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Abstract. Group signature schemes enable participants to sign on be-
half of a group in an anonymous manner. The upcoming ISO20008-2
standard defines seven such schemes, which differ in terms of capabili-
ties, used crypto systems and revocation approaches. Further informa-
tion about practical considerations, such as runtime performance or im-
plementation overhead is considered useful when deciding for a certain
scheme. We present a Java framework that allows for a detailed compari-
son of the mechanisms, of which three are already implemented. For these
implemented mechanisms, a detailed performance evaluation is shown
for both a notebook and Android-based mobile devices. Furthermore,
significant experiences during implementing and evaluating the schemes
as well as crucial bottlenecks are pointed out. We remain in the flexible
Java environment, without special platform-specific optimizations. Using
precomputation, we already achieve acceptable online signing timings.
Signing times are considered most important given proposed application
scenarios.
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1 Introduction

Group signature schemes as first introduced by Chaum and van Heyst [17] allow
participants to sign messages on behalf of a group in an anonymous manner. The
signature scheme ensures to a verifier by cryptographic means that the signer is
indeed a valid member of such a group, but does not reveal the specific signer’s
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identity. The anonymity resides in the verifier not knowing what exact member
actually signed the document. The degree of anonymity thus strongly depends
on the group size.

Group signatures have many interesting applications, such as e-voting [16],
e-bidding [21], online payment [29] or anonymous attestation [9]. Many of the
above use-cases would additionally benefit from mobile usage. Mobile usage re-
quires efficient implementations on mobile devices, such as mobile phones. Even
with the advent of computationally powerful smartphones, implementing group
signature schemes with reasonable security and response times is still a challenge.
Group signatures are based on cryptographic algorithms which are considerably
more complex than schemes that use a single public key per entity. The problem
is only exacerbated by the sheer number and variety of different group signature
schemes that have been proposed. Often these schemes are based on different
cryptographic approaches, such as RSA or elliptic curve cryptography (ECC). In
an effort to alleviate the above problems, ISO/IEC have proposed the ISO20008-
2 [24,25] standard, which is currently a Draft International Standard (DIS) and
undergoing public review.

In this paper, we present an evaluation of three different group signature
schemes. All three mechanisms are part of the ISO20008-2 standard [25]. The
first mechanism is a scheme for e-voting, proposed by Canard et al. [16]. It is
designed to enable anonymous ballots, whilst still being capable of detecting
double-voting without de-anonymizing the voter. ECC-DAA, the second mech-
anism we analyze, was originally introduced by Chen et al. [20] and is designed
for the upcoming Trusted Platform Module (TPM) 2.0% specification. Used in
conjunction with a TPM, ECC-DAA allows users to prove a specific load-time
software state to a remote entity, called attestation. The remote verifier is thereby
not able to identify the user, but can be sure that the platform report originates
from a valid TPM. The final mechanism, the scheme by Isshiki et al. [23] gears
towards using group signatures for identity management. Labels which uniquely
define a specific group member shall be masqueraded behind a credential that
represents the group as a whole. Therefore, a verifier does not learn any specifics
about an enquiring member, only whether it is a valid member of a group or
not.

The goal of our evaluation is to determine the applicability of those schemes
for use on mobile devices. To achieve this, we have implemented a Java based
framework for evaluating group signature schemes. We have designed the frame-
work to be flexible enough to encompass the different cryptographic approaches
of the three mechanisms, while also providing the common cryptographic prim-
itives used by some of the three mechanisms. We have chosen Java because of
its wide use in mobile phones based on Google’s Android* operating system.
Furthermore, it allows for detailed comparisons without platform-specific opti-
mizations, thus providing a generalized overview.

3 http://www.trustedcomputinggroup.org/resources/trusted_platform_module_
specifications_in_public_review
4 http://www.android.com/
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Our framework can be extended to implement more than the three mecha-
nisms we compare in this paper. Additionally, we have organized the framework
to abstract cryptographic primitives from existing implementations in the Java
runtime. The reason for this abstraction is ability to replace cryptographic prim-
itives with different implementations both in Java and C and thus to evaluate
their efficiency. Finally, we make most of the framework publicly available under
an open source license®.

