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Abstract— Adaptive predistortion of nonlinear systems
described using IIR Hammerstein models is introduced in
this paper. The adaptive predistorter is modeled as an IIR
Wiener system. The parameters of the linear and nonlinear
blocks of the predistorter are estimated simultaneously using
the Nonlinear Filtered-x Least Mean Squares (NFxLMS)
algorithm. The NFxLMS algorithm is derived under the as-
sumption that the parameters of the IIR Wiener predistorter
are changing slowly during adaptation. Simulation study
shows that the suggested predistorter using the NFxLMS
algorithm can well compensate the nonlinear distortion of
the IIR Hammerstein system.

I. INTRODUCTION

Cancelling or reducing nonlinear distortion due to
nonlinearity characteristic of some electronic devices are
essential requirement in many areas. Examples can be
found in communication systems, speech processing and
control engineering, see [1, 2].

Several adaptive predistortion techniques based on us-
ing Volterra series as a model for the nonlinear system
have been proposed [1, 2]. However, since these tech-
niques are based on using Volterra models, high computa-
tion complexity and slow convergence speed are expected
problems during real-time implementation. Recently, an
approach based on polyphase representation for Volterra
filters that helps to reduce the computation complexity is
introduced in [3].

Therefore, block-structured models such as the Wiener
and Hammerstein model structures, see [4, 5], are consid-
ered in order to decrease the number of parameters to be
estimated - hence decreasing computational complexity
and convergence time. The Wiener model structure con-
sists of a linear dynamic system followed by a static non-
linearity block. Wiener models arise in practice whenever
a measurement device has nonlinear characteristic. For
example, power amplifier can be modeled as a Wiener
system [6, 7]. On the other hand, in the Hammerstein
model structure, the static nonlinearity block precedes the
linear dynamic system.

According to [7], power amplifier can be modeled as a
FIR Wiener system or an IIR Hammerstein system. The
authors also concluded that high power amplifiers are best
modeled using IIR Hammerstein systems. The predistor-
tion technique for the FIR Wiener system has been pro-
posed in [8, 9]. The idea is to connect a FIR Hammerstein

Hammerstein systemsWiener predistorter

NFxLMS algorithm

x p(z−1) f(.) g(.) h(z−1)
zx2 y y2

e

+
−

r

Fig. 1. Predistortion of IIR Hammerstein system.

predistorter tandemly with the nonlinear system. Then
the Nonlinear Filtered-x Least Mean Squares (NFxLMS)
algorithm is used for adaptively adjusting the parameters
of the predistorter. The approach of [8, 9] requires the
estimation of the FIR Wiener system.

In this paper, the IIR Hammerstein model structure is
considered as a model for the nonlinear system, hence the
predistorter is modeled as an IIR Wiener system [10, 11].
The NFxLMS algorithm is developed here for estimating
the parameters of the IIR Wiener predistorter. Also in this
paper, the estimation of the IIR Hammerstein system is
required.

This paper is organized as follows. In Section II,
the structures of the IIR Hammerstein system and the
IIR Wiener predistorter are defined. In Section III, the
NFxLMS algorithm is derived for adaptively estimating
the parameters of the predistorter. In Section IV, the
validity of the proposed algorithm is demonstrated via
computer simulations. Section V comes to conclusions.

II. PREDISTORTION OF HAMMERSTEIN IIR
SYSTEMS

According to [10, 11], the IIR Hammerstein system
shown in Fig. 1 is to be precompensated using an IIR
Wiener predistorter. The output of the Hammerstein sys-
tem is given by

z(n) = h(z−1)y2(n) =
B(z−1)

1 − A(z−1)
y2(n)

=
mb∑

m=0

bmy2(n − m) +
ma∑

m=1

amz(n − m) (1)



where h(z−1) = B(z−1)
1−A(z−1) and the polynomials A(z−1)

and B(z−1) are defined as

A(z−1) =
ma∑

m=1

amz−m

B(z−1) =
mb∑

m=0

bmz−m.

(2)

Here z−1 is the delay operator such that z−mx(n) =
x(n − m). The intermediate signal y2(n) is defined as

y2(n) = g1y(n) + g2y
2(n) + · · · + gmg

ymg (n)

= θT
g y(n) (3)

where
θg =

(
g1 g2 · · · gmg

)T
(4)

and

y(n) =
(

y(n) y2(n) · · · ymg(n)
)T

. (5)

Similarly, the output of this predistorter is given as

y(n) = f1(n)x2(n) + f2(n)x2
2(n) + · · · + fmf

x
mf

2 (n)

= θT
f (n)x2(n) (6)

where

θf (n) =
(

f1(n) f2(n) · · · fmf
(n)

)T
(7)

and

x2(n) =
(

x2(n) x2
2(n) · · · x

mf

2 (n)
)T

. (8)

The intermediate signal x2(n) is given by

x2(n) = p(n, z−1)x(n) =
D(n, z−1)

1 − C(n, z−1)
x(n)

=
md∑

m=0

dm(n)x(n − m) +

mc∑
m=1

cm(n)x2(n − m). (9)

where p(n, z−1) = D(n,z−1)
1−C(n,z−1) and the polynomials

C(n, z−1) and D(n, z−1) are defined as

C(n, z−1) =
mc∑

m=1

cm(n)z−m

D(n, z−1) =
md∑

m=0

dm(n)z−m.

