side, which
were obtained during the manoeuvre shown on the right side with high positive accelerations starting at
vx ≈ 20 km/h with a front-wheel driven vehicle.
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Figure 4. Acceleration profiles and estimates of µmax for rear left wheel on a µ step road surface are shown
for strong braking starting at vx ≈ 50 km/h (left side) and gentle braking starting at vx ≈ 40 km/h (right
side).

3.3 Braking on µ split

Figure 5 shows the estimates obtained during a braking manoeuvre on a µ split surface, with
the left wheel being on the low-friction surface and the right wheel being on the high-friction
surface. As with the comparison of hard and gentle braking, it can be seen that the high-friction
surface cannot be detected at low body accelerations. On the low-friction surface, with increasing
acceleration (about 7.5 s), the estimates improve. At about 8.5 seconds, the estimates increase
compared to the reference value. This may be because the water film under the tire does not
remain constant during strong braking at the physical limits. Thus, for short periods of time,
higher accelerations can be achieved than would be expected. This effect is not considered at the
reference value.

3.4 Estimation errors

Table 1 shows an overview on the mean absolute errors (MAE) and the maximum absolute errors
(MAX) for the different manoeuvres and estimator strategies. Maximum deviations occur in the
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Figure 5. Estimates of µmax for µ split surfaces for rear left (low friction) and rear right wheel (high
friction) shown on left side, which were obtained during the braking manoeuvre shown on right side starting
at vx ≈ 30 km/h.

Table 1. Mean absolute errors (MAE) and maximum absolute errors
(MAX) for different manoeuvres and estimation strategies (fixed and sam-
pled particles)

manoeuvre road condition particles MAE MAX

acceleration constant fixed 0.17 0.79
acceleration constant sampled 0.08 0.15

braking, strong µ step fixed 0.06 0.75
braking, strong µ step sampled 0.1 0.7

braking, gentle µ step fixed 0.3 1.0
braking, gentle µ step sampled 0.36 1.01

braking µ split (low friction) fixed 0.2 0.35
braking µ split (low friction) sampled 0.16 0.4

braking µ split (high friction) fixed 0.6 1.01
braking µ split (high friction) sampled 0.65 1.02

small periods where the particles start with a uniform distribution, and thus show a low confidence,
or at the first time step when µ changes (µ step). In general, the MAE are more meaningful to
evaluate the estimates. It can be seen that in the cases with sufficient dynamic excitation in relation
to the physical limits, the MAE are mainly within 0.1.



4 CONCLUSION

Reliable information on the current road and tire conditions is required in order to ensure safe
driving at higher levels of automated driving. A method is presented to estimate road and tire
conditions based on measurements of the vehicle’s dynamic response. It is demonstrated that the
proposed method provides high potential to improve current techniques for estimation of road
and tire conditions based on vehicle dynamics measurements in certain driving conditions. Apart
from measurements of the vehicle’s longitudinal velocity, the sensor signals of a vehicle equipped
with electronic stability control (ESC) were sufficient. To have sufficiently accurate values of the
velocity, both GPS velocity and inertial measurements were used. Since the proposed method is
based on the measurement of the dynamic reaction of the vehicle during driving, the estimation
accuracy increases with the dynamic excitation. This means that for accelerations closer to the
physical limits, the friction estimate is more accurate. Since current ADAS are developed to meet
requirements on high-friction surfaces (µmax about 1), the detection of low friction surfaces is
especially of interest. To detect these conditions, lower accelerations are sufficient than for the
detection of high-friction surfaces. Another advantage of the proposed method is the inclusion
of the tire condition rather than only the road condition, like e.g. with optical sensors. However,
taking into account additional information like car-to-car systems or optical sensors (cameras,
radar sensors) in future applications will enable achieving a robust estimate over a wide range of
driving conditions.
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