In addition to just evaluating the schemes against each other, we also consider
aspects such as optimization for a specific use case. For example, all steps for
ECC-DAA can be precomputed if the use case requires total anonymity.

The paper is organized as follows. In Section 2, the properties, components
and revocation approaches of group signature schemes are discussed in general.
Moreover, the implemented schemes are summarized and compared. Section 3
provides a detailed comparison regarding runtime and memory usage of the
schemes, both on a notebook and on mobile devices. In Section 4, these results
are put into the context of other evaluations by merging them in a table. A
summary of the results and future work aspects are given in Section 5.

2 Background

In the following, group signature schemes are discussed in a broader view, incor-
porating the related concepts of so-called list signature schemes and attestation.

Group signature schemes strive to fulfill the properties Soundness and Com-
pleteness, Anonymity, Unforgeability, Traceability, Coalition Resistance, Non-
Frameability and Unlinkability as defined by Chaum and van Heyst [17] and
extended by Bellare et al. [5,6]. Note that opening is generally considered a
mandatory feature for group signature schemes and linking is usually unde-
sirable [17]. However, scenarios such as electronic voting have shown uses for
types of schemes where opening is less critical and conditional linking is desir-
able to detect double usage. Canard et al. label these schemata as list signature
schemes [16]. Therefore, traceability and unlinkability are considered optional
features in this case to incorporate both attestation and list signature schemes.
List signature schemes additionally require that adversaries can at most produce
one valid signature per linking indicator and corrupted member. Any additional
signature would cause the adversary to be either detected or to reveal the identity
of the corrupted member.

Scheme Processes Group signature schemes are comprised of the following indi-
vidual processes:

— Group Establishment The group is initially set up. That is, its public
key and the corresponding group membership issuing key are created. The
creating instance, now holding the membership issuing key, is called issuing
authority.

5 Available at https://github.com/klapm/group-signature-scheme-eval
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Joining New members get added to the group. This is done by a joint
computation of the applicant and the issuing authority in a way that the
private key of the applicant remains secret. The issuing authority issues a
membership credential to complete the join process.

Signing Valid members are able to sign documents. Signatures depend on
both the private key and the membership credential, but do not reveal any
of them in a computationally feasible way.

Verification Using the group public key, a verifier is able to tell whether a
given signature was issued by a valid member of the group.

Revocation Existing members are being excluded from the group. Revoked
members can no longer sign on behalf of the group. This can be achieved in
several ways, which are discussed below.

Opening Optional, depending on whether the scheme supports opening. A
separate authority, the so-called opening authority is installed, able to open
signatures and thus reveal the specific identity of a signature’s author.
Linking Optional, only applicable if linking is supported and enabled. Given
two signatures, any stakeholder is able to tell apart whether these signatures
were created by the same author.

Revocation A challenging task for group signature schemes is to remove existing
members without affecting the workings of the group as a whole. Several ap-
proaches appear throughout the literature [19,24], all of which have advantages
and disadvantages:

— Private Key Revocation A compromised private key of a group member

is added to a list of no longer valid keys. Verifiers, given a signature, are
able to determine whether the signature was created using such a key. If the
revocation list stores both the private key and the associated member id,
a revocation check might immediately reveal the identity of the otherwise
anonymous signer if her key was revoked before. Depending on where this
list is stored and who has access to it, revocation can either be global, that
is affecting all verifiers or local, per verifier [9].

Blacklist Revocation Blacklist revocation is typically a local revocation,
in which a verifier stores a list of no longer valid signatures. Given a new
signature, the verifier is then able to determine whether this new signature
was created by either a blacklisted or still valid author [9].

Signature Revocation Signature revocation has the same effect as black-
list revocation, but uses a different approach to achieve it. With signature
revocation, revoked signatures are kept in a list as well. A verifier then re-
quires additional proof from the signer, showing that she is not the one who
created any signatures on that list to accept her signature. Naturally, this
approach impacts the overall verification performance. Signature revocation
can be a local or global revocation, depending on where the list is stored and
who has access to it [10].