(10)

Let us define the parameter vector θ of the predistorter
as follows

θ =
(

θT
f θT

d θT
c

)T
θf =

(
f1 f2 · · · fmf

)T
θd =

(
d0 d1 · · · dmd

)T
θc =

(
c1 c2 · · · cmc

)T
.

(11)

The goal of this paper is to estimate the parameter vector
θ by minimizing the mean square difference given by

E{e2(n)} = E{(r(n) − z(n))2} (12)

where E{.} denotes the Expectation and r(n) is the
reference signal which is defined in [2] and given by

r(n) = x(n − τ) + υ(n). (13)

Here τ is the delay time and υ(n) is zero-mean Additive
White Gaussian Noise (AWGN).
Remark 1: The delay time τ equals to zero in case the
system to be compensated is minimum phase [2].

The NFxLMS algorithm can be developed to estimate
the parameter vector θ. This algorithm is introduced in
the next section.

III. THE NFXLMS ALGORITHM

The NFxLMS algorithm is obtained by applying the
stochastic gradient algorithm [2]:

θ(n + 1) = θ(n) − µ

2
∆T (n) (14)

where µ is a positive constant with value less than 1 and
usually defined as the step-size parameter. Also, ∆(n) is
the gradient vector which is defined as

∆(n) =
de2(n)
dθ(n)

= −2e(n)
dz(n)
dθ(n)

. (15)

Using Eq. (1), dz(n)
dθ(n) can be derived as

dz(n)
dθ(n)

=
mb∑

m=0

bm
dy2(n − m)

dθ(n)
+

ma∑
m=1

am
dz(n − m)

dθ(n)
. (16)

If the step-size µ is sufficiently small so that the param-
eter vector θ changes slowly [2, 12, 13], the following
approximations can be made:

dy2(n − m)
dθ(n)

≈ dy2(n − m)
dθ(n − m)

, m = 0, 1, · · · ,mb

dz(n − m)
dθ(n)

≈ dz(n − m)
dθ(n − m)

, m = 1, 2, · · · ,ma.

(17)

Consequently, Eq. (16) can be written as

dz(n)
dθ(n)

≈
mb∑

m=0

bm
dy2(n − m)
dθ(n − m)

+
ma∑

m=1

am
dz(n − m)
dθ(n − m)

=
B(z−1)

1 − A(z−1)
dy2(n)
dθ(n)

= h(z−1)
dy2(n)
dθ(n)

≈ ĥ(z−1)
dy2(n)
dθ(n)

(18)

where ĥ(z−1) is the estimate of h(z−1). From Eqs. (3)-
(5), we have

dy2(n)
dθ(n)

= θT
g

dy(n)
dθ(n)

= θT
g

dy(n)
dy(n)

dy(n)
dθ(n)

≈ s1(n)
dy(n)
dθ(n)

(19)

where

s1(n) = θ̂
T

g

dy(n)
dy(n)

= θ̂
T

g


1

2y(n)
...

mgy
mg−1(n)

 . (20)



Here θ̂g is the estimate of θg . Using Eqs. (11) and (18),
Eq. (19) becomes

dz(n)
dθ(n)

≈ ĥ(z−1)s1(n)
dy(n)
dθ(n)

= ĥ(z−1)s1(n)
(

∂y(n)
∂θf (n)

∂y(n)
∂θd(n)

∂y(n)
∂θc(n)

)
.

(21)

Considering Eqs. (6), (8) and (9), ∂y(n)
∂θf (n) can be derived

as

∂y(n)
∂θf (n)

=
∂θT

f (n)x2(n)
∂θf (n)

= xT
2 (n)

=


p(n, z−1)x(n)[
p(n, z−1)x(n)

]2
...[

p(n, z−1)x(n)
]mf


T

. (22)

Note that the intermediate signal x2(n) should be esti-
mated since it is usually not measurable. Again, using
Eqs. (6), (8) and (9), ∂y(n)

∂θd(n) and ∂y(n)
∂θc(n) can be derived

as

∂y(n)
∂θd(n)

= θT
f (n)

∂x2(n)
∂x2(n)

∂x2(n)
∂θd(n)

= s2(n)
∂x2(n)
∂θd(n)

∂y(n)
∂θc(n)

= θT
f (n)

∂x2(n)
∂x2(n)

∂x2(n)
∂θc(n)

= s2(n)
∂x2(n)
∂θc(n)

(23)

where

s2(n) = θT
f (n)

∂x2(n)
∂x2(n)

= θT
f (n)


1

2x2(n)
...

mfx
mf−1
2 (n)



= θT
f (n)


1

2
[
p(n, z−1)x(n)

]
...

mf

[
p(n, z−1)x(n)

]mf−1

 . (24)

Now, it remains to derive ∂x2(n)
∂θd(n) and ∂x2(n)

∂θc(n) . Differentiat-
ing both sides of Eq. (9) with respect to dk(n) and ck(n)
gives

∂x2(n)
∂dk(n)

= x(n − k) +
mc∑

m=1

cm(n)
∂x2(n − m)

∂dk(n)

∂x2(n)
∂ck(n)

= x2(n − k) +
mc∑

m=1

cm(n)
∂x2(n − m)

∂ck(n)
.