Credential Revocation In this scenario, the membership credentials of
revoked members are stored in a list. Signers might then be required to prove
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that their credential is not on that list. This proof is typically done implicitly,
such that non-revoked signers prove their credibility by being able to still
produce valid signatures. This mechanism is also referred to as credential
update or re-keying and usually involves an update of the public key and
membership credentials. Existing signers who are supposed to keep their
membership are notified with means to update their membership credential
when another member is about to be dismissed. Since the credential of the
leaving member gets outdated, she is no longer able to participate. Credential
revocation is a global revocation. Note that credential update invalidates
existing signatures, as existing signatures will no longer verify when using
the newly created public key [8,14].

The implemented schemes are briefly explained in the following subsections,
and their relevant properties are summarized for comparison in a table below.

2.1 Canard et al.

The first implemented scheme is the list signature scheme proposed by Canard et
al. [16]. We will refer to it using its authors as name. List signature schemes sup-
port linking signatures as long as they are tagged with the same value. Following
the author’s original description, a tag is typically a time frame in which no two
signatures are allowed, e.g., a voting period. Linking two signatures can be done
by every stakeholder, without the need for any secret, called public detection
by the authors. If two signatures were created using different tags, linkability is
computationally infeasible.

The author’s proposed scheme is based on work by Ateniese et al. [2] and
supports multiple revocation processes, namely private key revocation, both lo-
cally and globally, and blacklisting. The scheme’s security is based on both the
strong RSA and the decisional Diffie Hellman (DDH) assumptions (cf. Section
2 in [16]).

2.2 Direct Anonymous Attestation

Direct Anonymous Attestation (DAA) was originally introduced by Brickell et
al. [9] as a mechanism to remotely authenticate a trusted platform in a privacy-
preserving way. It is intended to be used in conjunction with a Trusted Platform
Module® (TPM) and, therefore, strictly splits the signing party into a compu-
tationally powerful assistant signer and a less powerful principal signer, the
smaller TPM chip. While it differs in its purpose, it is similar to the previously
described list signature scheme when comparing at a property level. DAA also
supports linking, given the signatures were crafted using the same linking base,
a generalization of what has previously been called tag.

For this work, the pairing-based ECC-DAA variant, as proposed by Chen
et al. [20], was implemented using Barreto-Naehrig [3] curves. It was designed
for the Trusted Computing Group” (TCG) and is now included in the TPM

5 http://www.trustedcomputinggroup.org/developers/trusted_platform_module
" http://www.trustedcomputinggroup.org
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2.0 specification. As we do not utilize a TPM in this setting, the strict split-up
between assistant and principal signer was omitted and both components are
merged into one signing party.

The ECC-DAA variant is most flexible in terms of revocation, supporting pri-
vate key revocation, signature revocation, both either locally or globally, black-
listing and credential update. It is provably secure under the DDH, Lysyanskaya-
Rivest-Sahai-Wolf (LRSW) and static Diffie-Hellman (SDH) assumptions, see
Section 1 in [20].

2.3 Isshiki et al.

The third implemented scheme was introduced by Isshiki et al. [23] and is an
adaption of the Camenisch-Groth scheme [13], enabling faster revocation. The
scheme is RSA-based and supports opening, with the opening capability built
on top of an additional elliptic curve group.

In this scheme, the opening authority is entirely separated from the issuing
authority. The issuing authority holds the secret membership issuing key, which
corresponds to the group’s public key. The opening authority holds another
secret, called group membership opening key. Its counterpart is the so-called
group opening key and yet another public key for the group. To achieve this
setup, both authorities are involved during the initial group establishment. The
scheme supports credential update as revocation mechanism and is secure under
the strong RSA and DDH assumptions, see Section 4.2 in [23].

2.4 Comparison Summary

The properties of the three implemented schemes are summarized in Table 1.
The reason for choosing these three schemes is that they vary in both their goals
and their construction. The intention is to gain a principal overview of the three
schemes, and measurements that are roughly mappable to related schemes based
on similar principles. For example, schemes such as the one’s described in [2,13].

Scheme Optional Openable Crypto- Intractability Revocation Support
Linkability System(s) Assumptions CU PKR BL SR
Strong RSA,
Canard et al. v RSA DDH v v
ECC, DDH, LRSW,
ECC-DAA v Pairings SDH v v v v
Isshiki et al. v RSA, Strong RSA, v

ECC DDH

CU: Credential Update, PKR: Private Key Revocation, BL: Blacklisting, SR: Signature Revocation
Table 1. Scheme comparison
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3 Results and Evaluation

Performance measurements regarding both runtime and memory were gathered
on an off-the-shelf notebook as well as on multiple mobile devices. Concerning
the mobile scenario, especially signing is critical. Signing and verifying denote
regular tasks, whereas group creation and joining are sporadic, if not one-time
events. In mobile scenarios, these two operations have to perform sufficiently fast
in time-constrained settings, for example when placing an order using the mobile
phone. Therefore, the presented analysis concentrates on these two operations.

Before presenting concrete measurements, the framework and test setup are
described. Furthermore, we emphasize that we conducted all tests without active
revocation, even though the framework supports it. After discussing the actual
results, we conclude this section with the key lessons we learned.

3.1 Framework

All evaluated group signature schemes are embedded in a common framework
and use the same implementation of cryptographic primitives. The framework’s
purpose is to provide a flexible environment for performance measurement and
future extension, but it is limited to the task of comparing individual schemes.
Therefore, we did not implement standalone components and message passing
is done entirely locally by simple method invocations. Hence, the measurements
do not include network communication overhead.

The framework is written in pure Java and does not rely on any external
libraries. The same code base runs on both Java Standard Edition and Android
without requiring any special adjustments. The group signature schemes are uni-
fied under a common interface and the surrounding evaluation code is the same
for all concrete implementations. The implementation supports all necessary op-
erations, including revocation mechanisms, but focus was put on measurements
for signing and verification. As a consequence, sub-protocols such as proving the
knowledge of a discrete logarithm in the scheme of Isshiki et al. were omitted.

The pairing map, as required by ECC-DAA, is essentially a Java port of
the Optimal Ate Pairing C implementation® provided by Beuchat et al. [4]. We
ported the version of January 2013 from Beuchat et al., which in turn benefited
from insights gained by Aranha et al. [1]. Porting from an assembler-optimized C
implementation to an interpreted language, such as Java, has various drawbacks
regarding runtime performance. Some of the optimizations have to be abandoned
and choosing Java comes with further performance impacts, such as just-in-time
compilation and garbage collection. These circumstances leave us at considerably
slower timings of about 7ms for a single pairing evaluation, compared to about
0.5ms of the original C version, measured on the same notebook. Nevertheless,
Java was chosen to allow for general comparability of the schemes by disregarding
platform-specific optimizations and to allow easy portability.

8 Available at http://homepagel.nifty.com/herumi/crypt/ate-pairing.html
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3.2 Test Setup

The notebook case tests were performed on a Lenovo ThinkPad T420s notebook,
equipped with an Intel i7-2620M CPU at 2x2.7GHz and 8GB of RAM using
Windows 8 x64 and Java 1.7.0_11, 64 bit. For the mobile case, different devices
were used during the evaluation. The devices and their relevant specifications
are listed in Table 2.

Devi Galaxy Nexus Galaxy S Galaxy S3
evice 19250 Plus 19001 GT-19300

Manufacturer Samsung Samsung Samsung

Operating System Android 4.2 Android 2.3.6 Android 4.0.4

CPU 2x1.2GHz ARM 1.4GHz ARM 4x1.4GHz ARM
Cortex-A9 Cortex-A9 Cortex-A9

System-on-Chip Texas Instruments Qualcomm Snap-  Samsung Exynos
OMAP 4460 dragon S2 MSM8255 4412

Memory 1024MB 1024MB 1024MB

Table 2. Devices used for the evaluation

The shown evaluations are not always directly comparable due to the differ-
ent crypto-systems. In fact, a key length of 256 bit in ECC-DAA implies 128
bit security strength. The schemes by Canard et al. and Isshiki et al. evalu-
ate to 112 bit security strength at a parameterization with a modulus length
of 2048 bit. Security strength in this context denotes the number of operations
required to break a cryptographic algorithm, specified in bits; so 80 bit secu-
rity strength means at least 289 required operations. Table 3 summarizes the
evaluated parameterizations, of which all except the 80 bit setup of Canard et
al. are recommended choices by the ISO20008-2.2 draft standard. Note that the
value [, at the scheme by Canard et al. refers to a single factor of the composite
modulus. For details on these parameters, we refer the reader to the ISO20008-2
draft [25] or the original sources [16, 20, 23]. The following results will refer to
these setups using the modulus length as indicator.