(25)

Since the parameter vector θ is assumed to be changing
slowly, we can write

∂x2(n − m)
∂dk(n)

≈ ∂x2(n − m)
∂dk(n − m)

,m = 1, 2, · · · ,mc

∂x2(n − m)
∂ck(n)

≈ ∂x2(n − m)
∂ck(n − m)

,m = 1, 2, · · · ,mc.

(26)

Hence, Eq. (25) can be rewritten as

∂x2(n)
∂dk(n)

≈ x(n − k) +
mc∑

m=1

cm(n)
∂x2(n − m)
∂dk(n − m)

∂x2(n)
∂ck(n)

≈ x2(n − k) +
mc∑

m=1

cm(n)
∂x2(n − m)
∂ck(n − m)

(27)

or

∂x2(n)
∂dk(n)

≈ z−k

1 − C(n, z−1)
x(n), k = 0, 1, · · · ,md

∂x2(n)
∂ck(n)

≈ z−k

1 − C(n, z−1)
x2(n)

=
z−k

1 − C(n, z−1)
[
p(n, z−1)x(n)

]
,

k = 1, · · · ,mc.

(28)

Therefore, we have

∂x2(n)
∂θd(n)

=


∂x2(n)
∂d0(n)
∂x2(n)
∂d1(n)

...
∂x2(n)

∂dmd
(n)


T

≈


1

1−C(n,z−1)x(n)
z−1

1−C(n,z−1)x(n)
...

z−md

1−C(n,z−1)x(n)


T

(29)

and

∂x2(n)
∂θc(n)

=


∂x2(n)
∂c1(n)
∂x2(n)
∂c2(n)

...
∂x2(n)

∂cmc (n)


T

≈


z−1

1−C(n,z−1)

[
p(n, z−1)x(n)

]
z−2

1−C(n,z−1)

[
p(n, z−1)x(n)

]
...

z−mc

1−C(n,z−1)

[
p(n, z−1)x(n)

]


T

.(30)

Now, we have completely derived the components of
dz(n)
dθ(n) in Eq. (21) and hence the gradient vector ∆(n).

IV. SIMULATION STUDY

In this simulation study, the following IIR Hammerstein
system was considered:

z(n) =
0.26 + 0.77z−1 + 0.77z−2 + 0.26z−3

1 + 0.58z−1 + 0.42z−2 + 0.06z−3
y2(n)

y2(n) = y(n) + 0.5y2(n) + 0.25y3(n).
(31)

Remark 2: In this simulation study we assumed that the
system is already well identified, i.e. ĥ(z−1) = h(z−1)
and θ̂g = θg , respectively.

The order of the linear and nonlinear blocks of the IIR
Wiener predistorter were chosen as mc = 3, md = 3
and mf = 9, respectively. The input signal was a random
signal with uniform distribution over (−1, 1) with data
length of 106 samples. The bandwidth of the input signal
was limited in order to prevent aliasing [14].
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Fig. 2. ED for different SNRs for the NFxLMS algorithm.

As a performance measure, the normalized mean-
square distortion ED of the system containing the predis-
torter and the nonlinear system has been evaluated. ED

is defined as

ED(n) = 10 log10

(
Ê{e2(n)}
Ê{r2(n)}

)
(32)

where Ê{.} is the mean over 200 independent realiza-
tions.

The parameter vectors were initialized as

θf (0) =
(

1 0 · · · 0
)T

θd(0) =
(

1 0 0 0
)T

θc(0) =
(

0 0 0
)T

.

(33)

Figure 2 shows ED of the NFxLMS algorithm for
different values of signal to noise ratios (SNRs). The step
size was set as µ = 0.1. On average, the values achieved
for ED were −19.98 dB and −37.72 dB for SNR=20
dB and 40 dB, respectively. The value of ED without the
predistorter in noise-free scenario was −7.59 dB.

Figure 3 shows power spectral densities (PSDs) of the
output signals of the IIR Hammerstein system with and
without predistorter. From this figure, we can see that the
IIR Wiener predistorter using the NFxLMS algorithm can
effectively reduce spectral regrowth and it is quite robust
against measurement noise.

V. CONCLUSIONS

Adaptive predistortion of nonlinear systems described
using IIR Hammerstein models is considered in this
paper. The NFxLMS algorithm has been derived for the
estimation of the parameters of the predistorter. This is
done under the assumption that the parameters of the
predistorter are changing slowly during the adaptation
process. The simulation results show that the suggested
IIR Wiener predistorter using the NFxLMS algorithm can
effectively compensate the nonlinear distortion of the IIR
Hammerstein system.
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