All measurements were conducted without a revocation mechanism in place.
Enabling revocation when evaluating the schemes adds numerous additional pa-
rameters, such as the group size or the specific revocation approach used. The
different revocation approaches are hardly comparable, with strong dependencies
on either the group size or the number of already-revoked members. Furthermore,
the introduced revocation approaches are not always influencing the verification
time. For example, signature revocation might influence signing, and credential
update is an entirely separate process. Considering these differences, we decided
to exclude revocation from the evaluation, despite its impact for practical pur-
poses. However, the framework supports revocation, so revocation experiments
can be carried out as well.
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Scheme Canard et al. ECC-DAA Isshiki et al.

Parameterization [, =512 [, =1024 t =256 K,=1024 K,= 2048
k=160 k =160 p=]256] K =160 K =224

lz =160 I =160 K.=160 K.=224
le =170 Il =170 K= 60 K,=112
lp =420 g =420 K.=504 K.=1736
Ix =410 Ix =410 K.=60 K.=60
e =5/4 € =5/4

Security Strength 80 bit 112 bit 128 bit 80 bit 112 bit

Table 3. Scheme security comparison

3.3 Runtime

The following data was gathered by averaging the single processes over 100 iter-
ations. The mean values are explicitely shown, whereas the standard deviation is
only indicated using error bars. Signing was computed using a different message
per sign operation, though within the same group. Verification was also varied
in terms of message and signature.

Runtimes are split into the notebook and mobile cases. The mobile case
is discussed in more detail, including precomputation. Parts of the signature,
which do not depend on the message can be precomputed, such that the online
signing time is further decreased. Additionally, if optional linkability is disabled
in ECC-DAA and in the scheme by Canard et al., then most of the signature
attributes are precomputable. We will leverage this ability by shifting workload
to a precomputation phase.

Furthermore, we measured the runtimes with two different primitive arith-
metic implementations for elliptic curve cryptography, namely the default java.-
math.BigInteger, denoted Biglnteger from now on, and a custom implemen-
tation, denoted custom. There were particular reasons for choosing another un-
derlying implementation, which will be discussed later on.

Notebook Runtimes for signing and verifying on a notebook-like environment
are given in Figure 1. We can see that the parameter length and, thus, the length
of the internally used values roughly dictates the runtimes. In this setting, ECC-
DAA outperforms the schemes by Canard et al. and Isshiki et al. It is faster
in both signing and verifying and provides higher security strength at the same
time. Indeed, all schemes are fast enough to be used out of the box, with no
measurement exceeding 335ms. There are only small differences between the
two used arithmetic implementations, with the custom one being marginally
slower.

Mobile Device On Android, a different picture emerges. The same implemen-
tation, deployed as an app, results in the signing times as depicted in Figure 2.
We can see that there is not just simple upscaling in place, resulting from the
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Fig. 1. Signing and verifying, notebook case

limited computational power of the devices. Contrary to the notebook case, the
non-ECC scheme by Canard et al. does no longer exceed the runtimes of the
other two schemes that much. Furthermore, we see stronger differences between
using Java’s default BigInteger and the custom implementation.

Before discussing the reasons of these runtime effects, we show the achieved
online times when utilizing the fact that certain parts of the signatures are
precomputable.

ECC-DAA, custom 5850

56
o
_
s

ECC-DAA, Biglnteger 1 1048.1
Isshiki et al., custom 1056.3

Isshiki et al., BigInteger —3519.9

2048
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i
| T
c
=S
=23

Canard et al., Biglnteger 1722.2
Isshiki et al., custom 999.1

Isshiki et al., BigInteger — 2104.6
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Canard et al., Biglnteger b 304.2
I 331.1 I \ I I \ I | | |
[ T T

T T T T T T T >
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M Samsung Galaxy S Plus Samsung Galaxy S3 B Samsung Galaxy Prime

Fig. 2. Signing without precomputation, mobile case

Precomputation ECC-DAA and the scheme by Canard et al. support optional
linkability by computing a linking base into the signature, given that linkability
is desired and the verifier shall be able to provide the linking-base at sign time.
In this scenario, only those parts of the signature not depending on either the
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message or the linking base can be precomputed. We refer to this case using the
term partial precomputation.

If linkability is not required in a certain use case, it can be disabled by
setting the linking base to a constant value. Here, almost the whole signature
is precomputable, thus vastly decreasing the online signing time. This will be
called full precomputation from now on.

The scheme by Isshiki et al. does not support linking, but allows for exten-
sive precomputation as well, referred to as plain precomputation. Figure 3 is a
comparison of the evaluated schemes using partial (PPC) as well as full (FPC)
precomputation for ECC-DAA and the scheme by Canard et al., and precom-
putation (PC) for the scheme by Isshiki et al.

{ § r
; ECC-DAA, custom | &1 129
g ’ | Wi
- = ECC-DAA, Biglnteger I 01‘.'168.6)
g .
T 5
g ECC-DAA, custom e 050"
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= RO DA, Biglnterer i B, 63111
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Fig. 3. Signing with precomputation, mobile case

ECC-DAA with partial precomputation leaves three point multiplications for
the online signing phase, whereas seven out of seven can be precomputed in case
linkability is not needed. The gap between precomputations is smaller for the
scheme by Canard et al., where the difference is essentially one hash computa-
tion and three modular exponentiations. Precomputing the signature for Isshiki
et al. reduces the needed operations at signing time to one hash computation as
well as five additions, multiplications and reductions. Given the differing com-
plexity in the remaining operations, the shown gap in runtime is reasonable.
With full precomputation, the ECC-DAA workload is reduced to a single hash
computation as well as one plain additon, multiplication and reduction.

Verification As depicted in Figure 4, the notebook results are almost inverted.
As in the mobile signing setting, ECC-DAA and the scheme by Isshiki et al. are
considerably slower than the scheme by Canard et al. Again, this partially stems
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from implementation issues when using elliptic curve cryptography. However,
verification is a less critical factor regarding mobile device performance when con-
sidering typical application scenarios for group signature schemes. Commonly,
verification can take place at more powerful devices [9,16,21,30].

I 3096.3
ECC-DAA, custom Ho 2027.9
I N
© 2317.0 9735.5
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i I - 7746.4
= — \
5 Isshiki et al., custom i 205%’.5 19
£ [ | 2352.9
% F  lushikicf al, Biglut H 36514 -
sshiki et al., Biglnteger ‘
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= 14172
E Canard et al., Biglnteger _I'12T§.242 )
3 - — 14113
3 Isshiki et al., custom io1129.5
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Fig. 4. Verification, mobile case

3.4 Lessons Learned

The runtime anomalies that emerge when comparing the notebook and mobile
cases are partially implementation-related issues. The elliptic curve cryptography
part of the framework, used by ECC-DAA and the scheme by Isshiki et al.,
is comparably slower on mobile devices. The dominating factor for this is the
amount of temporary objects that are instantiated to hold an intermediate value
for a short amount of time and are then of no use anymore. Thus, a lot of runtime
and memory is wasted on instantiating, copying and then garbage collecting
these objects.

The main reason for this is Java’s immutable BigInteger implementation.
Each operation on a Biglnteger leads to the allocation of a new object, storing
the result. Considering that Biglntegers are the most basic element, used by
all prime and extension field operations, this has a major impact on runtime.
These temporary instances are less of a problem with operations, such as mod-
ular exponentiation, as used by the schemes by Canard et al. and Isshiki et al.
Modular exponentiation is provided by Java’s Biglnteger and uses a mutable
variant internally. The problem becomes apparent for operations built on top of
BigIntegers, such as point multiplication or pairings. Therefore, the scheme by
Canard et al. was only tested with BigIntegers, as the expected gain from using
the custom implementation is very low.

While this is generally a non-issue in the notebook case, it has noticeable
impact when the algorithms are run on an Android based mobile device. The
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reason for this is much slower garbage collection in combination with a strict
collection enforcement policy.

The garbage collection overhead is severe enough that point multiplication
is faster using affine coordinates than a mix of Jacobian and affine coordinates,
to give an example. Using mixed coordinates in point multiplication allows to
omit expensive modular inversions during point addition and doubling within
the double-and-add cycle and is thus usually the faster variant [12,30]. However,
using Java’s Biglnteger, point multiplication in affine coordinates turned out to
be faster, since it requires less intermediate instances.

Android garbage collection is triggered as soon as there are enough collectable
objects, regardless of the overall free heap. Therefore, the small overall memory
footprint of our implementation poses no advantage in that regard. Originally,
our implementation was developed to give an overview of the different schemes. It
turned out that there is a strong indication that such a portable implementation
is almost powerful enough to be used already, without the need to resort to
highly optimized, but device dependent implementations. In light of this and
also to decouple this platform dependent implementation factor, we aimed at
alleviating the problem by reducing the amount of intermediate instances.

We decided to use a custom integer arithmetic implementation and plug it
underneath the field operations. Since this custom implementation is designed to
enforce in-place operations wherever possible, lots of instantiations are spared.
Furthermore, fixed-width integer arithmetic is used, allowing for easier recycling
of no longer used objects. Taming the garbage collector this way reduces run-
times dramatically. The problem is ameliorated, but there are still a few garbage
collection runs that cost considerable runtime. Nevertheless, the attempt to de-
crease runtimes is successful, considering the visible runtime drops in the mea-
surements.

3.5 Memory

The exact amount of memory consumed by the schemes alone is difficult to
pinpoint in a managed, garbage-collected environment such as Java. On the
notebook, we approximated a heap consumption of below 5.5 megabytes and a
permanent generation space of about 4MB. Lower artificially introduced mem-
ory limits were just ignored by the JVM. Therefore, these values are a loose
upper bar. As we see from experiments on the mobile devices themselves, the
schemes run with less than that. For example, on the Samsung Galaxy S3 device
we used, the initial free heap memory per app is as low as one megabyte, since
the remaining heap is already filled with preloaded Android elements. The im-
plementation ran under these circumstances without further heap growth, thus
having only one megabyte of heap available seems to be enough.

Code Size The code size was determined by the resulting size of the classes
.dex file when exporting an APK package. ProGuard® was enabled when doing

9 http://developer.android.com/tools/help/proguard.html
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these tests, which reduces the size by renaming variable names to commonly
short identifiers. Table 4 lists the code size for each module.

Complete Set  Canard et al. ECC-DAA Isshiki et al. Framework

349KB 163KB 249KB 257KB 273KB
Table 4. Code size comparison

Complete set refers to the whole functionality, including ECC/Pairing code
and all schemes. Framework on the other hand is infrastructure material only.
The separate scheme sizes denote the code size of both the specified scheme itself
and the required framework code for it to work, hence the overlaps.

Since the scheme by Canard et al. does not use any elliptic curve cryptog-
raphy, its code size is naturally smaller, as the ECC part of the framework can
be dropped. More than half of the overall code size is consumed by underlying
primitive functionality. ECC-DAA and the scheme by Isshiki et al. are almost
equal in size. Generally, code size is low enough to be run on mobile devices with
the whole package having a size of less than 350KB.

4 Related Work

Group signatures have become an extensive field of research with many different
proposed schemes and suggested approaches. For surveys on group signature
schemes themselves, we refer the reader to [26, 31].

Implementational aspects of group signatures were evaluated in various re-
lated publications. In Table 5, several publications are put into context to allow
for a rough overview of current advances. Unfortunately, a direct comparison is
not possible, since all approaches differ in terms of the test setup, used cryptosys-
tem and the scheme itself. Furthermore, vital details such as the used pairing
map are omitted as well. The intention is to give a brief overview on how a
Java-based implementation fits into this picture, both in the mobile and the
notebook case. Still, these values have to be taken with a grain of salt, especially
when comparing individual results. Most shown implementations are C-based
and use the pairing-based cryptography library PBC'?. A high-level implemen-
tation in Java typically cannot compete with low-level C implementations using
partial assembler optimizations, not to mention hardware solutions based on
Application-Specific Integrated Circuits (ASICs) or Field-Programmable Gate
Arrays (FPGAs). However, the enhanced flexibility of platform indepence might
be worth the longer runtimes. The additional runtimes seem acceptable, espe-
cially when comparing our results with the native code estimations from Manulis
et al. [26].

10 See https://crypto.stanford.edu/pbc/
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Source Remarks Scheme Setup  Strength  Sign Verify
Morioka et Isshiki et al. [23] ASIC 80 bit 135ms  135ms
% al. [27]
—E Manulis et C/ASM, Boneh- FPGA 128 bit 128.7ms 144.76ms
£ al. [26] PBC, Shacham [8]
‘ estimations Bichsel et al. [7] FPGA 128 bit  58.3ms  52.3ms
lghen7 C/ASM RSA-DAA [9] TPM 128 bit 33700ms  194ms
age, ECC-DAA [20] 3400ms 48.31ms
Smart [20]
k]
4
= XSGS [22], 80 bit < 200ms 55ms
Canard et C, PBC online signing WSN
al. [15] XSGS [22], 80 bit  3995- 55ms
offline signing 6596ms
< Camenisch- 431.5ms 431.5ms
S
= . Groth [13]
% Manulis et QI]SCEOISBC Boneh- PHO- 128 bit 1211.7ms 2118ms
g al [206] estimations  Shacham [8] NE
n Bichsel et al. [7] 1002.3ms 1577.4ms
Camenisch- MPC 170.4ms 170.4ms
Groth [13]
Manulis et g]éjéSM’ Boneh- MPC 198 bit 402.4ms 691.6ms
al. [26] estim’ations Shacham [8] MPC* 131.4ms 150.1ms
Bichsel et al. [7] MPC 332ms  508ms
@) ’ MPC* 61lms 56.8ms
&
Bringer Boneh- 1000ms 1170ms
and ¢ C++ Shacham [8] - pppe gg pig
Patey [11] Chen-Li 450ms  400ms
Y (patched) [11,18]
Legend:

ASIC  0.25um ASIC Implementation, 100MHz clock frequency, by Morioka et al. [27]
BPPC Intel Core2Duo, 2.93GHz
FPGA Xilinx Virtex-6 FPGA prototype, assumptions based on [32]
MPC  Intel Core Duo LV 12400, 1.66GHz
MPC* Same as MPC, but assuming the pairing measurements as shown by Naehrig
et al. [28]
PHONE HTC Desire, 1 GHz Qualcomm ARMv7 Scorpion CPU
TPM  33MHz ARMv7, emulated TPM; 2.4 GHz Intel Core2-6600 host platform
WSN  MICAz/TelosB wireless sensor node platforms; 1.4 GHz Intel Core2Duo CPU
host platform, see [15]
Table 5. Comparison of other published results
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5 Conclusion and Future Work

Implementing group signature schemes in plain Java for the Android operating
system yielded various interesting insights. Group signature schemes are con-
sidered ready for scenarios, where signature creation is performed on mobile
devices and verification is done on a more powerful device. The shown schemes
by Canard et al., Chen et al. and Isshiki et al. allow for precomputing parts of
the signature, enabling tolerable online signature timings. The concrete timings
are differing between the schemes and use cases, but are generally considered
acceptable. The worst case scenario runtime we measured averages at about
330ms for online signing, with a huge gap to the second longest run of about
56ms. Newer smartphone generations seem to improve these results significantly.
Verification runtimes are in part noticeably slower, but common scenarios only
require signing to be performed on low-power end user devices. Therefore, we
consider the technology ready to be used on mobile devices. A partial native code
implementation might even allow for omitting the precomputation step whilst
still delivering acceptable runtimes.

The framework did not only enable detailed comparisons of the schemes, it
also revealed factors of considerable impact regarding the runtime environment.
The Android garbage collector turned out to be the main bottleneck. There-
fore, having less intermediates and recycling instances is of great importance on
Android. The runtimes of individual operations tend to be tightly coupled with
the amount of required intermediate instances. Cumulative effects, such as the
garbage collector kicking in after a certain threshold of objects to collect might
also hinder runtime estimations based on the timings of individual operations.

The accompanying framework is open source and allows further extension
with the remaining schemes defined in ISO20008-2 [25] or other, similar schemes.

Subsequent anticipated steps are to loosen the platform independence a bit
and to implement parts of the framework using the Android Native Development
Kit. Given the unmanaged memory environment, this is expected to result in
further acceleration.
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